Essays on Multidimensional Private Information in the Consumer Credit Market

MeeRoo Kim

Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Graduate School of Arts and Sciences

COLUMBIA UNIVERSITY
2018
ABSTRACT

Essays on Multidimensional Private Information in the Consumer Credit Market

MeeRoo Kim

In these essays, I study how multidimensional private information causes advantageous selection in a highly concentrated consumer credit market. All three chapters are tightly correlated with each other. I first carefully investigate conditional correlations between choices of a loan type, private default risks, and an additional private information on consumption smoothing motives. I find that their conditional correlations appear consistent with advantageous selection being driven by unobserved heterogeneity in consumption smoothing motives. Then I document how moral hazard links two dimensions of private information: consumption smoothing motives and default risks. By separately identifying moral hazard from adverse selection, I show that consumers with stronger consumption smoothing motives exert more effort to prevent default, generating an endogenous negative association between consumption smoothing motives and default risks. Finally, using a dynamic model of loan type choices and following outcome of default, I recover the joint distribution of bi-dimensional unobserved heterogeneity. This structural estimation also suggests a new way to estimate the inter-temporal elasticity of substitution that represents heterogeneous consumption smoothing motives. As well as being consistent with the results of previous chapters, the results of the structural estimation reveal a strong and positive correlation between inter-temporal elasticity of substitution and default risks.
Contents

List of Figures iii

List of Tables v

Introduction 1

1 Multidimensional Heterogeneity and the Nature of Advantageous Selection in the Consumer Credit Market 4

1.1 Introduction 5

1.2 Theoretical Foundation 11

1.3 The Data 22

1.4 Evidence of Advantageous Selection in the Consumer Credit Market 28

1.5 Concluding Remarks 40

2 Heterogeneous Consumption Smoothing Motives and Selection on Moral Hazard 61

2.1 Introduction 62

2.2 Identifying Moral Hazard 68

2.3 Institutional Background 72

2.4 Theoretical Foundation 76

2.5 The Data 78

2.6 Econometric Model 79

2.7 Concluding Remarks 90
List of Figures

1.1 The Source and The Mechanism of Advantageous Selection 55
1.2 History of Bank Merging in Korea (Source: Bank of Korea) 56
1.3 Survival Plot of Corporate Loans Without Controlling Observables 57
1.4 Survival Plot of Corporate Loans Controlling Observables 58
1.5 Survival Plot of Consumer Loans without Controlling Observables 59
1.6 Survival Plot of Consumer Loans Controlling Observables 60

2.1 Under Stationarity Assumption (Full Sample) 95
2.2 Allow Nonstationarity (Full Sample) . 95
2.3 Allow Nonstationarity (Not in Consumption Smoothing Group) 96
2.4 Allow Nonstationarity (Consumption Smoothing Group) 96
2.5 Allow Nonstationarity (Age between 30 ∼ 45) 97
2.6 Allow Nonstationarity (Age between 45 ∼ 60) 97
2.7 Allow Nonstationarity (Age over 60) . 98
2.8 Allow Nonstationarity (Renters) . 99
2.9 Allow Nonstationarity (House Owners) . 99
2.10 Allow Nonstationarity (Consumers with Low Real Estate Asset) 100
2.11 Allow Nonstationarity (Consumers with High Real Estate Asset) 100
2.12 Allow Nonstationarity (Low Savings) . 101
2.13 Allow Nonstationarity (High Savings) . 101
2.14 Allow Nonstationarity (Low Income) . 102
2.15 Allow Nonstationarity (High Income) . 102
List of Tables

1.1 Descriptive Statistics (Corporate Loans) .. 42
1.2 Descriptive Statistics (Consumer Loan) .. 42
1.3 Interest Rate Gap between Credit Loans and Collateralized Loans 43
1.4 Corporate Loans .. 44
1.5 Consumer Loans (Full Sample) ... 45
1.6 Consumer Loans (Small Loans V.S. Large Loans) 46
1.7 Consumer Loans (Using Adaptive Lasso) ... 46
1.8 Summary Statistics of Consumption Smoothing Group 47
1.9 Consumer Loans (Condition on Consumption Smoothing Motives) 48
1.10 Loan Choices and Default Tendency of the Consumption Smoothing Group 49
1.11 First-time Borrowers V.S. Repeated Borrowers 50
1.12 Contract Choices and Default Tendency of First-time and Repeated Borrowers 51
1.13 Contract Choices of Internet Banking Prefer Group among First-time Bor- rowers ... 52
1.14 Compare Income Volatility: First-time Borrowers V.S Repeated Borrowers 53
1.15 Interest Rate Gap between Credit and Collateralized Loans: First-time V.S. Repeated .. 54

2.1 Number of Observations by the Number of Delinquencies 93
2.2 Occurrence Dependence & Lagged Duration Dependence 94

3.1 Interest Rate Gap between Credit Loans and Collateralized Loans 125
3.2 Parameter Estimates of the Bivariate Lognormal Distribution 125
Acknowledgements

I am deeply indebted to my advisors Bernard Salanié, Pierre-André Chiappori, and Tobias Salz for their precious advice, guidance, and considerations throughout the entire period of my time at Columbia University.

Bernard Salanié always gives me brilliant and rigorous theoretical intuition on marvelously broad field of economics including microeconomics and econometrics. Pierre-André Chiappori, needless to say, leads me to much deeper understanding of the contract theory with his distinguished intuition in economics. I also was very happy to be able to appreciate their deep thoughts and insights in economics during the Applied Micro Theory Colloquium at Columbia University. On top of their personal support as an advisor, my dissertation is heavily indebted to their pathbreaking theoretical and empirical work on testing contract theory: Chiappori and Salanié (2000), Chiappori, Jullien, Salanié and Salanié (2006). Tobias Salz’s intelligent thoughts and ideas broaden my perspective and greatly improved my dissertation. I also would love to express my deep gratitude to him for his considerable help during my job market. As a Ph.D. student who studies asymmetric information in credit and insurance markets, I am very lucky to develop my modeling, quantitative, and empirical skills with their continuous and patient support and guidance.

I also sincerely would like to thank Sokbae (Simon) Lee, Matthew Backus with their invaluable assistance and directions as my dissertation committee. Sokbae (Simon) Lee’s class, Topics in Econometrics, inspired me to apply Lasso to my dissertation and helped me clearly understand the contents. I was very lucky to take his class at Columbia University. Matthew Backus gave me a precious direction for my future work.
based on this dissertation. I was very happy to meet him at Columbia University.

Also I would like to express deep gratitude to Keunkwan Ryu, Christopher Rothe, Katherine Ho for their invaluable comments and supports.

My dissertation has also benefited from my colleagues: Gustavo Pereira, Suanna Oh, Evan Kyle Friedman, Paul Sungwook Koh, Heedae Park, and Sang Hoon Kong.

In the last but not least, I would love to thank my parents and my lovely wife, Junghee Lee, and my daughters and son, Minsun Kim, Minkyung Kim, and Haemin Aiden Kim for their love and support.
This dissertation is dedicated to
my parents, wife, daughters, and son for their love and support.
Introduction

Consumer credit markets have been broadly studied in economics. Especially, effective policy design requires a clear understanding of asymmetric information in these markets, so it has been extensively studied in the theory literature. However, empirical work is still very limited. In particular, the potential sources and mechanisms of advantageous selection in credit markets have not been studied yet; I will carefully investigate it in my thesis.

I focus on the multidimensional private information that causes advantageous selection in the highly concentrated Korean consumer credit market. As I prove in my thesis, this highly concentrated consumer credit market provides an environment in which an additional dimension of unobserved heterogeneity may cause non-classical results.

Chapter 1 introduces a novel mechanism of advantageous selection in the highly concentrated consumer credit market. I show that this advantageous selection is explained by the combination of two components: consumers’ unobserved heterogeneity in consumption smoothing motives and banks’ sufficient market power. On the demand side, consumers who have stronger consumption smoothing motives are willing to pay a higher interest rate to smooth consumption. At the same time, they exert more effort to prevent default since their opportunity cost of being excluded from the credit market is higher. On the supply side, sufficient market power allows banks to charge a higher interest rate to those borrowers who are willing to pay more for consumption smoothing. Using a theoretical model, I prove that advantageous selection may occur only when the bank has market power. Then, I show that the empirical relationships between a proxy for consumption smoothing motives, loan choices, and default risks
appear consistent with advantageous selection being driven by private information on consumption smoothing motives.

Chapter 2 conducts a deeper investigation into the moral hazard aspect of the relationship between consumption smoothing motives and default risks. Advantageous selection, which is reported in the first chapter, critically depends on the negative association between consumption smoothing motives and default risks. My theoretical model predicts that consumers who have stronger consumption smoothing motives have higher opportunity cost of being excluded from the credit market, and will therefore exert more effort to prevent default. To empirically support this argument, I separately identify moral hazard from adverse selection by exploiting panel data on delinquencies and the existence of a convex penalty scheme on this rater. This increases the marginal cost of future delinquencies as the number or duration of past delinquent spells increases. Under this convex penalty scheme, a rational borrower who reacts to the changes in incentives, the probability of being or remaining delinquent decreases as the number or duration of past delinquent spells increases. I use both a nonparametric approach and a parametric approach to test the existence of moral hazard under the convex penalty scheme. The results show a strong endogenous relationship between consumption smoothing motives and default risks: consumers who have stronger consumption smoothing motives do indeed exert more effort to prevent default.

Chapter 3, which is joint work with Gustavo Pereira, tries to reveal a joint distribution of private information on default risks and consumption smoothing motives that is represented by inter-temporal elasticity of substitution. Consumer credit markets provide a fascinating environment to estimate inter-temporal elasticity of substitution since inter-temporal consumption smoothing is the primary reason to join the consumer credit markets. We consider the utility maximizing loan type choice of a rational, forward looking borrower with stochastic default rate that is exogenous. The estimated
inter-temporal elasticity of substitution is about 0.61, which is larger than the estimate by Hall (1988), but is less than that by Attanasio and Weber (1993). The estimated joint distribution reveals a strong and significant positive correlation between default risks and inter-temporal elasticity of substitution. This positive correlation is consistent with the findings of the previous two chapters that consumers with stronger consumption smoothing motives are less likely to default.
Chapter 1

Multidimensional Heterogeneity and the Nature of Advantageous Selection in the Consumer Credit Market
1.1 Introduction

When consumers choose a loan from a menu where interest rates are paired with collateral requirements in credit markets, existing theories predict that low risk borrowers will be more willing to accept high collateral requirements for a reduction in interest rates, compared to high risk borrowers (Bester (1985), Bester (1987), Besanko and Thakor (1987a), Besanko and Thakor (1987b), Chan and Thakor (1987), Boot, Thakor and Udell (1991)). Hence when consumers’ default risk is private information, these theories predict a positive empirical correlation between a loan interest rate and default probability, conditional on all the observable factors used for pricing the loans.

However, analyzing South Korean consumer credit market data, I find that consumers who choose a loan with a high interest rate paired with a low collateral requirement are less likely to default than those who choose a loan with a low interest rate paired with a high collateral requirement. That is, I find evidence of advantageous selection in the consumer credit market, a negative correlation between a loan interest rate and default probability. On the contrary, looking at the corporate loan data, I do not find any conspicuous evidence of asymmetric information between firms and the bank.

One notable difference between the consumer loan market and the corporate loan market in South Korea is the degree of market concentration. After the 1997 Asian financial crisis, the Korean credit market underwent a huge consolidation initiated by the governmental authority. This resulted in the consumer loan market that is much more highly concentrated than the moderately concentrated corporate loan market. The highly concentrated consumer loan market may serve as an environment in which an additional dimension of unobserved heterogeneity may cause non-classical results, as previously suggested by Chiappori, Jullien, Salanié and Salanié (2006) in the insurance market setting.
In this paper, I highlight one important source of the advantageous selection in the non-competitive consumer credit market, namely unobserved heterogeneity in consumption smoothing motives, and explore its mechanism. I first argue that consumption smoothing motive is an important dimension of unobserved heterogeneity among consumers. My arguments are motivated by some specific characteristics of the South Korean consumer credit market as well as general theoretical considerations.

Consumers may use credit markets to smooth their inter-temporal consumption by translating their consumption from periods of low marginal utility to periods of high marginal utility. In addition, the consumption smoothing motives may be heterogeneous, as represented by the different curvatures of their utility functions. This heterogeneity may be in general difficult to observe for banks, and is certainly not a part of the factors used for loan pricing in this market.\(^1\)

The unobserved heterogeneity in consumption smoothing motives matters when consumers choose their loan terms. After classifying consumers based on their observable risk factors, a bank suggests a menu of contracts composed of pairs of an interest rate and a collateral requirement, where the loan interest rate is decreasing in the value of pledged collateral.\(^2\) Consumers who have stronger consumption smoothing motives will tend to choose a high interest loan with a low collateral requirement. This is because their willingness to pay interest costs to reduce the collateral requirement by one unit is higher than the willingness of those who are less motivated to smooth consumption. Consumers may face some risk of defaulting against their will, in which case they would lose their pledged collateral, potentially resulting in severe changes in their consumption path. Hence those who derive larger disutility from a volatile consumption

\[^1\]Jullien, Salanié and Salanié (2007) characterize the optimal menu of contracts when the agent’s risk-aversion is his private information and point out that it is difficult for principal to precisely observe agent’s risk-aversion.

\[^2\]It is because the recovery, which is a portion of money recovered by the banks when default occurs, increases with the value of pledged collateral. More details will be provided in chapter 4.
path will be more willing to bear large interest costs instead of pledging high levels of collateral.

Furthermore, the unobserved heterogeneity in consumption smoothing motives can generate differential incentives to prevent default. Given that consumers rely on the credit market for consumption smoothing, their opportunity cost of being excluded from the credit market increases with their consumption smoothing motives. Hence, if default leads to exclusion from the credit market, consumers who are strongly motivated to smooth consumption will exert more effort to avoid default. In other words, those who enjoy greater utility gain from consumption smoothing suffer more from losing access to the consumer credit market, and thus face a stronger incentive to avoid default by honoring existing debts. These relationships between the unobserved heterogeneity in consumption smoothing motives, loan choices, and default risks can drive advantageous selection in the non-competitive consumer credit market (Figure 1.1 visualizes this intuition.).

Importantly, the non-competitiveness of the credit market is required for the above relationships to generate advantageous selection. In the competitive market, a bank has to charge higher interest rates to the riskier borrowers.\(^3\) Otherwise, it will be profitable for other banks to skim the cream off the lower risk borrows by offering a marginally lower rate. On the other hand, under imperfect competition, hidden information on consumption smoothing motives matters, since a bank is able to charge a higher interest rate to the borrowers who are willing to pay to smooth consumption. I formalize this idea in my model, proving that unobserved heterogeneity in consumption smoothing motives cannot cause a negative correlation between a loan interest rate and default probability if the market is competitive and that it may cause a negative correlation only when a bank has market power.

\(^3\)In the competitive market, the value of hidden information on consumption smoothing motives is private, in the sense that it has no impact on banks’ profit.
I use a unique dataset from a major South Korean bank to show that the heterogeneity in consumption smoothing motives is a critical driver of the advantageous selection. The dataset includes information not only on the loans from the bank, but also on savings account balances and history of credit card consumption for each consumer. One notable piece of information is the use of installment plans. This special credit card feature that is widely available in South Korea allows consumers to split the price of a good and repay over a number of months with some interest costs. One can freely choose whether to exercise this option or not when making the initial purchase of each good with her credit card. Essentially, it is a short-term loan that provides an additional way to smooth consumption but with a high interest rate. Due to the high interest rate, only the consumers who have strong consumption smoothing motives will use the option.

Using this data, I construct a proxy for consumption smoothing motives. I categorize a group of consumers who have zero or small balance in their savings account, upward savings trend or increasing income path, have borrowing constraints, and have large amounts of debt in installment plans as those who are strongly motivated to smooth consumption. I provide theoretical proofs for the validity of this proxy. Then, I explicitly test that the consumers who have stronger consumption smoothing motives tend to choose a credit loan that does not require any collateral but instead imposes a high interest rate. At the same time, I show that those consumers tend to default less, thereby explaining the negative correlation between a loan interest rate and default probability.

I then explore the mechanisms of this relationship by examining different sub-groups. Advantageous selection appears to be more conspicuous among repeated borrowers than first-time borrowers. One possible explanation is that the bank may have better information on unobserved default risk for the repeated borrowers, allowing it to concentrate
on exploiting market power to charge a higher interest rate to those consumers who are more willing to pay to smooth consumption, resulting in stronger patterns of advantageous selection among repeated borrowers.

No clear relationship between an interest rate and default probability for the first-time borrowers does not necessarily imply the lack of asymmetric information between those borrowers and the bank. For the first-time borrowers, there is bi-dimensional private information: one on consumption smoothing motives, and the other on default risks. Under this bi-dimensional private information, two types of consumers choose a credit loan that charges a higher interest rate instead of requiring any collateral: borrowers who have unobservably stronger consumption smoothing motives and those who have unobservably higher default risks. The first type of borrowers is less risky, while the second type of borrowers is, of course, riskier than the bank predicts. Consistent with this idea, I show that consumers who have stronger consumption smoothing motives among the first-time borrowers still tend to choose a credit loan and are less likely to default. This relationship alone would generate a negative correlation between a loan interest rate and default probability. However, I find that the education level, which is also an unpriced characteristic, generates a positive correlation between a loan interest rate and default probability. Hence, private information on these factors can lead to the disappearance of significant asymmetric information in the market.

To the best of my knowledge, this is the first paper that presents and investigates a source of advantageous selection in the consumer credit market. Building on the

\footnote{Finkelstein and McGarry (2006) show that riskier people buy more insurance but people who have strong taste for insurance, who are relatively less risky, also buy insurance, resulting in absence of a positive correlation between insurance coverage and risk occurrence.}

\footnote{This does not imply that this equilibrium is efficient as the first best allocation. In this equilibrium, both unobservably high risk borrowers and borrowers who are less risky but with stronger consumption smoothing motives pay the same interest rate. It implies that at least one group does not pay a fair price.}

\footnote{Davidoff and Welke (2004) find advantageous selection in the U.S. reverse mortgage market. They argue that this advantageous selection might have come from heterogeneity in risk aversion}
ideas of Finkelstein and McGarry (2006) and Fang, Keane and Silverman (2008) who introduce multidimensional heterogeneity to explain advantageous selection in the insurance markets, I propose that unobserved heterogeneity in consumption smoothing motives is a source of advantageous selection in the consumer credit market.

I also contribute to the growing empirical literature on detecting asymmetric information in insurance markets and credit markets. Several papers empirically test for existence of asymmetric information in insurance markets. The empirical results of the tests are quite mixed. Puelz and Snow (1994), Finkelstein and Poterba (2004), Cohen (2005), and He (2009) find evidence of asymmetric information in their markets, while Cawley and Philipson (1999), Chiappori and Salanié (2000)\(^7\), and Cardon and Hendel (2001) do not find any evidence of asymmetric information.

In terms of asymmetric information in credit markets, in addition to the papers that try to separately identify moral hazard and adverse selection in credit markets (Ausubel (1999), Karlan and Zinman (2009), Agarwal, Chomsisengphet and Liu (2010), Adams, Einav and Levin (2009), Dobbie and Skiba (2013)), Davidoff and Welke (2004) find advantageous selection in the U.S. reverse mortgage market. Agarwal, Chomsisengphet and Liu (2016) find that less credit-worthy applicants are more likely to select credit contracts with a lower collateral requirement and a higher interest rate in the home equity loan market. Edelberg (2004) finds robust evidence of adverse selection when high risk borrowers pledge less collateral and pay higher interest rates, even after controlling for income levels, loan size, and risk aversion, and evidence of moral hazard.

The remainder of the paper is structured as follows. Chapter 1.2 provides the

\(^7\)In this paper, they also develop a general “positive correlation test” to check for the presence of asymmetric information in a contractual relationship within a competitive market.
theoretical foundation showing that advantageous selection cannot occur unless banks have market power. Chapter 1.3 describes the data. Chapter 1.4 provides empirical evidence of advantageous selection in the Korean consumer credit market and discusses the relevant features of the market. Chapter 1.5 concludes. The appendix provides additional details and theoretical proofs.

1.2 Theoretical Foundation

In this chapter, I lay a theoretical foundation of advantageous selection. From a theoretical point of view, I introduce inter-temporal elasticity of substitution (IES) and use it as a shortcut to represent heterogeneous consumption smoothing motives.8 Consumers with low IES have stronger consumption smoothing motives than consumers with high IES.9 In turn, it implies that consumers with low IES tend to choose a high interest rate loan paired with a low collateral requirement, and at the same time those consumers are less likely to default.

In the following theoretical work, I show that the opportunity cost of being excluded from the credit market is higher for the consumers with lower IES, i.e. the consumers who have stronger consumption smoothing motives, using a simple two period model. And then, more importantly, I show that unobserved heterogeneity in consumption smoothing motives may generate advantageous selection only when the bank has market power.

8I use this shortcut only for theoretical proofs. Consumption smoothing motive is a more general concept than the one as represented by inter-temporal elasticity of substitution.

9Several pieces of literature deal with heterogeneous IES. Blundell, Browning and Meghir (1994) and Attanasio and Browning (1995) suggest that rich households tend to show larger IES. Also Mankiw and Zeldes (1991) and Vissing-Jørgensen (2002) find larger IES for stockholders than for non-stockholders. Bayoumi (1993) and Wirjanto (1995) indicate that liquidity constrained households show smaller IES.
Definition of IES and Heterogeneous Opportunity Cost of Default

Inter-temporal Elasticity of Substitution measures consumers’ willingness to substitute consumption between time periods in response to changes in the expected real interest rate. If the real rate rises, current consumption may decrease due to increased return on savings. At the same time, current consumption may also increase as the consumer decides to consume more immediately, as she feels richer. The net effect on current consumption is the inter-temporal elasticity of substitution.\(^{10}\)

Definition and Implication of IES

Mathematically, inter-temporal elasticity of substitution (IES) equals the minus of the inverse of the elasticity of the marginal utility:

\[
IE S = -\frac{d \log(c_t)}{d \log(u'(c_t))}
\]

where \(c_t\) is the consumption in period \(t\). This is general, in that it is unambiguous even if a consumer has a non-homothetic preference.\(^{11}\)

Under homothetic preferences, the above definition of IES is equivalent to Hall (1988)’s definition of the elasticity of the consumption ratio to the corresponding relative price. That is to say, it is a measure of responsiveness of the growth rate of consumption to the gross real interest rate. In this case, the mathematical definition of IES becomes

\(^{10}\)Hall (1988)

\(^{11}\)Under time separable von Neumann-Morgenstern expected utility function, risk aversion and IES have a one-to-one relationship: IES is the inverse of risk aversion. However, two parameters have different meanings. Risk aversion represents preference toward risk under uncertainty, while IES represents preference toward inter-temporal consumption smoothing.
IES = \frac{d\log(c_{t+1}/c_t)}{d\log(R)}

where \(c_t \) is the consumption in period \(t \), and where \(R = 1 + r \) is the gross real interest rate.

If the preference is time separable, \(U = \sum_{t=0}^{T} \beta^t u(c_t) \), the Euler equation \(u'(c_t) = \beta Ru'(c_{t+1}) \) is derived from the utility optimization of the consumer under certainty. If I take logarithms in the Euler equation, \(\log R = -\log \frac{u'(c_{t+1})}{u'(c_t)} - \log \beta \), then the IES can be rewritten as

\[
IES = \frac{d\log(c_{t+1}/c_t)}{d\log(R)} = -\frac{d\log(c_{t+1}/c_t)}{d \log u'(c_{t+1})/u'(c_t)}
\]

So, if I additionally assume iso-elastic utility function, \(u(c_t) = \frac{c^{1-\gamma} - 1}{1-\gamma} \), then IES = \(1/\gamma \). In sum, the larger value of the parameter \(\gamma \) implies the smaller IES.

From a theoretical point of view, IES is a useful shortcut for consumption smoothing motives. Consumers with low IES tend to adhere to their original target consumption growth path, even when the price (the interest rate) changes, implying stronger consumption smoothing motives than consumers with high IES.

In turn, it implies that consumers with low IES are more willing to bear higher interest rates to reduce a collateral requirement as opposed to those consumers with high IES.\(^{12}\) As a result, consumers with low IES, who have stronger consumption smoothing motives, tend to choose a credit loan that charges a higher interest rate instead of requiring any collateral.

\(^{12}\)Just as, in insurance markets, risk averse people are more willing to pay higher premium to get higher coverage.
Heterogeneous Opportunity Cost of Default

In addition to this tendency of choosing a credit loan, consumers with low IES are less likely to default. Consumers with heterogenous IES, representing differential consumption smoothing motives, have differential incentives to prevent default since their opportunity cost of being excluded from the credit market varies according to their IES. Consumers with low IES exert more costly effort to avoid default since their opportunity cost of being excluded from the credit market is higher. In other words, those who enjoy a bigger utility gain from consumption smoothing suffer more from denial of access to the consumer credit market, and thus face a stronger incentive to avoid default by honoring existing debts.

In Appendix A.1, I use a simple two-period model to prove the above argument theoretically. The basic steps and ideas are as follows. As a first step, I show that the optimal borrowing amount decreases in the IES. That is to say, a consumer with low IES tends to borrow more from a bank at any given interest rate. As a second step, I show more directly that the compensating income variation, which would be required for the consumer to become indifferent to autarky, is larger for the consumer with lower IES. Please refer to the appendix for the full model.

The theoretical model implies that heterogeneity in IES can be an important dimension that may cause a negative correlation between a loan interest rate and default probability in the consumer credit market. Consumers with low IES tend to choose a high interest rate loan with a low collateral requirement and, at the same time, they are less likely to default, generating advantageous selection in the consumer credit market.

However, this additional dimension matters only when the bank has market power. If the market is competitive, the information value of the unobserved IES is private, i.e. it does not have an impact on the bank’s profit. In the next section, I elaborate on this point theoretically in a quite general setting.
Credit Market Model

Chiappori, Jullien, Salanié and Salanié (2006) show that even if there is an additional dimension of unobserved heterogeneity that is positively correlated to insurance demand and negatively correlated to accident risk, the additional dimension cannot generate a negative correlation between coverage and accident risk if the market is competitive. Similarly, here I show that when a menu is composed of pairs of loan interest rates and collateral requirements in the consumer credit market, the unobserved heterogeneity in IES may cause a negative correlation between a loan interest rate and default probability only when the bank has market power.

In the first part of the model, I will verify conditions under which a positive correlation between a loan interest rate and default probability is expected in the credit market. And then, I find conditions under which a negative correlation between a loan interest rate and default probability may be observed.

Competitive Market

Consider a consumer who chooses a contract from a given menu in the credit market. Here the menu is composed of pairs of loan interest rates and collateral requirements. Banks sort consumers based on observables X to predict their default risk, and then suggest the menu of contracts to them based on the classification. Since I focus on the choices of consumers in the credit market, I consider a group of consumers who are indistinguishable with respect to observables over which the bank can price discriminate. I omit X for convenience.

Formally, a contract (C_i) is composed of a gross interest rate $(R_i = 1 + r_i)$ and collateral (D_i), i.e. $C_i = (R_i, D_i)$.\footnote{I do not consider the credit rationing issue here. Some previous papers include the rationing probability in the contract term. Also this argument assumes that the amount of loan (L) is fixed whatever contract they choose. Refer to the small loan argument.} Suppose that a consumer, characterized by parameter
θ, has the future income w which is distributed $F_\theta(w)$ with the support of $[0, \infty)$. The parameter θ, therefore the income distribution $F_\theta(w)$, is the source of private information. A borrower with parameter θ privately chooses income distribution $F_\theta(w)$ from a set \mathcal{F}. If the set \mathcal{F} is a singleton, then it means that this is a pure adverse selection model. Otherwise it allows borrowers to choose the level of effort to prevent default. (moral hazard)

A borrower has wealth D_0, which can be pledged but cannot be liquidized instantly. Generally, with a fixed loan amount (L), when the value of pledged collateral (D_i) increases, applied interest rate (R_i) decreases whenever $D_i < R_i L$.\(^{14}\) This is because, for the bank, the cost of default decreases as the value of pledged collateral increases, until the value is just equal to the amount of loan.

Here I list three behavioral assumptions that I suppose on the borrowers in this model.

Behavioral Assumptions

Assumption 1. Each consumer’s preference is state independent over the distribution of the final wealth and monotonic with respect to first-order stochastic dominance.

Assumption 2. Consumers are averse to mean-preserving spreads on future wealth. (a weak preference for inter-temporal smoothing)

Assumption 3. (“Realistic Expectations”) When consumers choose a contract, they precisely expect their default probability and distribution of wealth loss.

These assumptions are so weak that the result covers a large class of models. It

\(^{14}\)It is consistent with usual loan contracts.
not only does not depend on single crossing condition but also allows heterogeneous preferences and even non-expected utility.

Suppose that a borrower prefers contract C_1 to C_2 which requests less collateral than contract $C_1; D_1 > D_2$. This implies that the price of the contract C_1, i.e. interest rate R_1, is lower than that of C_2, enough to compensate for the difference in collateral requirements.

Default occurs if $w < R_i L$.\footnote{Here I consider the case that in both contracts, $D_i < R_i L$. If, in both contracts, $D_i \geq R_i L$ then the final wealth $W_i(w) = \bar{w}_f + D_0 - w - R_i L, \forall w \in [0, \bar{w}_f]$. Note that, in this case, the final wealth is the same in both contracts. This is because I assumed R_i does not decrease any more after $D_i \geq R_i L$. If I assume that R_i still decrease even after $D_i \geq R_i L$, then contract C_1 dominates contract C_2 in terms of first order stochastic dominance in final wealth. Actually, if $D_2 \geq R_i L$ then contract C_1 always first order stochastic dominates C_2. As a result, C_2 will never be chosen in the market. So I only consider the case $D_2 < R_i L$. Of course some steps are different but the results still hold.} When default occurs, a bank liquidizes the pledged collateral and then allots liquidized collateral and income w for the repayment of debt. After that the bank returns the balance to the borrower, if any.\footnote{Here, I do not consider the collateral disparity issue like in Barro (1976), i.e. I assume that the value of pledged collateral is the same for both banks and borrowers.} So the final wealth of the borrower becomes

$$W_i(w) = \max\{D_0 - D_i, w - R_i L + D_0\} = w - R_i L + D_0 + Q_i(w)$$

which is a non-decreasing function in w where,

$$Q_i(w) = \begin{cases}
-w + R_i L - D_i & \text{if } w < R_i L - D_i \\
0 & \text{if } w \geq R_i L - D_i
\end{cases} = \max\{-w + R_i L - D_i, 0\}$$

Note that $Q_i(w)$ is the part of the debt that the borrower cannot repay.

Now let’s see how $Q_2(w) - Q_1(w)$ behaves. Let’s set $\bar{w}_i \equiv R_i L - D_i$
\[Q_2(w) - Q_1(w) = \begin{cases} (R_2 - R_1)L + (D_1 - D_2) & \text{if } w < \bar{w}_1 \\ -w + R_2L - D_2 & \text{if } \bar{w}_1 \leq w < \bar{w}_2 \\ 0 & \text{if } w \geq \bar{w}_2 \end{cases} \]

So as \(w \) increases, \(Q_2(w) - Q_1(w) \) is non-increasing. As a results, \(W_2(w) - W_1(w) \) is non-increasing.

Explicitly, \(W_2(w) - W_1(w) = (R_1 - R_2)L + Q_2(w) - Q_1(w) \) is,

\[W_2(w) - W_1(w) = \begin{cases} D_1 - D_2 & \text{if } w < \bar{w}_1 \\ -w + R_1L - D_2 & \text{if } \bar{w}_1 \leq w < \bar{w}_2 \\ (R_1 - R_2)L & \text{if } w \geq \bar{w}_2 \end{cases} \]

Since \(W_i(w) \) is non-decreasing function in \(w \), and since \(W_2(w) - W_1(w) \) is non-increasing function in \(w \), \(W_1(w) - EW_1(w) \) is a mean-preserving spread of \(W_2(w) - EW_2(w) \).\(^{17}\)

Since the borrower prefers \(C_1 \) to \(C_2 \), and since the borrower is averse to the mean-preserving spread in future wealth by Assumption 2, \(E_1W_1(w) \) should not be smaller than \(E_1W_2(w) \).\(^{18}\) Otherwise, it contradicts the Assumption 1. As a result, we can immediately get the following proposition.

Proposition 1.

Suppose a loan contract \(C_2 \) requests less collateral than \(C_1 \), and suppose both contracts are sold to borrowers who are indistinguishable with respect to observables over which the bank can price discriminate. Then under Assumption 1 and Assumption 2,
the following inequality holds.

\[(R_2 - R_1)L \geq \int [Q_2(w) - Q_1(w)]dF_1(w)\] \hspace{1cm} (1.1)

The result in Proposition 1 provides a test that does not rely on the market structure. However, it does not translate into a correlation structure between a loan interest rate and default probability. It is because the non-negative correlation between a loan interest rate and default probability can not be established independently of the competitive context or the information structure. Hence, from now on I consider the competitive market structure to recover the non-negative correlation.

I define the profit function of the firm \(\Pi_i(w) = S_i(w) - (1 + k)L\) where \(k\) is riskless interest rate and \(S_i(w)\) is,

\[
S_i(w) = \begin{cases}
 w + D_i & \text{if } w < R_iL - D_i \\
 R_iL & \text{if } w \geq R_iL - D_i
\end{cases}
\]

There is no general consensus on the definition of competitive equilibrium under asymmetric information. Here, I use the non-decreasing profit (NDP) condition as a concept of competitive equilibrium under asymmetric information. It means that profit of the bank does not decrease as the value of pledged collateral increases.

\[
\int \Pi_1(w)dF_1(w) \geq \int \Pi_2(w)dF_2(w) \hspace{1cm} \text{(NDP)}
\]

NDP condition is so weak that it covers almost all existing equilibrium concepts with asymmetric information. It covers the concept of zero profit competitive equilibrium (Rothschild and Stiglitz (1976)), which implies that the profit of every contract to be zero. Also it covers the cross-subsidy model (Miyazaki (1977)) in which the losses made on the less powered contract (credit loan) are subsidized by the profit stemming from the high powered contract (collateralized loan).\(^{19}\)

\(^{19}\) In cross-subsidy equilibrium, a bank taxes low risk people to subsidize high risk people. As a
Here, note that $Q_i(w) + S_i(w) = R_iL$. Then the NDP condition becomes,

$$R_1L - \int Q_1(w) dF_1(w) \geq R_2L - \int Q_2(w) dF_2(w)$$ \hspace{1cm} (1.2)

So by combining inequalities (1.1) and (1.2), I get Proposition 2.

Proposition 2.

Suppose a loan contract C_2 requests less collateral than C_1 and both contracts are sold to borrowers who are indistinguishable with respect to observables over which the bank can price discriminate. Also suppose that Assumptions 1, 2, and NDP condition hold. Then,

$$\int Q_2(w) dF_2(w) \geq \int Q_2(w) dF_1(w)$$ \hspace{1cm} (1.3)

Interpretation of the inequality (1.3) is as follows. Assume that $w \in \{0, \tilde{w}\}$ and that $\tilde{w} \geq R_2L - D_2$. There are two contracts C_1 and C_2 which requires less collateral than C_1.

$$(R_2L - D_2)p_2 \geq (R_2L - D_2)p_1$$

where, p_i is the probability of default under each contracts.

Since $R_2L - D_2 > 0$, I get $p_2 \geq p_1$. In other words, default probability is higher in the contract that requires less collateral, i.e. a higher interest rate. This gives the positive correlation between a loan interest rate and default probability in the competitive credit market, regardless of the existence of the unobserved IES.

result, low risk people pay more interest rate than is fair, while high risk people pay less interest rate than is fair and they still get the loan without any collateral requirement. Low risk people accept this tax since they can pledge less collateral by relaxing the incentive compatibility constraint of the high risk people.
Imperfect Competition

Now, suppose that the bank has market power. I need two conditions for the positive correlation property to hold.\footnote{These conditions are adopted from Chiappori, Jullien, Salanié and Salanié (2006)}

Assumption 4. The borrowers have a von Neumann-Morgenstern utility function.

Assumption 5. Inter-temporal Elasticity of Substitution of all agents is the same or fully observed by the bank if heterogeneous, and the bank can use the information when pricing the contract.

If Assumption 4 and Assumption 5 are satisfied, the utility function is determined up to an affine transformation:

There exist functions \(v(W), a^\theta, \) and \(c^\theta \) such that, for any \(\theta \), one can write

\[
 u^\theta(W, F) = a^\theta(F)v(W) - c^\theta(F)
\]

with \(a^\theta(F) > 0 \).

Now suppose that the contracts \(C_1 \) and \(C_2 \) are chosen in equilibrium by some borrowers. Since both contracts are chosen in equilibrium, two inequalities below hold.

\[
\begin{align*}
\int v_1(w) dF_1(w) &\geq \int v_2(w) dF_1(w) \\
\int v_2(w) dF_2(w) &\geq \int v_1(w) dF_2(w)
\end{align*}
\]

(1.4)

(1.5)

where, \(v_i(w) = v(W_i(w)) \). From the two inequalities (1.4) and (1.5), I get

\[
\int (v_2(w) - v_1(w)) (dF_2(w) - dF_1(w)) \geq 0
\]

(1.6)

Since \(W_2(w) - W_1(w) \) is non-increasing in \(w \), \((v_2(w) - v_1(w)) \) is non-increasing. So the equation implies \(F_2 \) puts more weight on low \(w \) (when the default is likely to occur).
To interpret the inequality (1.6) consider the case when $w \in \{0, \tilde{w}\}$, where $\tilde{w} \geq R_2L$. Then, I get $p_2 \geq p_1$, which gives the positive correlation between an interest rate and default rate.

However, if the individual IES is not observed, then the above result does not hold. Consider a simple example. Suppose that there are two types of borrowers: high IES and low IES (whose default risk is the same). And suppose that there are two states in the world: $w = 0$ (default) $w = \tilde{w} \geq R_2L$ (non-default). Then in the monopoly contract, the bank will attract the borrower with low IES by suggesting the contract that requires less collateral (high interest rate), while attracting the high IES borrower by suggesting the contract that requires more collateral (low interest rate). Now let me introduce an infinitesimal difference in risk that is perfectly correlated with IES. If IES and the default risk are positively correlated, then I get the negative correlation between loan interest rate and default probability.

In sum, I may find a negative correlation between a loan interest rate and default probability only when the bank has market power and the IES is unobserved by the bank. In the next section, I provide evidence that the bank did indeed have quite strong market power in the data period.

1.3 The Data

Market Concentration

After the 1997 Asian financial crisis, the Korean credit market underwent a huge consolidation initiated by the governmental authority. In the consumer loan market, the Herfindahl-Hirschman Index (HHI)\(^{21}\) rose from 835.6 to 2,262.7 between the year 1995 and the year 2002. During the same period, the HHI increased from 716.4 to 1,334.6

\[^{21}\text{HHI} = \sum_{i=1}^{N} s_i^2, \text{ where } s_i \text{ is the market share of firm } i \text{ in percent unit, and } N \text{ is the number of firms. The HHI can range from close to 0 to 10,000.}\]
in the corporate loan market.22 It implies that the consumer loan market are highly concentrated and the corporate loan market are moderately concentrated, according to the standard suggested by the U.S. Department of Justice.23 Especially for consumer loans, the market share of the bank that provided my dataset is about 42.6\% in year 2002.24 Through the data period, the bank maintained its market power for consumer loans except for small fluctuations,25 while corporate loan market becomes competitive. The highly concentrated consumer loan market, as I proved in the previous section, provides an environment in which an additional dimension of heterogeneity may cause non-classical results.

Data Summary

Table 1.1 shows descriptive statistics of the corporate loan data that is provided by a large commercial bank in Korea. The data is comprised of firm level corporate loans initiated between January 2005 and December 2008. For each loan, the data contains its history from the initiation date till November 2011. The data includes credit ratings of the firms and firm specific characteristics which are considered when pricing the loans. In case of firm credit ratings, the bank totally depends on credit score and credit class which is rated by a third party credit agency. The credit score is a numerical value ranging from 0 to 999. As the credit score of a firm increases, its default rate decreases

22Lee and Lee (2005)

23The U.S. Department of Justice divides the spectrum of market concentration as measured by the Herfindahl-Hirschman Index (HHI) into three regions.

- HHI \leq 1000: Competitive Market
- 1000 < HHI \leq 1800: Moderately Concentrated Market
- HHI > 1800: Highly Concentrated Market

24In terms of mutual installment deposit market, the market share of this bank comes close to 61.5\% in year 2002 and corresponding HHI is 4,040.8.

25Please refer to Figure 1.2 for the table showing the full history of bank merging in Korea.
in general. The firm level characteristics includes revenue, profit, asset, and debt of each firms.

Table 1.2 shows descriptive statistics of the consumer loan data that is provided by another large commercial bank in Korea. The data is comprised of individual consumer loans initiated between April 2005 and May 2009. For each loan, the data contains its history from the initiation date till May 2009.

One very unique feature of the consumer loan data is that it is merged with credit card usage data and balance on savings account data by individual identification numbers. I observe that each consumer appearing in the loan data has credit card account and savings account in the same bank, which allows to match individuals across the loan data, the credit card data, and the savings data. This individual level matching allows me to construct an individual level proxy for consumption smoothing motives using credit card consumption pattern and balance of savings account.

As measures of consumer credit risk, I have credit score, credit class, behavior score, and introducing score. As in the corporate credit market, credit score and credit class are rated by a third party agency and are most widely used in the consumer credit market. Behavior score is similar to the credit score but evaluated by the bank itself rather than by a third party agency. The bank observes the behavior of the borrower and updates the behavior score over time. Behavior score is more frequently updated than the credit score. Introducing score is only available for the first-time borrowers. Since banks do not have enough credit information for the first-time borrowers, they additionally build the introducing score. In addition to measuring credit, the introducing score also allows me to identify who are the first-time borrowers.

I mainly analyze the bank loan data to find the evidence of advantageous selection. Considering that the crucial feature of the tests for information asymmetries is to compare observationally same consumers for the bank, it is important to condition
on every observables used in pricing the loans. In that sense, this bank loan data is unique. It incorporates not only credit rating variables such as credit score, credit class, behavior score, and first score but also detailed consumer characteristics such as wage, occupation, housing location, age, financial asset, and real estate. These comprehensive set allows me to control all the observables used in pricing the loans.

Background: Menu of Contracts

After classifying consumers based on their observable risk factors, a bank suggests a menu of contracts\(^{26}\) composed of pairs of interest rates and collateral requirements. A borrower can choose whether to make a credit loan or a collateralized loan. There are several options for collateralized loans in terms of what will be kept as a pledge, such as real estate, savings, or warranty from a credit guarantee company.

The interest rate charged on a loan can be decomposed into an internal rate,\(^{27}\) education taxes,\(^{28}\) profit, and credit risk cost.\(^{29}\) Among them, the credit risk cost is the source of the negative correlation between a loan interest rate and the value of pledged collateral.

The credit risk cost is the expected cost of default for the bank, which is higher for

\(^{26}\)Korean consumer credit market is **exclusive**: a bank can impose an exclusive relationship with a borrower when they sign a contract. Whether the contract is exclusive or not is crucial in terms of the possible set of contracts (Chiappori and Salanić (2013)). Under an exclusive contract, a convex price scheme - a unit interest rate rises with a decrease in the collateral requirement - is possible. In Korea, when a consumer borrows money from a bank, all of the loan information is registered to the Korea Federation of Banks, which holds all borrower information. The other banks refer the information if the consumer tries to borrow additional money. Usually, it is denied and, even when a loan limit is very low with a higher interest rate is possible.

\(^{27}\)The Korea Interbank Offered Rate, i.e. KORIBOR, or CD rate is usually used as an internal rate in Korea. Here, KORIBOR is the average interest rate at which term deposits are offered between prime banks in the Korean wholesale money market or interbank market. Basically, it is a Korean version of Libor.

\(^{28}\)This education tax is constant along the whole data period.

\(^{29}\)Loan Interest Rate = Internal Rate + Tax + Credit Risk Cost + Profit. This is a rough formula. The exact formula for the loan interest rate is kept secret by the banks.
consumers with a higher expected default rate and is lower for loans with high recovery. In turn, it means that a bank charges a higher interest rate to borrowers with lower credit ratings, while it offers a lower interest rate for collateralized loans than for credit loans, thereby generating a negative relationship between a loan interest rate and the value of pledged collateral, given credit ratings.

This negative relationship is a quite general feature. Dey and Dunn (2007) empirically show the negative correlation between the value of the pledged collateral by borrowers and the interest rate charged by bank in the HELOC (Home Equity Line of Credit) market.30

Table 1.3 explicitly shows the negative correlation between a loan interest rate and value of pledged collateral in my dataset: the interest rate of credit loans is, on average, 1.88 percentage points higher than that of collateralized loans after conditioning on observable factors used in pricing the loans.

A proxy for Consumption Smoothing Motives

In Korea, if a consumer purchases a good using her credit card, she needs to pay the full balance of her credit card account at the end of the month (at the credit card payment due). If she pays on time, she only needs to pay the price of the good without any interest cost. Hence, using credit cards allows consumers to delay the payment. However, if she does not pay all the balance at the credit card payment due, a penalty interest rate is imposed to the residual balance and credit ratings become aggravated.31

30They support the sorting-by-private-information paradigm (borrowers who pledged higher amounts of collateral signal their superior risk-types and therefore are rewarded with lower interest rates by the bank) against the sorting-by-observed-risk paradigm, which predicts a positive correlation between collateral and borrower risk.

31In the United States, on the other hand, if a consumer pays the minimum payment due until the due date, her credit ratings are not affected much. Minimum payment due is the amount which one pays to avoid a late payment fee. Of course, the consumer needs to pay interest on the remaining unpaid amount.
In Korea, however, there is a unique credit card feature known as the installment plan, which allows consumers to split the price of a good and repay through several months with high interest cost. One can choose to participate in the plan or not when purchasing a good by a credit card. Essentially, it is equivalent to making a short-term loan but again with a high interest rate.

Here is an example of the installment plan. Suppose a consumer makes a $90 purchases using a 3-month installment contract with a monthly installment interest rate r^I. She needs to repay $(\frac{90}{3} + 90 \times r^I)$ in the first month, $(\frac{90}{3} + 60 \times r^I)$ in the second month, and $(\frac{90}{3} + 30 \times r^I)$ in the last month.

The installment contract, if she repays on time for 3 months, does not impact her credit ratings at all. Hence, for consumers who cannot borrow money anymore, the installment contract gives an additional way to smooth consumption.

Except for some special promotions, however, the yearly installment interest rate is quite high: $10\% \sim 21.4\%$. Unless the willingness to pay the interest cost to smooth consumption is high enough, consumers would not use the plan and would give up the consumption smoothing.

From this concept, I can construct a proxy for consumption smoothing motives. All consumers in my dataset received a loan from a bank. In Korea, it is very hard to receive additional loans if someone already has outstanding debt. Even when it is possible, the cost to receive an additional loan to buy some goods is very high. Hence, those consumers who already received a loan from a bank are essentially unable to borrow more. Now, consider a group of consumers who have zero or small balance in their savings account, upward savings trend or increasing income path, and who can no longer borrow money from the bank. If some of them use installment purchases, they

32I exclude these special promotions when I make a proxy for consumption smoothing motives.

33So the monthly installment interest rate is between $0.83\% \sim 1.78\%$, while the monthly savings interest rate is about 0.25%.
can be regarded as a group of consumers who have stronger consumption smoothing motives, and in turn a group of consumers with lower IES from a theoretical point of view. In Appendix A.2, I use a simple two-period model to theoretically show that the proxy for consumption smoothing motives is valid. Please refer to the appendix for the full proof.

1.4 Evidence of Advantageous Selection in the Consumer Credit Market

In this section, I empirically show that, conditional on all the observables used for pricing the loans, there indeed is a negative correlation between a loan interest rate and default probability in the consumer loan market, while there is an insignificant positive correlation in the corporate loan market.

To directly show that the unobserved consumption smoothing motives cause the negative correlation in the consumer credit market, I use my proxy for consumption smoothing motives. Using the proxy, I explicitly show that consumers who have strong consumption smoothing motives tend to choose credit loans which charges a high interest rate instead of requiring a high level of collateral. At the same time, I show that those consumers are less risky, generating a negative correlation between a loan interest rate and default probability.

I then subdivide the data into two groups; first-time borrowers and repeated borrowers. By the subdivision, for the repeated borrowers, I show that the bank collects more information on private default risks during the previous contract periods. It allows the bank to concentrate on exploiting market power to charge a higher interest rate to the consumers who are willing to pay to smooth consumption. On the other hand, for the first-time borrowers, multidimensional unobserved heterogeneity generates opposite
direction of correlations between loan interest rates and default rate, annihilating each other. Hence, it results in seemingly no significant asymmetric information between the first-time borrowers and the bank, which is not true.

For the empirical analysis, I use duration analysis. Duration measures the elapsed time from the month of a loan initiation until, if any, its default. Duration is regarded as right-censored if a spell ends without default by the end of either maturity or end of an observation period. Generally, the hazard function is defined as follows.

\[h(t|x) = \lim_{\epsilon \to +0} \frac{P(t \leq T < t + \epsilon | T \geq t, x)}{\epsilon} \]

It can be used to approximate a conditional probability.

Especially, here I estimate a Cox proportional hazard model (PHM) using partial maximum likelihood.

\[h_i(t|x) = h_0(t) \exp(x_i' \beta) \]

where \(h_0(t) \) is the baseline hazard which is common to all units in the population.

Corporate Loans

Table 1.4 shows the partial maximum likelihood estimates of the Cox proportional hazard model and least squares estimate of the linear probability model using corporate loans data. For reference, the average default rate in the corporate loan market is about 0.64%.

Without controlling any observables, there is a positive correlation between a loan interest rate and default hazard. A loan with 1 percentage point higher interest rate has a higher default hazard rate by about 12.3% (\(\exp(0.116) - 1 \approx 0.123 \)). This is quite natural in that the bank charges a higher interest rate to the firms that they believe are riskier, i.e. to the firms with lower credit ratings.

However, once I control the observables used for pricing the loans, including credit ratings and firm characteristics, I could only find a insignificant positive correlation
between a loan interest rate and default hazard rate. The estimate shows that a contract with 1 percentage point higher interest rate has a higher default hazard rate by about 9.5%. More direct interpretation through the linear probability model says that the default probability is 0.05 percentage points higher for a loan with 1 percentage point higher interest rate.

The survival estimates from Cox proportional hazard model, Figure 1.3 and Figure 1.4, show these results graphically. Figure 1.3 graphically shows the unconditional positive correlation between a loan interest rate and default probability. Figure 1.4 shows that, once I control observable factors that are considered when pricing the loans, firms that choose a higher interest rate loan paired with a lower collateral requirement have a lower survival rate, i.e. a higher default rate, at every point in time.

Although it is statistically insignificant, there are at least three possible causes of the positive correlation. Firms with private information that they are riskier among the firms that are indistinguishable with respect to observables over which the bank can price discriminate choose a higher interest rate loan paired with a lower collateral requirement to prevent losing much pledged collateral if they default. At the same time, a higher interest rate induces firms to choose riskier projects with higher expected payoffs when successful. On top of that, less collateral provides less incentive to prevent default, resulting in the positive correlation between a loan interest rate and default probability.

To check robustness of the non-existence of asymmetric information, I additionally execute the “positive correlation test” following Chiappori and Salanié (2000). This positive correlation test provides a robust way to test existence of asymmetric information under a competitive market condition.

34 The survival function does not cross each other since I use Cox proportional hazard model.

35 Note that the corporate loan market becomes competitive during the data period, which justifies the validity of the positive correlation test.
In the equations below, D_i represents default status for each individual i: $D_i = 1$ means that the borrower i defaults. Also, for each borrower i, r_i is the interest rate of the loan contract and X_i is the observables that are used for pricing the loan.

$$D_i = 1(X_i \alpha + e_i > 0) \quad (1.7)$$

$$r_i = X_i \beta + \epsilon_i \quad (1.8)$$

I first estimate probit (1.7) and least squares (1.8), weighing each individual by the number of months under the loan contract, w_i. Then, I generate a test statistic, W, using the generalized residual \hat{e}_i and the least squares residual $\hat{\epsilon}_i$ from the equation (1.7) and (1.8) separately.

$$W = \frac{(\sum_{i=1}^{n} w_i \hat{e}_i \hat{\epsilon}_i)^2}{\sum_{i=1}^{n} w_i^2 \hat{e}_i^2 \hat{\epsilon}_i^2} \quad (1.9)$$

Following Gourieroux, Monfort, Renault and Trognon (1987), under the null of conditional independence $\text{cov}(e_i, \epsilon_i|X_i) = 0$, W is distributed asymptotically as a $\chi^2(1)$. The result, $W = 0.310$, shows that I cannot reject the null hypothesis that there is no asymmetric information.36

Consumer Loans

Table 1.5 shows the partial maximum likelihood estimates of the Cox PHM using consumer loans data. For reference, the average default probability is 4.2% in the consumer credit market. As in the corporate loan case, there is an *unconditional* positive correlation between a loan interest rate and default hazard. The reason, likewise in the corporate loan case, is that the bank charges a higher interest rate to the consumers whom they think riskier, i.e. consumers with lower credit ratings.

However, once I control observables used for pricing the loans, I do indeed find a negative correlation between a loan interest rate and default hazard. That is to

3610% critical value of chi square distribution with degree of freedom 1 is $\chi^2_{0.10}(1) = 2.706$, and for 5%, it is $\chi^2_{0.05}(1) = 3.841$. Note that $W = 0.310$ is much less than those critical points.
say, consumers who choose a higher interest rate loan paired with a lower collateral requirement among available loans are less likely to default, indicating advantageous selection in the market. A loan with 1 percentage point higher interest rate has a lower default hazard rate by 3.9%. Again the linear probability model says that the default probability is 0.44 percentage points lower, i.e. about 10% less default, for a loan with 1 percentage point higher interest rate.

The survival estimates from Cox proportional hazard model, Figure 1.5 and Figure 1.6, show these results graphically. Figure 1.5 graphically shows the unconditional positive correlation between a loan interest rate and default probability. Figure 1.6 shows that, once I control observable factors that are considered when pricing the loans, consumers who choose a higher interest rate loan paired with a lower collateral requirement have higher survival rate, i.e. lower default rate, at every point in time. That is, it shows advantageous selection graphically.

The negative correlation only can be explained, as I already proved in the previous model, when the bank has market power and when there is an unobserved heterogeneity that is correlated to the contract choice and to the default behavior. The unobserved heterogeneity in consumption smoothing motives matters at this point. Consumers who have stronger consumption smoothing motives tend to choose a pair of a higher interest rate and lower collateral requirement. It is because their willingness to pay interest cost to reduce the collateral requirement by one unit is higher than those who are relatively weakly motivated to smooth consumption. At the same time, those consumers exert more effort to reduce default probability, which will be more deeply studied in the second part of the paper, since their opportunity cost of being excluded from the credit market is higher, resulting in advantageous selection in the consumer credit market.

In the following empirical analysis using a proxy for consumption smoothing mo-

\[37\text{The survival function does not cross each other since I use Cox proportional hazard model.}\]
tives, I explicitly show that consumers who have strong motives to smooth consumption tend to choose a non-collateralized credit loan with a high interest rate and at the same time they tend to default less, which generates the negative correlation between a loan interest rate and default probability.

I subdivide the dataset into small loans (less than or equal to $20,000) and large loans (larger than $20,000) and then focus on the small loans for two reasons.

First, a credit loan availability is limited to small loan sizes. In order to borrow a large amount of money from the bank, consumers need to pledge high value collateral. In that case, the contract choice may be driven not only by the tradeoff between a loan interest rate and the value of pledged collateral but also by how large a loan the borrower is requesting. This confounding factor can be removed if I focus on small loans of amounts that are within the bank’s credit loan limit. The $20,000 cutoff is conservative in that choice between a credit loan and a collateralized loan is available for any amount under $20,000.

Second, often during the data period, Korean consumers use mortgage loans to buy a second house as an investment rather than for consumption smoothing behavior. In that case, only investors expecting high returns, which implies riskier investors, tend to choose a credit loan which charges a higher interest rate. In that sense, I expect a positive correlation between a loan interest rate and default probability among large loans. Again, by focusing on the small loans, I try to exclude loans for investment purpose and to concentrate on consumption smoothing behavior where the consumption smoothing motives matter.

As intuition suggests, a negative correlation between a loan interest rate and default probability becomes stronger (1st column of Table 1.6), while a positive correlation, though statistically insignificant, appears (2nd column of Table 1.6) in large sized loans.

Before proceeding further, I need to check whether the negative correlation is ficti-
tious or not. According to Chiappori and Salanié (2000), restricted functional forms, forbidden cross effects, or nonlinear functions of the exogenous variables could drive spurious asymmetric information results. Nonparametric estimation could be one solution but I will confront the curse of dimensionality. Instead, from now on, I allow full interactions among covariates and use the **adaptive Lasso** to choose the relevant variables for all specifications.

Lasso tends to choose false positives, i.e. too many variables, unless one imposes very strong conditions. Instead, here I use the adaptive Lasso to consistently select the true active set of variables under relatively weak assumptions. Adaptive Lasso identifies the right subset of true variables and reaches the oracle properties, i.e. it performs as well as if the true underlying model were given in advance, assuming compatibility condition (Zou (2006), and Bühlmann and Geer (2011)). Here, with Cox proportional hazard model, the adaptive Lasso solves the below problem, which minimizes a strict convex function (Zhang and Lu (2007)).

$$\min_\beta \left[-\frac{1}{n} l_n(\beta) + \lambda \sum_{j=1}^d \frac{|\beta_j|}{|	ilde{\beta}_j|} \right]$$ \tag{1.10}

where,

$$l_n(\beta) = \sum_{i=1}^n \delta_i [\beta^T z_i - \log \{ \sum_{j=1}^n I(\tilde{T}_j \geq \tilde{T}_i) \exp (\beta^T z_j) \}]$$

Here λ is the tuning parameter chosen through 10-fold cross validation, and $\tilde{\beta} = (\tilde{\beta}_1, ..., \tilde{\beta}_d)^T$ is the maximizer of the log partial likelihood $l_n(\beta)$.

38 One of the restrictive condition is so called “irrepresentable condition” which is restrictive but necessary to prevent false positive. Please see Zou (2006) or Zhao and Yu (2006) for the details.

39 The compatibility condition is sufficient to achieve variable selection consistently through the adaptive Lasso. For details of compatibility condition, please see Bühlmann and Geer (2011). But it is clear that very small coefficients cannot be chosen by any regularization method. To avoid these very small coefficients, here I additionally assume so called “beta-min” conditions. The “beta-min” condition requires some lower non-zero bound on the true coefficients.

40 A fitting procedure has an oracle property if it identifies the right subset model and has the optimal estimation rate.

41 In k-fold cross-validation, the original sample is randomly partitioned into k equal sized subsamples. Of the k subsamples, a single subsample is retained as the validation data for testing the
It is basically a two step procedure that penalizes those with lower absolute value of initial estimates, $|\tilde{\beta}_j|$, more. In the first step, I maximize log partial maximum likelihood, $l_n(\beta)$, and get the initial estimates $\tilde{\beta}_j$. In the second step, I minimize equation (1.10) with the initial estimates $\tilde{\beta}_j$. As is well know, because of the L_1-geometry (kinky penalty), the Lasso performs variable selection in that an estimated component can be exactly zero. The number of variables that become exactly zero depends on the magnitude of λ and $|\tilde{\beta}_j|$. As one penalize more, i.e. higher λ, more variables are estimated to be zero. Similarly, the procedure ends up penalizing more those with lower initial estimates, $|\tilde{\beta}_j|$.

Table 1.7 shows the same contents as in Table 1.5 and Table 1.6 using the adaptive lasso. The negative correlation between a loan interest rate and default hazard is little bit weaker but it is still significant.

Now let me introduce consumption smoothing group dummy which captures unobserved heterogeneity in strong consumption smoothing motives. The consumption smoothing group dummy is a proxy for the unobserved consumption smoothing motives. Consumers who have a increasing savings trend or increasing income path, and who use an installment plan offered by their credit card company belong to the consumption smoothing group. Those consumers are people who have stronger consumption smoothing motives as I prove in the Appendix A.2. Table 1.8 compares observable characteristics of the consumers who are in the consumption smoothing group with those of the consumers who are outside of the group.

Table 1.9 shows the estimates of Cox proportional hazard model including interactions between a loan interest rate and consumption smoothing group dummy. The results show that for the consumers in the consumption smoothing group, a group model, and the remaining $k - 1$ subsamples are used as training data. The cross-validation process is then repeated k times (the folds), with each of the k subsamples used exactly once as the validation data. The k results from the folds can then be averaged to produce a single estimation. 10-fold cross validation is commonly used.
of consumers who have relatively homogenous high consumption smoothing motives, a negative correlation between a loan interest rate and default hazard become much weaker (about 67%) and statistically insignificant, implying that once unobserved heterogeneity in consumption smoothing motives is controlled the negative correlation between a loan interest rate and default hazard disappears. Also note that consumers in the consumption smoothing group are much less likely to default: default hazard decreases by about 57% ($\exp(-0.844) - 1 = -0.57$).

From now on, let me try to provide more direct empirical evidence showing that how unobserved heterogeneity in consumption smoothing motives causes the negative correlation between a loan interest rate and default hazard.

If consumers in the consumption smoothing group, a unpriced characteristic, tend to choose a credit loan and, at the same time, if they are less likely to default, then it signals the unobserved heterogeneity in consumption smoothing motives is the source of advantageous selection. To see this, consider the following model (Finkelstein and McGarry (2006)). For illustration purpose, I use linear specification.

Let X_i be the set of observables used in pricing the loans for the consumer i. Also D_i and r_i are default dummy and a loan interest rate respectively.

$$r_i = X_i \gamma + \eta_i$$
$$D_i = X_i \beta + \epsilon_i$$

Under the null of symmetric information in the competitive market, ϵ_i and η_i should not be correlated: $\text{Cov}(r_i, D_i|X_i) = 0$. But what I found from the previous results is that there is a negative correlation in the non-competitive consumer credit market: $\text{Cov}(r_i, D_i|X_i) < 0$. It signals that there is an unobserved heterogeneity that affects both contract choice and default behavior. In turn, it implies that both error terms can be decomposed more.

Let Z_i be the dummy of the consumption smoothing group: a group of consumers
who have strong consumption smoothing motives.

\[\eta_i = \rho_1 Z_i + \nu_i \]
\[\epsilon_i = \pi_1 Z_i + \mu_i \]

What I expect is that, for the consumers in the consumption smoothing group, \(\rho_1 > 0 \) (would tend to choose a higher interest rate loan paired with a lower collateral requirement) and at the same time \(\pi_1 < 0 \) (would be less likely to default), which drives the negative correlation between a loan interest rate and default probability.

The first two columns of the Table 1.10 show that consumers in the consumption smoothing group, compared to those outside of the group, are more likely to choose a credit loan by 9.1 percentage points. Again, noting that a credit loan charges a higher interest rate than a collateralized loan, the consumers in the consumption smoothing group tend to choose a higher interest rate loan as I expected.

At the same time, last two columns of the Table 1.10 show that the consumers in the consumption smoothing group default 2.0 percentage points less than the consumers outside of the group. Considering that default rate, on average, is about 4.2% in this dataset, those consumers default about 50% less, which is a notable difference.

Further meaningful subdivision is to separate first-time borrowers and repeated borrowers (see Table 1.11). The bank can collect more precise information on the unobserved default risk during the contract periods. As a result, for the repeated borrowers, the bank has better information on private default risk which facilitates exploiting market power to charge a higher interest rate to the borrowers who are willing to pay to smooth consumption. It results in significant advantageous selection for the repeated borrowers.

However, for the first-time borrowers, there is not only unobserved heterogeneity in consumption smoothing motives but also heterogeneity in default risks, caused by unobserved income volatility and/or unobserved education level. One of the issues of
multidimensional unobserved heterogeneity is that one of the unobserved factors generates a correlation between a loan interest rate and default probability in one direction, while the other factors generate correlations between a loan interest rate and default probability in the opposite direction. Then, those correlations in the opposite direction annihilate each other. The private information on default risks is a source of a positive correlation between a loan interest rate and default probability as classical theories predict. It is because riskier borrowers avoid pledging a high level of collateral for a reduction in an interest rate, while less risk borrowers choose to do so. This positive correlation derived by private information on default risks annihilate the negative correlation derived by private information on consumption smoothing motives as presented in the first column of Table 1.11. It results in seemingly no significant asymmetric information between the first-time borrowers and the bank. However, it does not imply that there is no asymmetric information between the first-time borrowers and the bank at all.

The first column of Table 1.12 shows that the consumers who have stronger consumption smoothing motives, among the first-time borrowers, still tend to choose a credit loan which charges a higher interest rate. At the same time, the second column of Table 1.12 show that those consumers among the first-time borrowers are 1.9 percentage points less likely to default. These two facts indicate that the unobserved consumption smoothing motives alone should have generated a negative correlation between a loan interest rate and default probability. However, it has been neutralized by a positive correlation between a loan interest rate and default probability derived by other factors.

Here, I suggest two sources of the positive correlation between a loan interest rate and default probability among the first-time borrowers. First, Table 1.13 shows that consumers who prefer online banking tend to choose a collateralized loan and at the
same time default less, which should have generated a positive correlation between a loan interest rate and default probability, if it were not for unobserved heterogeneity in consumption smoothing motives. Most probable intuition behind this phenomenon is as follows. Usually only highly educated consumers utilize online banking system at that time. Because, it has not been long since the online banking system has been introduced in Korea.42 Although I control occupation and wage as exogenous variables, the residual variation in education level generates a positive correlation between a loan interest rate and default probability. These highly educated consumers have private information on their default risks, which are relatively less risky. Hence, those consumers choose a collateralized loan which charges lower rate.

On top of that, the bank suffers from unobserved heterogeneity in default risk caused by income volatility more with the first-time borrowers. For each individual, I measure the standard deviation of over time income profile. Table 1.14 shows that the realized income volatility is higher for the first-time borrowers than that of repeated borrowers condition on all the observables used for pricing the loans. A consumer whose income path is more volatile, i.e. riskier, will choose credit loans to avoid losing pledged collateral if she defaults, generating a positive correlation between a loan interest rate and default probability. These two sources of the positive correlation annihilate the negative correlation derived by unobserved heterogeneity in consumption smoothing motives, resulting in seemingly no significant asymmetric information between the bank and the first-time borrowers.

Table 1.15 shows that, on average, the interest rate gap between credit loans and collateralized loans is much higher for the repeated borrowers. It suggests that the bank exploits the market power more efficiently with repeated borrowers by collecting more

42Three bank in Korea introduced the online banking system in July 1999. The system called “Banktown” made by KT Commerce Solution is the first online banking system in Korea. And it is propagated to other banks in early 2000s.
information on consumers’ hidden types during the loan contract periods. \(^{43}\) It results in even much stronger negative correlation between a loan interest rate and default hazard among repeated borrowers.

1.5 Concluding Remarks

Classical adverse selection models of the credit market consider heterogeneity in risk type as the sole source of adverse selection. It is reasonable since, in a competitive setting, true risk matters to the uninformed party, even conditional on observables considered when pricing the contracts, while other dimensions of heterogeneity does not. Recent empirical findings in diverse insurance markets emphasize the role of risk aversion as an additional source of heterogeneity. My empirical findings in the non-competitive consumer credit market are closely related with those recent findings in the insurance markets based on either alternative source of heterogeneity or multi-dimensional heterogeneity.

By analyzing micro level data from the Korean corporate credit markets, I find weak evidence or no evidence of positive relationship between a loan interest rate and the default hazard once I control for all the observables considered when pricing the loans. It might be because the Korean bank rather precisely prices the corporate loans based on observable risk factors without leaving room for unobserved heterogeneity.

In the case of consumer loans, to the contrary, I find opposite results to what the classical theories predicts. Consumers who borrow money at a higher interest rate are not more but less likely to declare default once all the observables considered when pricing the loans are controlled for, resulting in favorable selection rather than adverse one. Finding favorable selection is unusual in the credit market, but it is not uncommon

\(^{43}\)Comparing first and third column of Table 1.12 shows that the tendency of consumption smoothing group to choose credit loans becomes stronger although the interest rate gap between credit loans and collateralized loans becomes higher for the repeated borrowers (Table 1.15).
in insurance markets. In insurance markets, although high risk consumers purchase high coverage, highly risk averse consumers also purchase high coverage. Thus, in so far as those who are more risk-averse are less risky, advantageous selection arises in the insurance market as well as the classical adverse selection. In the insurance market, due to these two opposite selection effects, the claim rates of those who purchase high insurance coverage are not necessarily higher than the claim rates of those who purchase low coverage. But again, it is important to emphasize that this advantageous selection may occur only when the market is non-competitive.

Borrowing this kind of reasoning into the consumer credit market, I provide evidence that unobserved heterogeneity in consumption smoothing motives causes advantageous selection in the consumer credit market. Since consumption smoothing is one of the main reasons why consumers apply for consumer loans, consumers who are more eager to smooth consumption borrow money even at a higher interest rate with a lower collateral requirement. Those consumers are also more likely to pay back the debt for fear of losing access to the future credit market and thus for fear of losing consumption smoothing opportunities in the future.
Table 1.1: Descriptive Statistics (Corporate Loans)

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>S.D.</th>
<th>Q1</th>
<th>Q3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loan Interest Rate (%)</td>
<td>7.2</td>
<td>1.2</td>
<td>6.5</td>
<td>7.9</td>
</tr>
<tr>
<td>Credit Score</td>
<td>481.9</td>
<td>165.9</td>
<td>430</td>
<td>580</td>
</tr>
<tr>
<td>Amount of Loan (Million Dollars)</td>
<td>1.2</td>
<td>1.5</td>
<td>0.6</td>
<td>1.3</td>
</tr>
<tr>
<td>Asset (Million Dollars)</td>
<td>8.4</td>
<td>38.2</td>
<td>2.2</td>
<td>7.0</td>
</tr>
<tr>
<td>Revenue (Million Dollars)</td>
<td>8.5</td>
<td>25.3</td>
<td>1.5</td>
<td>7.8</td>
</tr>
<tr>
<td>Debt (Million Dollars)</td>
<td>6.0</td>
<td>29.3</td>
<td>1.7</td>
<td>5.3</td>
</tr>
<tr>
<td>Profit (Million Dollars)</td>
<td>0.6</td>
<td>2.3</td>
<td>0.1</td>
<td>0.5</td>
</tr>
<tr>
<td>Observations</td>
<td></td>
<td></td>
<td>5,755</td>
<td></td>
</tr>
</tbody>
</table>

Notes: S.D. means standard deviation, and Q1, Q3 mean the first and the third quantile separately.

Table 1.2: Descriptive Statistics (Consumer Loan)

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>S.D.</th>
<th>Q1</th>
<th>Q3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loan Interest Rate (%)</td>
<td>6.4</td>
<td>1.9</td>
<td>5.5</td>
<td>7.2</td>
</tr>
<tr>
<td>Maturity (Year)</td>
<td>16</td>
<td>8.5</td>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td>Credit Score</td>
<td>790</td>
<td>75.5</td>
<td>752</td>
<td>841</td>
</tr>
<tr>
<td>Behavior Score</td>
<td>1094</td>
<td>85.4</td>
<td>1052</td>
<td>1145</td>
</tr>
<tr>
<td>Introducing Score</td>
<td>970.6</td>
<td>259.8</td>
<td>730</td>
<td>1148</td>
</tr>
<tr>
<td>Amount of Loan ($1,000)</td>
<td>46</td>
<td>65</td>
<td>4</td>
<td>60</td>
</tr>
<tr>
<td>Credit Loan Dummy</td>
<td>0.18</td>
<td>0.38</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Number of Referring Credit State</td>
<td>0.0007</td>
<td>0.031</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Observations</td>
<td></td>
<td></td>
<td>28,605</td>
<td></td>
</tr>
</tbody>
</table>

Notes: S.D. means standard deviation, and Q1, Q3 mean the first and the third quantile separately. The number of observations is 26,667 in case of Introducing Score since it is only available for first-time borrowers.
Table 1.3: Interest Rate Gap between Credit Loans and Collateralized Loans

<table>
<thead>
<tr>
<th>Consumer Loans OLS Loan Interest Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Credit Loan Dummy</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Credit Ratings</td>
</tr>
<tr>
<td>Consumer Characteristics</td>
</tr>
<tr>
<td>Allow Full Interactions</td>
</tr>
</tbody>
</table>

Adaptive lasso has been used to pick the relevant conditional variables.

Notes: Table reports the least squares estimates. Credit ratings includes all the credit rating variables that the bank uses when pricing the loans. It includes credit score and credit class which is provided by a third party credit rating company, and also includes behavior score and first score which are rated by the bank itself. Consumer characteristics includes income, occupation, location, real estate, previous bank loan amount, number of previous loans, and whether she is the owner or the renter of her house. I allow full interaction among the covariates and use adaptive lasso to pick the relevant variables.

* $p < 0.10$, ** $p < 0.05$, *** $p < 0.01$
Table 1.4: Corporate Loans

<table>
<thead>
<tr>
<th>Dependent Variables</th>
<th>Cox PHM Default Hazard</th>
<th>Linear Probability Model Default Dummy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corporate Loans</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Loan interest rate</td>
<td>0.116** (0.045)</td>
<td>0.095 (0.163)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.0005 (0.0008)</td>
</tr>
<tr>
<td>Credit Ratings</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Firm Characteristics</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Month of Loan Initiation</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of observations</td>
<td>5,755</td>
<td>5,755</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5,755</td>
</tr>
</tbody>
</table>

Notes: Table reports the partial likelihood estimates of the Cox proportional hazard model and reports the least squares estimates. Credit ratings includes all the credit rating variables that the bank uses when pricing the loans. It includes credit score and credit class which is provided by a third party credit rating company. Firm level characteristics includes asset, profit, debt, and revenue.

* $p < 0.10$, ** $p < 0.05$, *** $p < 0.01$
Table 1.5: Consumer Loans (Full Sample)

<table>
<thead>
<tr>
<th>Dependent Variables</th>
<th>Cox PHM Default Hazard Without Observables</th>
<th>Cox PHM Default Hazard With Observables</th>
<th>Linear Probability Model Default Dummy With Observables</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loan interest rate</td>
<td>0.040*** (0.013)</td>
<td>-0.039*** (0.011)</td>
<td>-0.0044*** (0.0007)</td>
</tr>
<tr>
<td>Credit Ratings</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Consumer Characteristics</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Observations</td>
<td>28,605</td>
<td>28,605</td>
<td>28,605</td>
</tr>
</tbody>
</table>

Notes: Table reports the partial likelihood estimates of the Cox proportional hazard model and reports the least squares estimates. Credit ratings includes all the credit rating variables that the bank uses when pricing the loans. It includes credit score and credit class which is provided by a third party credit rating company, and also includes behavior score and first score which are rated by the bank itself. Consumer characteristics includes income, occupation, location, real estate, previous bank loan amount, number of previous loan, and whether she is the owner or the renter of her house.

* p < 0.10, ** p < 0.05, *** p < 0.01
Table 1.6: Consumer Loans (Small Loans V.S. Large Loans)

<table>
<thead>
<tr>
<th>Dependent Variables</th>
<th>Cox PHM</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Consumer Loans</td>
<td></td>
<td>Default Hazard</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Less than or Equal to $20,000</td>
<td>Larger than $20,000</td>
<td></td>
</tr>
<tr>
<td>Loan interest rate</td>
<td>-0.055^{***}</td>
<td>0.064</td>
<td>(0.013)</td>
</tr>
<tr>
<td>Credit Ratings</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Consumer Characteristics</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Observations</td>
<td>14,480</td>
<td>14,125</td>
<td></td>
</tr>
</tbody>
</table>

Notes: Table reports the partial likelihood estimates of the Cox proportional hazard model. Credit ratings includes all the credit rating variables that the bank uses when pricing the loans. It includes credit score and credit class which is provided by a third party credit rating company, and also includes behavior score and first score which are rated by the bank itself. Consumer characteristics includes income, occupation, location, real estate, previous bank loan amount, number of previous loan, and whether she is the owner or the renter of her house.

* $p < 0.10$, ** $p < 0.05$, *** $p < 0.01$

Table 1.7: Consumer Loans (Using Adaptive Lasso)

<table>
<thead>
<tr>
<th>Dependent Variable</th>
<th>Cox PHM</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Consumer Loans</td>
<td></td>
<td>Default Hazard</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Full Sample</td>
<td>\leq $20,000$</td>
<td>$> $20,000</td>
</tr>
<tr>
<td>Loan interest rate (%)</td>
<td>-0.027^{**}</td>
<td>-0.039^{***}</td>
<td>0.070</td>
</tr>
<tr>
<td></td>
<td>(0.012)</td>
<td>(0.013)</td>
<td>(0.055)</td>
</tr>
<tr>
<td>Credit Ratings</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Consumer Characteristics</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Allow Full Interactions</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Observations</td>
<td>28,605</td>
<td>14,480</td>
<td>14,125</td>
</tr>
</tbody>
</table>

Notes: Table reports the partial likelihood estimates of the Cox proportional hazard model. Credit ratings includes all the credit rating variables that the bank uses when pricing the loans. It includes credit score and credit class which is provided by a third party credit rating company, and also includes behavior score and first score which are rated by the bank itself. Consumer characteristics includes income, occupation, location, real estate, previous bank loan amount, number of previous loan, and whether she is the owner or the renter of her house. I allow full interaction among the covariates and use adaptive lasso to pick the relevant variables.

* $p < 0.10$, ** $p < 0.05$, *** $p < 0.01$
Table 1.8: Summary Statistics of Consumption Smoothing Group

<table>
<thead>
<tr>
<th>Consumption Smoothing Group</th>
<th>No</th>
<th>Yes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Observations</td>
<td>25,379</td>
<td>3,226</td>
</tr>
<tr>
<td>Proportion of Men (%)</td>
<td>60.1</td>
<td>58.5</td>
</tr>
<tr>
<td>House Owner (%)</td>
<td>62.4</td>
<td>71.0</td>
</tr>
<tr>
<td>Online Transaction Preferred (%)</td>
<td>4.7</td>
<td>4.2</td>
</tr>
<tr>
<td>Avg. of Loan Maturity (Month)</td>
<td>15.9</td>
<td>17.4</td>
</tr>
<tr>
<td>Credit Card: Purchase/Limit (%)</td>
<td>7.8</td>
<td>28.4</td>
</tr>
</tbody>
</table>
Table 1.9: Consumer Loans (Condition on Consumption Smoothing Motives)

<table>
<thead>
<tr>
<th>Dependent Variable</th>
<th>Cox PHM Default Hazard</th>
</tr>
</thead>
<tbody>
<tr>
<td>Consumer Loans</td>
<td>Less than or Equal to $20,000</td>
</tr>
<tr>
<td>Loan interest rate \times (1 - Consumption Smoothing Group Dummy) (%)</td>
<td>-0.036^{***} (0.013)</td>
</tr>
<tr>
<td>Loan interest rate \times Consumption Smoothing Group Dummy (%)</td>
<td>-0.012 (0.009)</td>
</tr>
<tr>
<td>Consumption Smoothing Group Dummy</td>
<td>-0.844^{***} (0.368)</td>
</tr>
<tr>
<td>Credit Ratings</td>
<td>Yes</td>
</tr>
<tr>
<td>Consumer Characteristics</td>
<td>Yes</td>
</tr>
<tr>
<td>Allow Full Interactions</td>
<td>Yes</td>
</tr>
<tr>
<td>Adaptive lasso has been used to pick the relevant conditional variables.</td>
<td></td>
</tr>
<tr>
<td>Observations</td>
<td>14,480</td>
</tr>
</tbody>
</table>

Notes: Table reports the partial likelihood estimates of the Cox proportional hazard model. Credit ratings includes all the credit rating variables that the bank uses when pricing the loans. It includes credit score and credit class which is provided by a third party credit rating company, and also includes behavior score and first score which are rated by the bank itself. Consumer characteristics includes income, occupation, location, real estate, previous bank loan amount, number of previous loan, and whether she is the owner or the renter of her house. I allow full interaction among the covariates and use adaptive lasso to pick the relevant variables.

* $p < 0.10$, ** $p < 0.05$, *** $p < 0.01$
Table 1.10: Loan Choices and Default Tendency of the Consumption Smoothing Group

<table>
<thead>
<tr>
<th>Dependent Variable</th>
<th>Probit Credit Loan Dummy</th>
<th>OLS Credit Loan Dummy</th>
<th>Probit Default Dummy</th>
<th>OLS Default Dummy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Consumption Smoothing Group</td>
<td>0.317***</td>
<td>0.091***</td>
<td>−0.477***</td>
<td>−0.020***</td>
</tr>
<tr>
<td></td>
<td>(0.053)</td>
<td>(0.016)</td>
<td>(0.120)</td>
<td>(0.004)</td>
</tr>
<tr>
<td>Credit Ratings</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Consumer Characteristics</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Allow Full Interactions</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Adaptive lasso has been used to pick the relevant conditional variables.

Observations 14,480

Notes: Table reports the probit and least squares estimates. Credit ratings includes all the credit rating variables that the bank uses when pricing the loans. It includes credit score and credit class which is provided by a third party credit rating company, and also includes behavior score and first score which are rated by the bank itself. Consumer characteristics includes income, occupation, location, real estate, previous bank loan amount, number of previous loan, and whether she is the owner or the renter of her house. I allow full interaction among the covariates and use adaptive lasso to pick the relevant variables.

* $p < 0.10$, ** $p < 0.05$, *** $p < 0.01$
Table 1.11: First-time Borrowers V.S. Repeated Borrowers

<table>
<thead>
<tr>
<th></th>
<th>Cox PHM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Default Hazard</td>
</tr>
<tr>
<td></td>
<td>First-time Borrowers</td>
</tr>
<tr>
<td></td>
<td>Repeated Borrowers</td>
</tr>
<tr>
<td>Loan interest rate</td>
<td>0.020</td>
</tr>
<tr>
<td></td>
<td>(0.017)</td>
</tr>
<tr>
<td></td>
<td>−0.157***</td>
</tr>
<tr>
<td></td>
<td>(0.057)</td>
</tr>
<tr>
<td>Credit Ratings</td>
<td>Yes</td>
</tr>
<tr>
<td>Consumer Characteristics</td>
<td>Yes</td>
</tr>
<tr>
<td>Allow Full Interactions</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Adaptive lasso has been used to pick the relevant conditional variables.

Observations

| | 13,581 | 899 |

Notes: Table reports the partial likelihood estimates of the Cox proportional hazard model. Credit ratings includes all the credit rating variables that the bank uses when pricing the loans. It includes credit score and credit class which is provided by a third party credit rating company, and also includes behavior score and first score which are rated by the bank itself. Consumer characteristics includes income, occupation, location, real estate, previous bank loan amount, number of previous loan, and whether she is the owner or the renter of her house. I allow full interaction among the covariates and use adaptive lasso to pick the relevant variables.

* $p < 0.10$, ** $p < 0.05$, *** $p < 0.01$
Table 1.12: Contract Choices and Default Tendency of First-time and Repeated Borrowers

<table>
<thead>
<tr>
<th>Consumer Loans Dependent Variable</th>
<th>OLS</th>
<th>First-time Borrowers</th>
<th>Repeated Borrowers</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Credit Loan Dummy</td>
<td>Default Dummy</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Credit Loan Dummy</td>
<td>Default Dummy</td>
</tr>
<tr>
<td>Consumption Smoothing Group</td>
<td>0.079***</td>
<td>−0.019***</td>
<td>0.206**</td>
</tr>
<tr>
<td></td>
<td>(0.017)</td>
<td>(0.005)</td>
<td>(0.089)</td>
</tr>
<tr>
<td>Credit Ratings</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Consumer Characteristics</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Allow Full Interactions</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Adaptive lasso has been used to pick the relevant conditional variables.

Observations

| | 13,581 | 13,581 | 899 | 899 |

Notes: Table reports the least squares estimates. Credit ratings includes all the credit rating variables that the bank uses when pricing the loans. It includes credit score and credit class which is provided by a third party credit rating company, and also includes behavior score and first score which are rated by the bank itself. Consumer characteristics includes income, occupation, location, real estate, previous bank loan amount, number of previous loan, and whether she is the owner or the renter of her house. I allow full interaction among the covariates and use adaptive lasso to pick the relevant variables.

* p < 0.10, ** p < 0.05, *** p < 0.01
Table 1.13: Contract Choices of Internet Banking Prefer Group among First-time Borrowers

<table>
<thead>
<tr>
<th></th>
<th>OLS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Consumer Loans</td>
</tr>
<tr>
<td></td>
<td>Dependent Variable</td>
</tr>
<tr>
<td>Online Banking Prefer Group</td>
<td>-0.026^{**}</td>
</tr>
<tr>
<td></td>
<td>(0.011)</td>
</tr>
<tr>
<td>Credit Ratings</td>
<td>Yes</td>
</tr>
<tr>
<td>Consumer Characteristics</td>
<td>Yes</td>
</tr>
<tr>
<td>Allow Full Interactions</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Adaptive lasso has been used to pick the relevant conditional variables.

Observations 13,581 13,581

Notes: Table reports the least squares estimates. Credit ratings includes all the credit rating variables that the bank uses when pricing the loans. It includes credit score and credit class which is provided by a third party credit rating company, and also includes behavior score and first score which are rated by the bank itself. Consumer characteristics includes income, occupation, location, real estate, previous bank loan amount, number of previous loan, and whether she is the owner or the renter of her house. I allow full interaction among the covariates and use adaptive lasso to pick the relevant variables.

* $p < 0.10$, ** $p < 0.05$, *** $p < 0.01$
Table 1.14: Compare Income Volatility: First-time Borrowers V.S Repeated Borrowers

<table>
<thead>
<tr>
<th>Consumer Loans</th>
<th>OLS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dependent Variables</td>
<td>Standard Deviation of Overtime Income</td>
</tr>
<tr>
<td>First-time Borrowers</td>
<td>771.29***</td>
</tr>
<tr>
<td></td>
<td>(264.63)</td>
</tr>
<tr>
<td>Credit Ratings</td>
<td>Yes</td>
</tr>
<tr>
<td>Consumer Characteristics</td>
<td>Yes</td>
</tr>
<tr>
<td>Allow Full Interactions</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Adaptive lasso has been used to pick the relevant conditional variables.

Observations 28,605

Notes: Table reports the least squares estimates. Credit ratings includes all the credit rating variables that the bank uses when pricing the loans. It includes credit score and credit class which is provided by a third party credit rating company, and also includes behavior score and first score which are rated by the bank itself. Consumer characteristics includes income, occupation, location, real estate, previous bank loan amount, number of previous loan, and whether she is the owner or the renter of her house. I allow full interaction among the covariates and use adaptive lasso to pick the relevant variables.

* $p < 0.10$, ** $p < 0.05$, *** $p < 0.01$
Table 1.15: Interest Rate Gap between Credit and Collateralized Loans: First-time V.S. Repeated

<table>
<thead>
<tr>
<th></th>
<th>OLS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Loan Interest Rate</td>
</tr>
<tr>
<td></td>
<td>First-time Borrowers</td>
</tr>
<tr>
<td></td>
<td>Repeated Borrowers</td>
</tr>
<tr>
<td>Credit Loan Dummy</td>
<td>1.25***</td>
</tr>
<tr>
<td></td>
<td>(0.07)</td>
</tr>
<tr>
<td>Credit Ratings</td>
<td>Yes</td>
</tr>
<tr>
<td>Consumer Characteristics</td>
<td>Yes</td>
</tr>
<tr>
<td>Allow Full Interactions</td>
<td>Yes</td>
</tr>
<tr>
<td>Observations</td>
<td>13,581</td>
</tr>
<tr>
<td></td>
<td>899</td>
</tr>
</tbody>
</table>

Adaptive lasso has been used to pick the relevant conditional variables.

Notes: Table reports the least squares estimates. Credit ratings includes all the credit rating variables that the bank uses when pricing the loans. It includes credit score and credit class which is provided by a third party credit rating company, and also includes behavior score and first score which are rated by the bank itself. Consumer characteristics includes income, occupation, location, real estate, previous bank loan amount, number of previous loan, and whether she is the owner or the renter of her house. I allow full interaction among the covariates and use adaptive lasso to pick the relevant variables.

* $p < 0.10$, ** $p < 0.05$, *** $p < 0.01$
Consumer with strong consumption smoothing motives

Choose a contract with (high interest rate, low collateral)

Less likely to default

Advantageous Selection

Willing to bear larger interest cost to reduce the collateral requirement

Contract Choice

Incentive to Prevent Default (Moral Hazard)

Higher opportunity cost of being excluded from the credit market

Figure 1.1: The Source and The Mechanism of Advantageous Selection
<table>
<thead>
<tr>
<th>91</th>
<th>92</th>
<th>93</th>
<th>94</th>
<th>95</th>
<th>96</th>
<th>97</th>
<th>98</th>
<th>99</th>
<th>00</th>
<th>01</th>
<th>02</th>
<th>03</th>
<th>04</th>
<th>05</th>
<th>06</th>
<th>07</th>
<th>08</th>
<th>09</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
</tr>
</thead>
<tbody>
<tr>
<td>KB Kookmin Bank (A)</td>
<td>KB Kookmin Bank (B)</td>
<td>KB Kookmin Bank (C)</td>
<td></td>
</tr>
<tr>
<td>Daedong Bank</td>
<td>Dongnam Bank</td>
<td></td>
</tr>
<tr>
<td>Korea Long-Term Credit Bank</td>
<td>Housing & Commercial Bank (A)</td>
<td>Housing & Commercial Bank (B)</td>
<td></td>
</tr>
<tr>
<td>KEB Hana Bank (A)</td>
<td>KEB Hana Bank (B)</td>
<td>KEB Hana Bank (C)</td>
<td>KEB Hana Bank (D)</td>
<td></td>
</tr>
<tr>
<td>The Chungchong Bank</td>
<td>Bcram Bank</td>
<td></td>
</tr>
<tr>
<td>Seoul Bank</td>
<td>Shinhan Bank (A)</td>
<td>Shinhan Bank (B)</td>
<td>Shinhan Bank (C)</td>
<td></td>
</tr>
<tr>
<td>Dong Hwa Bank</td>
<td>Chohung Bank (A)</td>
<td>Chohung Bank (B)</td>
<td></td>
</tr>
<tr>
<td>Chohung Bank (A)</td>
<td>Chung Buk Bank</td>
<td></td>
</tr>
<tr>
<td>Kangwon Bank</td>
<td>The Commercial Bank of Korea</td>
<td></td>
</tr>
<tr>
<td>The Commercial Bank of Korea</td>
<td>The Hanil Bank</td>
<td>Hanvit Bank</td>
<td></td>
</tr>
<tr>
<td>Peace Bank of Korea</td>
<td>Woori Bank</td>
<td></td>
</tr>
<tr>
<td>KorAm Bank (A)</td>
<td>KorAm Bank (B)</td>
<td>Citibank Korea</td>
<td></td>
</tr>
<tr>
<td>Kyungki Bank</td>
<td>Jeil Bank</td>
<td></td>
</tr>
<tr>
<td>Standard Chartered Bank Korea</td>
<td></td>
</tr>
<tr>
<td>Korea Exchange Bank</td>
<td></td>
</tr>
<tr>
<td>Industrial Bank of Korea</td>
<td></td>
</tr>
<tr>
<td>Local Banks</td>
<td></td>
</tr>
</tbody>
</table>

Figure 1.2: History of Bank Merging in Korea (Source: Bank of Korea)
Figure 1.3: Survival Plot of Corporate Loans Without Controlling Observables
Figure 1.4: Survival Plot of Corporate Loans Controlling Observables
Figure 1.5: Survival Plot of Consumer Loans without Controlling Observables
Figure 1.6: Survival Plot of Consumer Loans Controlling Observables
Chapter 2

Heterogeneous Consumption

Smoothing Motives and Selection on Moral Hazard
2.1 Introduction

Recently there have been several contributions about advantageous selection in insurance markets (Finkelstein and McGarry (2006), Fang, Keane and Silverman (2008)).¹ What they mean by advantageous selection is that there is a negative correlation between the choice of coverage and ex-post risk. They have argued that it can arise by these sources: more risk averse people are more likely to join the long-term care insurance market and at the same time are less likely to utilize it; or people with better cognitive ability are more likely to join the Medigap insurance market but on the contrary bring about lower costs for the insurance company. One remarkable point is that advantageous selection has been explained by introducing the concept of multidimensional private information.

These literature has shown that empirical relationships between an additional dimension of unobserved heterogeneity, choices of a contract type, and ex-post risks may lead to advantageous selection in imperfectly competitive markets. However, there is one remaining question on what is the channel that drives the association between an additional dimension of unobserved heterogeneity and risks.

In this chapter, I try to explicitly reveal the moral hazard aspect of the relationship between the additional dimension of unobserved heterogeneity in consumption smoothing motives and default risks, which is one of the necessary channels that drive advantageous selection in the consumer credit market that I documented in chapter 1.

In the previous chapter of my dissertation, I provide evidence of advantageous selection in the highly concentrated Korean consumer credit market. Highly concentrated consumer credit markets provide an environment in which the additional dimension, other than default risk, may play an important role to drive advantageous selection. It

¹Davidoff and Welke (2004) suggest risk aversion as a source of advantageous selection in the U.S. reverse mortgage market. However, they did not provide any empirical evidence to support the argument.
is because imperfect competition allows a bank to charge a higher interest rate to the borrowers who are willing to pay to smooth consumption.

In this market, consumers who choose a loan with a high interest rate paired with a low collateral requirement are less likely to default than those who choose a loan with a low interest rate paired with a high collateral requirement. To explain this negative correlation between a loan interest rate and default hazard rate, I introduced unobserved heterogeneity in consumption smoothing motives.

First, the unobserved heterogeneity in consumption smoothing motives affects choices of loan terms. Consumers with stronger consumption smoothing motives tend to choose a high interest rate loan paired with a low collateral requirement. Second, at the same time, the unobserved heterogeneity in consumption smoothing motives can generate differential incentives to prevent default, the argument that will be empirically tested in this paper.

Given that consumers rely on the credit market for consumption smoothing, their opportunity cost of being excluded from the credit market increases with their desire to smooth inter-temporal consumption. Hence, if default leads to exclusion from the credit market, consumers who are strongly motivated to smooth consumption will exert more effort to avoid default. In other words, those who enjoy a greater utility gain from consumption smoothing suffer more from losing access to the consumer credit market, and thus face a stronger incentive to avoid default by honoring existing debts.

These relationships between the unobserved heterogeneity in consumption smoothing motives, loan choices, and default risks can drive advantageous selection in an imperfectly competitive consumer credit market.

However, the previous chapter only provided correlational evidence that those con-

2While in the competitive market, the value of hidden information on consumption smoothing motives is private, in the sense that it has no impact on banks’ profit. Please refer to chapter 1 “Credit Market Model” for details.

3Figure 2.18 in the appendix visualizes the intuition.
sumers are less likely to default, by establishing a negative empirical association between consumption smoothing motives and the probability of default.

There are two possible hypotheses regarding this association. The first hypothesis is bi-dimensional self-selection; consumers differ in two characteristics, consumption smoothing motives and default risk, and they exogenously negatively associated. The second hypothesis, which I support, is that there exists moral hazard as well as uni-dimensional self-selection; consumers who have stronger consumption smoothing motives choose loans with higher interest rates, and they also face higher incentives to prevent default due to the same concerns about consumption smoothing. These consumers exert more effort to avoid default, generating an endogenous negative association between consumption smoothing motives and default risks.

It is important to distinguish these two plausible stories to get precise policy implications in the credit market. If only adverse selection exists, the problem can be solved by loan guarantees and/or improved screening processes. On the other hand, if there exists moral hazard, policymakers and the bank should consider legal reforms regarding limited access to effective recourse and should consider improving dynamic contracting schemes to fully account for the incentives to prevent default.

To empirically support the second hypothesis, I separately identify moral hazard from adverse selection by using panel data on delinquencies. Notably, I exploit the dynamic features of the loan contracts under which these delinquencies occur. The loan contracts have a convex penalty scheme in which the penalty increases as the number and/or duration of past delinquent spells increases. That is, every increase in either the number or the duration of past delinquent spells contributes to an even higher marginal cost of a future delinquency. This provides additional incentive for a delinquent borrower to prevent future delinquencies. If I find evidence that borrowers react to these changes in incentives, it indicates the existence of moral hazard.
Econometrically, finding such evidence involves identifying the patterns of negative occurrence dependence and negative lagged duration dependence in the data. Negative occurrence dependence is defined as having a larger number of previous delinquent spells reduces the probability that a borrower will become or remain delinquent. Similarly, negative lagged duration dependence is defined as having longer duration of previous delinquent spells reduces the probability that a borrower will become or remain delinquent.4 Since, under the convex penalty scheme, the marginal cost of future delinquency increases with the number and/or duration of past delinquent spells, the behaviors of a rational borrower would exhibit negative occurrence dependence and negative lagged duration dependence.

One critical hurdle to identify negative occurrence dependence and/or negative lagged duration dependence is to properly condition on unobservable characteristics that cause the effects of dynamic selection. If one fails to distinguish pure heterogeneity and state dependence, then it is more likely to find positive occurrence dependence and/or positive lagged duration dependence. For example, borrowers with a history of many delinquencies reveal their bad risk types for unobserved reasons. In turn, these borrowers with bad risk types also are more likely to be delinquent in the future, which generate positive occurrence dependence. In sum, it is important for identification to separate pure heterogeneity with state dependence, which can be attained by exploiting panel data on delinquencies.

I first employ the nonparametric tests developed by Abbring, Chiappori and Pinquet (2003) to identify negative occurrence dependence. Then, I employ the parametric approach by Doiron and Gørgens (2008) to identify both negative occurrence dependence and negative lagged duration dependence. The results of nonparametric tests show that there is negative occurrence dependence and it is more pronounced among

4These definitions follow Heckman and Borjas (1980).
borrowers who have stronger consumption smoothing motives. In addition, the para-
metric estimation indicates that both negative occurrence dependence and negative
lagged duration dependence are more pronounced for the consumers who have stronger
consumption smoothing motives, implying that those consumers exert more effort to
prevent default.

I also employ nonparametric approach to identify heterogeneous moral hazard on
various dimensions. First, younger consumers tend to exert more effort to prevent
default, relative to older ones. It is consistent with the intuition that borrowers who
have higher opportunity cost of being excluded from the credit market exert more
effort to prevent default. Younger consumers value the opportunity of access to the
credit market higher at least for two reasons. First, most of them, need to utilize
credit market more in the future than older borrowers: for example, they may plan to
purchase durables such as a car or a house. Also they expect their income path will
grow in the future, which also makes them value the access to the credit market higher.
On top of that, they expect longer period of life to transact with financial institutions.

This pattern and intuition is supplemented by examining two different groups: house
owners and renters. Renters value access to the credit market higher, since they may
want to borrow money from the bank for mortgage loans in the future. So their oppor-
tunity cost of being excluded from the credit market is higher than the house owners.
This result is also generalized by comparing the consumers with low asset of real estate
and consumers with high asset of real estate. Consumers with low asset of real estate
value access to the credit market higher since they have less buffer when the bad income
shock is realized. These facts support the argument that consumers who value access
to the credit market higher do indeed exert more effort to prevent default.

It is well known that separately identifying moral hazard and adverse selection in
the static setting, using cross-sectional data, is difficult. Several papers successfully
separate them out based on some large-scale randomized experiments or by exploiting institutional features that move borrowers across contracts without directly affecting their behavior. Ausubel (1999), Karlan and Zinman (2009) and Agarwal, Chomsisengphet and Liu (2010) use large-scale randomized experiments while Adams, Einav and Levin (2009), Einav, Jenkins and Levin (2012), Einav, Jenkins and Levin (2013b), and Dobbie and Skiba (2013) exploit regulatory and institutional features to separately identify moral hazard and adverse selection.

Abbring, Chiappori and Pinquet (2003) develop nonparametric tests to separately identify moral hazard from asymmetric information in dynamic settings with panel data. They exploit dynamic contract features, accident histories, and shocks to discounted marginal cost of future accidents to identify moral hazard in the French car insurance market. This approach has been extended by Abbring, Chiappori and Zavadil (2008) and Dionne, Pinquet, Maurice and Vanasse (2010). Similarly, I exploit the dynamic contract features of the loan delinquency data and employ both parametric and nonparametric test to identify moral hazard.

My argument is also reminiscent of that on a health insurance market by Einav, Finkelstein, Ryan, Schrmpf and Cullen (2013a). In their paper, the cost of effort varies according to the hidden characteristic of each people. While, in my case, the benefit of effort varies according to the unobserved heterogeneity in consumption smoothing motives. More concretely, consumers with stronger consumption smoothing motives have higher benefit of effort. As a result, they are going to exert more effort. In turn, they are going to be more responsive to the changes in incentives. And this is what I call selection on moral hazard.

The remainder of the paper is structured as follows. Chapter 2.2 provides ideas to separately identify moral hazard. Chapter 2.3 provides institutional background of the Korean consumer credit market, which makes the identification possible. Chapter 2.4
provides the theoretical foundation showing that, if there is moral hazard, one expects negative occurrence dependence and/or negative lagged duration dependence under the experience ratings in the Korean consumer credit market. Chapter 2.5 describes the dataset. Chapter 2.6 introduces econometric model and empirical results. Finally, chapter 2.7 concludes.

2.2 Identifying Moral Hazard

In the previous chapter, I provide evidence of advantageous selection in the form of a negative correlation between a loan interest rate and the hazard of default in the consumer credit market. Consumers who have stronger consumption smoothing motives tend to choose a credit loan, which charges a higher interest rate, and at the same time they default less, generating the negative correlation between a loan interest rate and default risk.

This negative correlation is based on the negative association between consumption smoothing motives and default risk: consumers who have stronger consumption smoothing motives are less likely to default. There are two possible underlying stories that generate this negative association between consumption smoothing motives and default risk.

Here I introduce two hypotheses that may generate the negative association between consumption smoothing motives and default risk.

Hypothesis 1

There is bi-dimensional self-selection: One based on unobserved heterogeneity in consumption smoothing motives and the other based on unobserved heterogeneity in default risk, and they happen to be negatively associated.
Hypothesis 2

There is uni-dimensional adverse selection but there is also moral hazard: there is unobserved heterogeneity in consumption smoothing motives and consumers who are un-observably strongly motivated to smooth consumption exert more costly effort to avoid default since they are more eager to sustain their opportunity to smooth consumption through the credit market, generating the endogenous negative association between consumption smoothing motives and default risk.

Either hypothesis, combined with the fact that consumers who are strongly motivated to smooth consumption tend to choose a higher interest rate loan, may generate the negative correlation between a loan interest rate and default hazard.

However, in this paper, by separately identifying moral hazard from adverse selection, I give empirical evidence in favor of the second hypothesis. I will show that consumers who have stronger consumption smoothing motives indeed exert more costly effort to avoid default. In order to separately identify moral hazard from adverse selection, I exploit dynamic contract features of this lending contract.

Two Approaches Identifying Moral Hazard

There are at least two broad ways to identify moral hazard from asymmetric information in dynamic setting with panel data (Abbring, Chiappori and Pinquet (2003), Chiappori and Salanié (2013)). One approach is to compare the features of existing contracts to the theoretical predictions about the form of optimal contracts under adverse selection and moral hazard. This approach exploits the fact that, in a dynamic setting, optimality has different implications in each case. Hence, a careful empirical investigation of the dynamic features of observed contracts may provide useful insights in the type of problem they are designed to address. This approach is very robust if it relies on simple
qualitative characteristics of optimal contracts. But except for very specific cases, it is very hard to derive the dynamic optimal contracts under asymmetric information.

Instead, here I follow the second approach, as in Abbring, Chiappori and Pinquet (2003). This does not assume optimality of the existing contracts. It merely relies on the idea that particular features of existing contracts, whether optimal or not, have different theoretical implications for observed behavior under adverse selection and moral hazard.

Abbring, Chiappori and Pinquet (2003) point out that particular features of existing contracts, whether optimal or not, have different theoretical implications for observed behavior under adverse selection and moral hazard. Therefore, adverse selection and moral hazard can be separately identified by a careful analysis of observed behavior.

More concretely, they show that, under the “bonus-malus” scheme in car insurance markets, moral hazard leads to negative occurrence dependence: the occurrence of an accident increases incentives to prevent an accident in the future and reduces the probability of the future accident. On the other hand, under pure adverse selection, accident probabilities should not respond to the history of accidents.

Regarding the credit market, here I deal with the history of delinquencies, which are the previous steps of the default, and dynamic contract features, especially penalty schemes, related to the history of delinquency. Note that, unlike car accident in which duration of the accident does not make sense, duration of past delinquencies, i.e. time spent in past delinquency states, in addition to the number of past delinquencies, is also included in the history of delinquency.

In Korean credit market, the cost of future delinquency increases in a convex way as both the number and duration of past delinquencies increase. Under such a convex penalty scheme, an occurrence and/or longer duration of delinquency increases the marginal cost of future delinquency, which in turn changes the incentives to prevent fu-
ture delinquency. As a result, if I find negative occurrence dependence and/or negative lagged duration dependence, it indicates that the Hypothesis 2 is true.\(^5\)

The most important part to exactly figure out negative occurrence dependence and negative lagged duration dependence is to disentangle the unobserved heterogeneity in risk type. If someone simply examines the inter-temporal correlation of delinquency, it is likely to find the positive occurrence and/or positive lagged duration dependence caused by the unobserved heterogeneity in delinquency risk: bad type consumers made more and longer delinquencies in the past and are also more likely to be delinquent in the future, indicating that both negative occurrence and lagged duration dependence are revealed only if successfully conditioning on borrowers’ observed and unobserved heterogeneity.

I show that there is indeed negative occurrence and negative lagged duration dependence and it is more conspicuous among consumers who are strongly motivated to smooth consumption. Those consumers are more careful to avoid default so they do not lose their opportunity to smooth consumption through the credit market.

Occurrence Dependence and Lagged Duration Dependence

At an individual level, that is to say conditional on all observables and unobservables, occurrence dependence means that the number of previous delinquent spells affects the probability that a consumer will become or remain delinquent. Similarly, lagged duration dependence means that the probabilities of remaining delinquent or becoming delinquent depend on the lengths of previous delinquent spells.

Note that both of them are causal relations: occurrence and/or longer duration of past delinquencies changes the incentives of a borrower, resulting in change in the probability of remaining or becoming delinquent.

\(^5\)Mathematical definitions of negative occurrence dependence and negative lagged duration dependence will be introduced soon.
Let me set D_t to be a dummy variable which shows the status of delinquency in period t. If delinquency occurs at period t, then $D_t = 1$, otherwise $D_t = 0$.

The mathematical definition of occurrence dependence follows, for each individual i, and $\forall j = 0, 1, 2, ...$,

$$P_i(D_{t+j} = 1|D_{t-1} = 1) \begin{cases} > P_i(D_{t+j} = 1|D_{t-1} = 0) : \text{Positive Occurrence Dependence} \\ = P_i(D_{t+j} = 1|D_{t-1} = 0) : \text{No Occurrence Dependence} \\ < P_i(D_{t+j} = 1|D_{t-1} = 0) : \text{Negative Occurrence Dependence} \end{cases}$$

In Appendix B, I show that the experience rating scheme used in the Korean consumer credit market causes the negative occurrence dependence and the negative lagged duration dependence by a dynamic optimizing model, which signals the existence of moral hazard. Please see Appendix B. to find the theoretical background of the negative occurrence dependence and negative lagged duration dependence under convex penalty scheme.

2.3 Institutional Background

Here I introduce dynamic contract features in the Korean credit market. Specifically, I focus on the experience ratings on delinquencies in the Korean credit market.

I use the common definition of short term delinquency and long term delinquency. Short term delinquency is defined as being delinquent less than 90 days, while long term delinquency is defined as being delinquent more than 90 days. Long term delinquency is regarded as a default without any special reasons. In this part, I focus on short term delinquency and its negative occurrence and lagged duration dependence in the consumer credit market.
Experience Rating in the Korean Credit Market

In Korea, when a borrower is delinquent more than 5 business days on a payment of more than about $100, banks report the delinquency to the credit bureau. This information is propagated to all financial institutions in Korea. On top of that, once delinquency is reported to the credit bureau, all payment by credit cards is denied and also the borrower cannot make any additional loans until she repays the delinquent amount.

The exact formula to evaluate the credit score is strictly confidential. Instead, here I list several qualitative features of credit scoring provided by the credit bureau.

1. When delinquency occurs the credit score decreases. How much it decreases depends on the personal characteristics and past history of delinquency. If the borrower was in good standing (high credit score) the amount of decrease is small while the amount of decrease is large if he was in bad standing.

2. If the consumer repays the delinquent amount quickly, only for the first time delinquency, credit score can be recovered to almost same as the original level. How much the credit score is recovered depends on the length of delinquency and amount of delinquency.

3. If the consumer makes the second delinquency in the future, her credit score decreases larger than the first time delinquency even the length of delinquency and the delinquent amount is the same, since there is additional penalty called “cumulative delinquency penalty”. As a result, the penalty scheme for credit score is convex.

4. Cumulative delinquency penalty is also applied to the duration of delinquency. For any fixed number of delinquency, if the duration of delinquency increases, then the penalty increases, which means the cost of future delinquency increases.

5. If the cumulative number of days being delinquent reaches 90 days (even if it is
reached by several times of separate delinquency), the penalty is huge. It is hard to get any kind of credit (including credit cards) from any financial institution.

A lower credit score affects all kinds of financial contracts. When a consumer borrows money, not only the limit of the loan decreases but also the interest rate increases highly. Furthermore, if a borrower makes several delinquencies, any kind of loan is denied and at the same time, the payment by credit cards is also denied. So she loses ways to smooth consumption.

On top of that, the bank penalizes the borrower by applying an additional penalty interest rate when delinquency occurs. For the short term delinquency, especially less than a month, the bank applies an additional 6% annual interest rate to the delinquent amount. If the borrower has been delinquent more than a month, “acceleration” starts, which means, from that point, the increased annual interest rate is applied not to delinquent amount but to the outstanding debts itself. As a result, monthly due amount increases in a very convex way. If the borrower is delinquent for 3 consecutive months (90 days), an annual interest rate is increased by 7 percentage points and it is applied to the outstanding debts. Furthermore, the bank regards the loan as being default and becomes to have a right to sell collateral at auction to withdraw the bad loan.

Here is an example. Suppose a consumer borrows 100 thousand dollars at 6% annual interest rate. The principal is due at the end of the contract and the borrower only needs to pay monthly interest. According to the contract, monthly interest is $500. If the borrower is delinquent for a month, 6% annual interest rate is added to the original interest rate, leading to 12% annual interest rate to the delinquent amount. So, in the next month she needs to pay $1005 (= $505 + $500) to the bank. If the borrower, however, is delinquent for two months, “acceleration” starts: Not to the delinquent amount but to the outstanding debts, 12% interest rate is applied in the second month. So, she needs to pay $2005 = [$505(1st month) + $500(2nd month) +
Why Delinquency Occurs: ex-ante and ex-post moral hazard

A consumer exerts costly effort to prepare sufficient liquidity to pay her monthly due amount. And then, once the monthly income is realized, the consumer optimally chooses whether to be delinquent or not. If the realized income does not meet the monthly due amount, of course, she will be delinquent. However, even when the consumer can repay the debt, she still may optimally choose not to repay.

If the level of effort to stay liquid is affected by the contract terms, we speak of ex-ante moral hazard. On the other hand, after monthly income is realized, if the optimal decision to being delinquent or not is affected by the contract terms, we speak of ex-post moral hazard.

In the theoretical model, I consider both ex-ante and ex-post moral hazard (Please refer to the full model in Appendix B.). The model shows that, under convex penalty scheme, a consumer exerts more effort to prepare liquidity and decreases the threshold income level whether to being delinquent or not.

In the empirical model, however, it is difficult to separate ex-ante moral hazard from ex-post moral hazard in the credit market. In the automobile insurance market, Chiappori and Salanié (2000) discard all accidents in which only one automobile was involved in order to exclude ex-post moral hazard. Whenever, at least, two automobiles are involved, it is hard to optimally choose not to declare. When it comes to the credit market, as far as I know, there is no previous work to separate ex-ante moral hazard from ex-post moral hazard. This will be left for the future work.
2.4 Theoretical Foundation

Here I consider a dynamic version of a credit market model that a consumer chooses the optimal level of effort to prevent delinquency and then optimally chooses whether to be delinquent or not every period. Basically, I try to show that if there is moral hazard, i.e. if a consumer can change the probability of delinquency by exerting costly effort, then there would be negative occurrence dependence under the convex penalty scheme on delinquencies.

Consider a consumer with the instantaneous utility $u(v_t, c_t)$ that is strictly concave, increasing, and twice continuously differentiable in the 2nd argument. Utility comes from two arguments, the value of durables, v_t, which can also be used as collateral (like house or car) and non-durable consumption, c_t.

Suppose the income follows a process $y_t = y_0 + e_t + \eta_t$, where y_0 is determined from personal own characteristics, e_t is costly effort, and η_t is stochastic part that is identically and independently distributed across time with $E\eta_t = 0$. And suppose the cost of effort $\Gamma(e_t)$ is strictly convex, increasing, and twice continuously differentiable.

At every period, the consumer chooses a optimal level of effort e_t^* which depends on d^{t-1}, the full history of delinquency until time period $t - 1$. And after η_t is drawn from the distribution, i.e. the monthly income y_t realizes, the consumer chooses whether to be delinquent or not.

Here follows the dynamic program of choosing the optimal level of effort.

$$e_t^*(v_t, m_t(d^{t-1})) = \arg\max_{e_t} \int V_t(v_t, y_t(d^{t-1}), m_t(d^{t-1}), e_t(d^{t-1})) f(y_t|e_t)dy_t \quad (2.1)$$

And after the monthly income realizes the consumer optimally chooses whether to
be delinquent or not,

\[V_t(v_t, y_t(d_t^{-1}), m_t(d_t^{-1}), e_t(d_t^{-1})) \]

\[= \max_{d_t} \{ u(v_t, y_t(d_t^{-1}) - m_t(d_t^{-1})) - \Gamma(e_t(d_t^{-1})) \}
\]

\[+ \beta E_t V_{t+1}(v_{t+1}, y_{t+1}(d_{t+1}^{-1}, d_t = 0), m_{t+1}(d_{t+1}^{-1}, d_t = 0), e_{t+1}(d_{t+1}^{-1}, d_t = 0)) \]

\[, u(v_t, y_t(d_t^{-1}) - \Gamma(e_t(d_t^{-1}))) \]

\[+ \beta E_t V_{t+1}(v_{t+1}, y_{t+1}(d_{t+1}^{-1}, d_t = 1), m_{t+1}(d_{t+1}^{-1}, d_t = 1), e_{t+1}(d_{t+1}^{-1}, d_t = 1)) \} \] (2.2)

Here I simply provide the results but the full model will be provided in Appendix C.

Proposition 1.

There exists a threshold income \(y_t^* \), such that a consumer optimizes to be delinquent if \(y_t < y_t^* \), otherwise repays the monthly due amount. Furthermore,

\[y_t^* (\beta E_t[V_{t+1}(v_{t+1}, y_{t+1}(d_{t+1}^{-1}, d_t = 0), m_{t+1}(d_{t+1}^{-1}, d_t = 0), e_{t+1}(d_{t+1}^{-1}, d_t = 0))]
\]

\[- V_{t+1}(v_{t+1}, y_{t+1}(d_{t+1}^{-1}, d_t = 1), m_{t+1}(d_{t+1}^{-1}, d_t = 1), e_{t+1}(d_{t+1}^{-1}, d_t = 1))] \] is decreasing in the argument.

Proposition 1. implies that the optimal income threshold \(y_t^*(d_t^{-1}) \) is decreasing in the number of past delinquencies and/or duration of past delinquencies under the convex penalty scheme.

Proposition 2.

The optimal effort level, \(e_t^*(d_t^{-1}) \), increases as the past number of delinquencies and/or the past duration of delinquencies increases when \(m_t \) is relatively small.

In sum, as the number and/or duration of past delinquencies increases, \(y_t^* \) decreases by Proposition 1, and \(e_t^* \) increases by Proposition 2.

77
As a result,
\[\max\{y^*_t, m_t\} - e^*_t \]
decreases as the number and/or duration of past delinquent spells increases.

Therefore, the theoretical model predicts that there are negative occurrence dependence and negative lagged duration dependence under the convex penalty scheme on delinquencies in the Korean credit market.

2.5 The Data

Here I use the individual level panel data of delinquencies in the Korean consumer credit market. I observe the full history of delinquencies for each consumer including the number and duration of each delinquent spells.

The length of the loan contract varies but here I focus on two-year length contract to fully observe the contract period: I discard right-censored data. Also there is no consumer who repays the debt and terminates contract earlier than the loan maturity. So, each observation provides full information on full history, \(N[0, T] \), for the contract years from a point in time of making each contracts. Here \(N[0, T] \) represents full history of delinquencies: when delinquencies occurred and how long they continued for each delinquent spells.

\[N[0, T] := \{N(t); 0 \leq t \leq T\} \]

where, \(N(t) := \sharp \{k : T_k \leq t\} \).

Each history of delinquencies in the sample can alternatively be characterized as the number of claims \(N(T) \) and the duration of each delinquent spells \(D(T) \) with, if \(N(T) > 0 \), a vector \((T_1, \ldots, T_{N(T)})\) of delinquent periods. Here, \(T_k \) be the time of the \(k \)-th delinquency in the contract period.
Please refer to Table 2.1 for number of observations by number of delinquencies. Also for more details of the dataset, please refer to the Section 1.3 of Chapter 1.

2.6 Econometric Model

Here I implement two different approaches. I first identify occurrence dependence non-parametrically following Abbring, Chiappori and Pinquet (2003). Then, I also identify both occurrence dependence and duration dependence parametrically by adopting Doiron and Gørgens (2008).

The previous theoretical model predicts that if I find negative occurrence dependence and/or negative lagged duration dependence under the convex penalty scheme, it signals the existence of moral hazard in this market. However, to identify negative occurrence dependence and/or negative lagged duration dependence, it is important to condition not only on observable characteristics but also on unobservables characteristics that cause dynamic selection confounding factors. If one fails to distinguish pure heterogeneity and state dependence, then it is more likely to find positive occurrence dependence and/or positive lagged duration dependence.\(^6\)

For example, borrowers with a history of many delinquencies reveal their bad risk types for unobserved reasons. In turn, these borrowers with bad risk types also are more likely to be delinquent in the future, which generate positive occurrence dependence instead of one. In sum, it is important for identification to separate pure heterogeneity with state dependence, which can be attained by exploiting dynamic panel data on delinquencies.

\(^6\)Distinguishing heterogeneity and state dependence is originally a critical issue in identifying a relation of unemployment and labor-supply. Individuals who are in a unemployed state are more likely to be unemployed in the future. There may be an unobserved heterogeneity which both causes unemployment now and in the future. On the other hand, present unemployment status may directly affects the probability of future unemployment. The former one is the effect of dynamic selection, while the latter one is the state dependence. Abbring, Chiappori and Pinquet (2003) pointed out this intuition.
Again, moral hazard is separately identified by exploiting dynamic panel data on delinquencies under the convex penalty scheme. This dynamic panel data allows me to condition on the confounding factor of dynamic selection on unobservable characteristics.

Non-parametrically Test Occurrence Dependence

For the intensity of delinquencies, I consider a form that is similar to mixed proportional hazard model. Note that this is not a standard form of a mixed proportional hazard model since it does not have proportional observed part, which is included in individual specific effect \(\lambda \), and since it includes a term capturing occurrence dependence.

\[
\theta(t|\lambda, N[0, t)) = \lambda \beta(\lambda)^{N(t-)} \psi(t)
\]

where \(\beta(\lambda) : [0, \infty) \rightarrow (0, \infty) \) represents a measurable function captures occurrence dependence, where \(\psi(t) \) captures contract-time effects, and where \(N[0, t) := N(u); 0 \leq u < t \) represents the full history of delinquencies. Note that \(N(t) \) represents the number of occurrences until time \(t \). The model is quite general except assuming separability.\(^7\)

If \(\beta(\lambda) = 1 \), i.e. the intensity of delinquencies does not depend on the number of past delinquent spells, then it indicates there is no occurrence dependence. While, \(\beta(\lambda) < 1 \) implies there is negative occurrence dependence and \(\beta(\lambda) > 1 \) implies positive occurrence dependence.

Now, intuition behind the non-parametric identification under the convex penalty scheme is as follows. Here, again, the convex penalty scheme indicates a mechanism of which the marginal cost of future delinquencies increase as the number or duration of the past delinquent spells increases.

\(^7\)This model assumes that unobserved characteristics that affect being delinquent do not varies overtime. If this does not hold, it is impossible to separately identify unobserved heterogeneity from state dependence.
For an easy explanation, first I put a restrictive assumption that the contract-time effects is constant, \(\psi(t) = c \in \mathbb{R}^+ \): for example, there is no time-variant effect on delinquency hazard. Now let me consider the distribution, \(H_1 \), of the time until the first delinquency, \(T_1 \), in the subpopulation who is delinquent once and only once over the contract period.

\[
H_1(t) = \Pr(T_1 \leq t|N(T) = 1)
\]

Under the constant contract-time effects and if there is no moral hazard, \(\beta(\lambda) = 1 \), then the intensity of delinquencies is constant overtime: \(\theta(t|\lambda, N[0,t]) = c_0 \in \mathbb{R}^+ \). As a result, under the constant contract-time effects, \(H_1(t) \) should be uniformly distributed if there is no moral hazard.

However, if there is moral hazard, a consumer responds to the change in incentives. So a delinquency is more likely to occur sooner than later. As a result, if the cumulative distribution function of \(T_1 \), is larger in every point than that of the uniform cumulative distribution function, then we can conclude that there is moral hazard. However, note that, under the assumption of no contract-time effect, null hypothesis is that there is no moral hazard and stationarity.

Then, I will relax the restrictive stationarity assumption, the distribution of the first claim time, \(T_1 \), does not have to be uniformly distributed anymore: \(\psi(t) \neq c \in \mathbb{R}^+ \). Instead, let me consider the distribution, \(H_2 \), of the second claim time, \(T_2 \), in the subpopulation with exactly two delinquencies over the contract period.

\[
H_2(t) = \Pr(T_2 \leq t|N(T) = 2)
\]

\[\text{Note that one can estimate } H_1(t), \]

\[\hat{H}_1(t) = \frac{1}{M_{n,k}} \sum_{i=1}^{n} I(T_{1,i} \leq t, N_i(T) = 1)\]

where, \(M_{n,k} = \sum_{i=1}^{n} I(N_i(T) = k) \).
Then, one expects that
\[H_1(t)^2 = H_2(t) \]
under the null of no moral hazard.

However, if there is moral hazard, i.e. if there is negative occurrence dependence, one expects
\[H_1(t)^2 < H_2(t) \]
under the convex penalty scheme.

Here I use data of consumer loans with 24 months maturity, which are observed without censoring. Table 2.1 shows the number of observations by the number of delinquencies.

Let me define \(\Psi(t) = \int_0^t \psi(u)du \). Under stationarity assumption as the previous intuition suggests, \(\Psi(t) = t/T \), one can show that
\[H_1(t) \equiv \Pr(T_1 \leq t|N(T) = 1) = \Psi(t) \]
under the Null, \(\beta(\lambda) = 1 \).

Also, Abbring, Chiappori and Pinquet (2003) prove that
\[\Pr(T_1 \leq t|N(T) = 1) \preceq \Psi(t) \]
if \(\beta(\lambda) \gtrsim 1 \).

Figure 2.1 shows the result. In Figure 2.1, the blue line shows the cdf of uniform distribution and the red line shows the empirical cdf of \(H_1(t) = \Pr(T_1 \leq t|N(T) = 1) \). Under stationarity assumption, the null hypothesis of the test is joint hypothesis of stationarity and no moral hazard.

The result of Kolmogorov-Smirnov test shows that \(\sup_{t \in [0,T]} |\hat{H}_1(t) - t/T| = 0.107 \), p-value = 0.121, implying that there is insignificant positive occurrence dependence or there is non-stationarity. As I will show later, this comes from non-stationarity rather than positive occurrence dependence.
Stationarity assumption is quite strong, so Abbring, Chiappori and Pinquet (2003) also introduce test procedure under general non-stationarity: \(\Psi(t) \neq t/T \) in general.

Under the null, \(\beta(\lambda) = 1 \), one can show that

\[
H_2(t) \equiv P_r(T_2 \leq t | N(T) = 2) = \Psi(t)^2
\]

It implies that

\[
[Pr(T_1 \leq t | N(T) = 1)]^2 = Pr(T_2 \leq t | N(T) = 2)
\]

since \(H_1(t) \equiv Pr(T_1 \leq t | N(T) = 1) = \Psi(t) \) under the null.

Also as proven in Abbring, Chiappori and Pinquet (2003)

\[
[Pr(T_1 \leq t | N(T) = 1)]^2 \leq Pr(T_2 \leq t | N(T) = 2)
\]

is the evidence of \(\beta \leq 1 \). Again, to test it, Kolmogorov-Smirnov (KS) statistic can be applied.

In Figure 2.2, the red line is the distribution, \(H_2(t) = Pr(T_2 \leq t | N(T) = 2) \), of the second claim time, \(T_2 \), in the subpopulation with exactly two delinquencies over the contract period, while the blue line represents \([H_1(t)]^2 = [Pr(T_1 \leq t | N(T) = 1)]^2 \). KS test result shows that \(\sup_{t \in [0, T]} [\widehat{H}_2(t) - \widehat{H}_1(t)^2] = 0.11 \), p-value < 0.05, which means that there is negative occurrence dependence once I allow non-stationarity.

For both subgroups of consumers who have strong consumption smoothing motives or consumers who are relatively weakly motivated to smooth consumption (Figure 2.3 and Figure 2.4), KS test results show that there is negative occurrence dependence and the negative occurrence dependence is more conspicuous in the subgroup of consumers who are strongly motivated to smooth consumption. Corresponding KS test results are as follows.

\footnote{For robustness check, more direct comparison of the first and second claim times of each contract with two claims are executed. And the results show that the negative occurrence dependence is very robust.}
For consumers who are relatively weakly motivated to smooth consumption,

$$\sup_{t \in [0, T]} [\hat{H}_2(t) - \hat{H}_1(t)]^2 = 0.094$$

with corresponding p-value < 0.1.

And for consumers who have strong consumption smoothing motives,

$$\sup_{t \in [0, T]} [\hat{H}_2(t) - \hat{H}_1(t)]^2 = 0.25$$

with corresponding p-value < 0.001.

It means that the negative occurrence dependence is more conspicuous among consumers who are strongly motivated to smooth consumption. The test result corresponds to the previous argument that consumers who are strongly motivated to smooth consumption have stronger incentive to prevent default since their opportunity cost of being excluded from the market is higher.

Heterogeneous Moral Hazard on Various Dimensions

From now on, I employ nonparametric identification of moral hazard to show heterogeneous moral hazard on various dimensions. First, I apply the test for several different age groups of borrowers. Figure 2.5, Figure 2.6, and Figure 2.7 show the results. Figure 2.5 shows strong negative occurrence dependence, indicating that consumers with age in between 30 and 45 exert more effort to prevent future delinquency. Figure 2.6 also shows negative occurrence dependence, indicating that consumers with age in between 45 and 60 exert effort to prevent future delinquency but less careful than the younger group. On the other hand, Figure 2.7 shows no occurrence dependence, meaning that the oldest group (older than 60) pay less attention to prevent future delinquency. Here
follows the Kolmogorov-Smirnov statistics.

\[
\sup_{t \in [0,T]} [\hat{H}_2(t) - \hat{H}_1(t)]^2 = \begin{cases}
0.266 : \ p\text{-value} < 0.001 \ (30 \leq \text{Age} < 45) \\
0.156 : \ p\text{-value} < 0.01 \ (45 \leq \text{Age} < 60) \\
0.03 : \ p\text{-value} > 0.1 \ (60 \leq \text{Age})
\end{cases}
\]

It is consistent with the intuition that borrowers exert effort to prevent default since they have differential opportunity cost of being excluded from the credit market. Younger consumers value the opportunity of access to the credit market higher for two reasons. First, most of them, they need to utilize credit market more in the future than older borrowers, since they plan to purchase a car, a house, such as durables. Also they expect their income path will grow in the future, which also makes them value the access to the credit market higher. On top of that, they expect longer period of life to transact with financial institutions.

This pattern and intuition is supplemented by examining two different groups: house owners and renters. Renters value access to the credit market higher, since they may want to borrow money from the bank for mortgage loans in the future. So their opportunity cost of being excluded from the credit market is higher than the house owners. From Figure 2.8 and Figure 2.9, you can compare these results. Figure 2.8 shows strong negative occurrence dependence, indicating that renters exert more effort to prevent future delinquencies since their opportunity cost of being excluded from the credit market is higher relative to house owners (Figure 2.9). Kolmogorov-Smirnov statistics for each group are as follows.

\[
\sup_{t \in [0,T]} [\hat{H}_2(t) - \hat{H}_1(t)]^2 = \begin{cases}
0.216 : \ p\text{-value} < 0.01 \ (Renters) \\
0.027 : \ p\text{-value} > 0.1 \ (House \ Owners)
\end{cases}
\]

This result is also generalized by comparing the consumers with low asset of real estate and consumers with high asset of real estate (Figure 2.10 and Figure 2.11).
Consumers with low asset of real estate value access to the credit market higher since they have less buffer when the bad income shock is realized. As a result, they exert more effort to prevent future delinquencies compared to the consumers with high asset of real estate. That is why Figure 2.10 shows strong negative occurrence dependence, while Figure 2.11 shows no occurrence dependence. Kolmogorov-Smirnov statistics for each group are as follows.

\[
\sup_{t \in [0,T]} \left[\hat{H}_2(t) - \hat{H}_1(t) \right]^2 = \begin{cases}
0.317 : \text{p-value < 0.001 (Low Asset of Real Estate)} \\
0.036 : \text{p-value > 0.1 (High Asset of Real Estate)}
\end{cases}
\]

From the similar intuition, consumers with low savings exert more effort to prevent future delinquencies since they have less buffer when the bad income shock is realized (Figure 2.12). On the other hand, consumers with high savings exert less effort to prevent future delinquencies since they, somehow, are able to smooth consumption without accessing to the credit market (Figure 2.13). As a result, Figure 2.12 shows stronger negative occurrence dependence than Figure 2.13. Kolmogorov-Smirnov statistics for each group are as follows.

\[
\sup_{t \in [0,T]} \left[\hat{H}_2(t) - \hat{H}_1(t) \right]^2 = \begin{cases}
0.192 : \text{p-value < 0.01 (Low Savings)} \\
0.089 : \text{p-value < 0.1 (High Savings)}
\end{cases}
\]

Figure 2.14 and Figure 2.15 compares two different groups of income level, showing that consumers with relatively low income exert more effort to prevent future delinquencies. This result is also consistent with the previous intuition.

Finally, Figure 2.16 and Figure 2.17 compare the degree of moral hazard between women and men. The result shows that women exert more effort to prevent future delinquencies while men shows no occurrence dependence. Kolmogorov-Smirnov statistics
for each group are as follows.

\[
\sup_{t \in [0,T]} \left(\hat{H}_2(t) - \hat{H}_1(t) \right)^2 = \begin{cases}
0.189 : \text{p-value} < 0.01 \ (\text{Women}) \\
0.049 : \text{p-value} > 0.1 \ (\text{Men})
\end{cases}
\]

Actually these days in the Korean consumer credit market, some financial institution exploits this fact and introduce a loan contract only for women who are less risky and are profitable for the institution.

In sum, consumers who value access to the credit market higher, i.e. who have higher opportunity cost of being excluded from the credit market, do indeed exert more effort to prevent default.

Parametrically Test Occurrence Dependence and Lagged Duration Dependence

Duration Dependence

In the Korean consumer credit market, unlike the insurance market described in Abbring, Chiappori and Pinquet (2003), not only the number of past delinquencies but also the duration of past delinquencies matters. As the duration of past delinquencies becomes longer, the convex penalty scheme increases the marginal cost of future delinquency, resulting in lower probability of future delinquency under moral hazard.

Here, referring to Doiron and Gørgens (2008), I try to estimate both occurrence dependence and lagged duration dependence to find the evidence of moral hazard in this market. Again, lagged duration dependence is defined as having longer duration of previous delinquent spells reduces the probability that a borrower will become or remains delinquent.

A borrower can be in 3 states \((S)\): Good (G), Delinquency (D), and Default (F). \(Y_i(t, s) = \{T_{i,j}, S_{i,j}\}_{j=0}^{J_i(t)}\) represents the delinquency history of person \(i\) until period \(t\). Here, \(j\) is the transition times and \(J_i(t)\) is the maximal number of transitions until
period \(t \). Also \(T_{i,j} \) indicates subsequent transition times and \(S_{i,j} \) denotes destination states of individual \(i \) at period \(t \). Note that \(T_{i,j-1} < T_{i,j} \) and \(S_{i,j-1} \neq S_{i,j} \).

The Likelihood Function

Let \(h(t, s|y(\bar{t}, \bar{s}), x(t), v) \) denotes the conditional transition intensity to state \(s \) at time \(t \) given that the current spell in state \(\bar{s} \) began at time \(\bar{t} \), where \(x(t) \) represents the observed characteristics and \(v \) captures unobserved heterogeneity.

Now, based on this conditional transition intensity, let me introduce the likelihood function of each consumer conditional on the observable characteristics, \(x_i(c_i) \), and the unobserved heterogeneity, \(v_i \).

The likelihood function becomes,

\[
L(y_i(t_{i,n_i}, s_{i,n_i}), c_i|x_i(c_i), v_i) = L(c_i|y_i(t_{i,n_i}, s_{i,n_i}), x_i(c_i), v_i) \\
\times (\prod_{j=1}^{n_i} L(t_{i,j}, s_{i,j}|y_i(t_{i,j-1}, s_{i,j-1}), x_i(t_{i,j}), v_i)) \\
\times L(s_{i,0}|t_{i,0}, x_i(t_{i,0}), v_i)L(t_{i,0}|x_i(t_{i,0}), v_i)
\]

Here, for \(s_{i,j-1} \neq F \)

\[
L(t_{i,j}, s_{i,j}|y_i(t_{i,j-1}, s_{i,j-1}), x_i(t_{i,j}), v_i) \\
= h(t_{i,j}, s_{i,j}|y_i(t_{i,j-1}, s_{i,j-1}), x(t_{i,j}), v_i) \\
\times \exp[- \sum_{k \neq s_{i,j-1}} \int_{t_{i,j-1}}^{t_{i,j}} h(u, k|y_i(t_{i,j-1}, s_{i,j-1}), x(u), v_i) du]
\]

Note that this is an familiar expression of (hazard function \(\times \) survivor function).

And

\[
L(c_i|y_i(t_{i,n_i}, s_{i,n_i}), x_i(c_i), v_i) \\
= \exp[- \sum_{k \neq s_{i,j-1}} \int_{t_{i,n_i}}^{c_i} h(u, k|y_i(t_{i,n_i}, s_{i,n_i}), x(u), v_i) du]
\]

And then, integrating out unobserved heterogeneity term.

\[
L_i = \int_{-\infty}^{\infty} L(y_i(t_{i,n_i}, s_{i,n_i}), c_i|x_i(c_i), v_i)dF(v_i)
\]
Here, $F(v_t)$ denotes the distribution function of the unobserved heterogeneity.

Parameterization and Estimation

The hazard function I use,

$$h(t, s|y(\bar{t}, \bar{s}), x(t), v) = \lambda_{\bar{s},s}(t - \bar{t}; \alpha_{\bar{s},s}) \exp(x(t)'\beta_{\bar{s},s} + y(\bar{t})'\delta_{\bar{s},s} + z(v)'v_{\bar{s},s})$$

where, $\lambda_{\bar{s},s}(t - \bar{t}; \alpha_{\bar{s},s}) = \alpha_{\bar{s},s}(t - \bar{t})^{\alpha_{\bar{s},s} - 1}$.

$\delta_{\bar{s},s}$ are the main parameters, which capture negative occurrence dependence and negative lagged duration dependence.

In order to capture the decrease in the penalty for a new delinquency if the latest delinquency occurred a long time ago, I use the following specification.

- **Cumulative number**: $\sum_{j=1}^{J(t)} 1(S_{i,j-1} = s)e^{-\rho_s(t-T_{i,j})}$
- **Cumulative duration**: $\sum_{j=1}^{J(t)} 1(S_{i,j-1} = s) \int_{T_{i,j-1}}^{T_{i,j}} e^{-\rho_s(t-T_{i,j})}$

The parameter ρ_s acts as a “discount” or “depreciation” factor that reduces the impact of a past delinquency as time goes by.

Table 2.2 shows the maximum likelihood estimates of $\delta_{\bar{s},s}$ when the state changes from good “G” to delinquency “D” separately for the consumers who belong to the consumption smoothing group and who do not belong to the group. Especially, the first column shows the result of the negative occurrence dependence and the second column provides evidence of negative lagged duration dependence.

The results show that not only negative occurrence dependence exists but also negative lagged duration dependence exists. Both negative occurrence dependence and negative lagged duration dependence are stronger for the consumers who have strong consumption smoothing motives. For those consumers, future delinquency hazard decreases by about 11% ($\exp(-0.118) - 1 = -0.111$) as the consumer had been delinquent one more time, while it decreases by about 7.4% if the consumer had been delinquent 1
more week. On the other hand, for the consumers who do not belong to the consumption smoothing group, future delinquency hazard does not change as the consumer had been delinquent one more time, while there is significant negative lagged duration dependence: future delinquency hazard decreases by about 2% if the consumer had been delinquent 1 more week.

These results show that consumers who have strong consumption smoothing motives exert more costly effort to avoid default, generating endogenous negative correlation between consumption smoothing motives and default risk. As such, they again show the Hypothesis 2 is better explanation of the data than Hypothesis 1.

2.7 Concluding Remarks

Previous literatures that address the source and mechanism of advantageous selection successfully show that empirical relationships between an additional dimension of unobserved heterogeneity, choices of contract type, and risks in their context lead to advantageous selection in their markets. However, they does not provide the economic reasons for the association between an additional dimension of unobserved heterogeneity and risks.

By separately identifying moral hazard from adverse selection, in this paper, I reveal the endogenous relationship between the additional dimension of unobserved heterogeneity in consumption smoothing motives and default risk.

Consumers who have stronger consumption smoothing motives have higher opportunity cost of being excluded from the credit market. Since default leads to exclusion from the credit market, consumers with stronger consumption smoothing motives will exert more effort to prevent default, which generate the endogenous association between consumption smoothing motives and default risks.

Panel data on delinquencies combined with the convex penalty scheme on delinqu-
quences in the Korean consumer credit market allows me to separately identify moral hazard from adverse selection. Every increase in either the number or the duration of past delinquent spells contributes to an even higher marginal cost of a future delinquency. This provides additional incentive for a delinquent borrower to prevent future delinquencies. If I find evidence that borrowers react to these changes in incentives, it indicates the existence of moral hazard.

In turn, econometrically, negative occurrence dependence and negative lagged duration dependence in the data indicates the existence of moral hazard. Since, under the convex penalty scheme, the marginal cost of future delinquency increases with the number and/or duration of past delinquent spells, the behaviors of a rational borrower would exhibit negative occurrence dependence and negative lagged duration dependence.

I first employ the nonparametric tests developed by Abbring, Chiappori and Pinquet (2003) to identify negative occurrence dependence. Then, I employ the parametric approach by Doiron and Gørgens (2008) to identify both negative occurrence dependence and negative lagged duration dependence. The results of nonparametric tests show that there is negative occurrence dependence and it is more pronounced among borrowers who have stronger consumption smoothing motives.

Furthermore, by examining various dimensions of heterogeneity, including age, whether they rent or own the house, amount of savings, wage, etc., I non-parametrically reveal that consumers who value access to the credit market higher, i.e. who have higher opportunity cost of being excluded from the credit market, do indeed exert more effort to prevent default.

The parametric test fortifies the robustness of the previous results. For the group of consumers with stronger consumption smoothing motives, not only negative occurrence dependence but also negative lagged duration dependence is pronounced, indicating that those consumers do indeed exert more effort to prevent default.
Finally, since there exists moral hazard, I suggest that policymakers and the bank should consider legal reforms regarding limited access to effective recourse and should consider improving dynamic contracting schemes to fully account for the incentives to prevent default.
Table 2.1: Number of Observations by the Number of Delinquencies

<table>
<thead>
<tr>
<th>Number of Delinquencies</th>
<th>Observations</th>
</tr>
</thead>
<tbody>
<tr>
<td>M_0 (no delinquency)</td>
<td>2902</td>
</tr>
<tr>
<td>M_1 (1 delinquency)</td>
<td>508</td>
</tr>
<tr>
<td>M_2 (2 delinquencies)</td>
<td>218</td>
</tr>
<tr>
<td>M_3 (3 delinquencies)</td>
<td>110</td>
</tr>
<tr>
<td>M_4 (4 delinquencies)</td>
<td>82</td>
</tr>
<tr>
<td>M_5 (5 delinquencies)</td>
<td>38</td>
</tr>
<tr>
<td>M_6 (6 delinquencies)</td>
<td>17</td>
</tr>
<tr>
<td>Consumption Smoothing Group</td>
<td>Number of Past Delinquencies</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>Yes</td>
<td>(Occurrence Dependence)</td>
</tr>
<tr>
<td></td>
<td>−0.118***</td>
</tr>
<tr>
<td></td>
<td>(0.011)</td>
</tr>
<tr>
<td>No</td>
<td>0.005</td>
</tr>
<tr>
<td></td>
<td>(0.004)</td>
</tr>
</tbody>
</table>

Notes: Table reports the maximum likelihood estimates for each separate group. First row shows the estimates for consumers belonging to the consumption smoothing group (consumers who have strong consumption smoothing motives) and the second row shows the estimates for consumers not belonging to the group.

* p < 0.10, ** p < 0.05, *** p < 0.01
Figure 2.1: Under Stationarity Assumption (Full Sample)

Figure 2.2: Allow Nonstationarity (Full Sample)

Note: Blue line: $\hat{H}_1(t)^2$ Red line: $\hat{H}_2(t)$
Figure 2.3: Allow Nonstationarity (Not in Consumption Smoothing Group)

Figure 2.4: Allow Nonstationarity (Consumption Smoothing Group)

Note: Blue line: $\hat{H}_1(t)^2$ Red line: $\hat{H}_2(t)$
Age Groups

Figure 2.5: Allow Nonstationarity (Age between 30 ∼ 45)

Figure 2.6: Allow Nonstationarity (Age between 45 ∼ 60)

Note: **Blue line:** $\hat{H}_1(t)^2$ **Red line:** $\hat{H}_2(t)$
Figure 2.7: Allow Nonstationarity (Age over 60)

Note: Blue line: $\hat{H}_1(t)^2$ Red line: $\hat{H}_2(t)$
Figure 2.8: Allow Nonstationarity (Renters)

Figure 2.9: Allow Nonstationarity (House Owners)

Note: Blue line: $\hat{H}_1(t)^2$ Red line: $\hat{H}_2(t)$
Real Estate Status

Figure 2.10: Allow Nonstationarity (Consumers with Low Real Estate Asset)

Figure 2.11: Allow Nonstationarity (Consumers with High Real Estate Asset)

Note: Blue line: $\hat{H}_1(t)^2$ Red line: $\hat{H}_2(t)$
Savings Status

Figure 2.12: Allow Nonstationarity (Low Savings)

Figure 2.13: Allow Nonstationarity (High Savings)

Note: Blue line: $\hat{H}_1(t)^2$ Red line: $\hat{H}_2(t)$
Figure 2.14: Allow Nonstationarity (Low Income)

Figure 2.15: Allow Nonstationarity (High Income)

Note: Blue line: $\hat{H}_1(t)^2$ Red line: $\hat{H}_2(t)$
Women V.S. Men

Figure 2.16: Allow Nonstationarity (Women)

Figure 2.17: Allow Nonstationarity (Men)

Note: Blue line: $\hat{H}_1(t)^2$ Red line: $\hat{H}_2(t)$
Consumer with strong consumption smoothing motives

Choose a contract with high interest rate, low collateral

Less likely to default

Willing to bear larger interest cost to reduce the collateral requirement

Contract Choice

Incentive to Prevent Default (Moral Hazard)

Higher opportunity cost of being excluded from the credit market

Advantageous Selection

Figure 2.18: The Source and The Mechanism of Advantageous Selection
Chapter 3

Estimating the Joint Distribution of Multidimensional Private Information

with Gustavo Pereira
3.1 Introduction

Given its central role in determining agents’ inter-temporal decisions, the estimation of the inter-temporal elasticity of substitution (IES)\(^1\) has been the target of a comprehensive body of both “micro” and “macro” empirical studies.\(^2\) Those studies place the value of the inter-temporal elasticity of substitution in a wide interval, ranging from “insignificant and close to zero” (Hall (1988))\(^3\) to a higher IES = 0.8 found by Attanasio and Weber (1993), to an even more substantial IES = 1.92 reported by Mulligan (2002) in one of his empirical specifications.

More recently, Gruber (2013) finds a value of 2 for the inter-temporal elasticity of substitution by using arguably exogenous variations in effective interest rates derived from movements in capital income tax rates. Best, Cloyne, Ilzetzki and Kleven (2015) exploit “notches” in the interest rate schedule across loan-to-value ratios in the United Kingdom; the degree of bunching around these notches allows them to back out the inter-temporal elasticity of substitution by means of a structural model.

In this paper, we try to estimate inter-temporal elasticity of substitution using a dataset including choices of a loan type and related outcome of default. Furthermore, we not only estimate the distribution of inter-temporal elasticity of substitution but also

\[^{1}\]The inter-temporal elasticity of substitution in consumption reflects households’ willingness to substitute consumption between time periods in response to changes in the expected real interest rate.

\[^{2}\]Campbell and Viceira (1999) argue that inter-temporal elasticity of substitution is the key parameter in the optimal consumption rule.

\[^{3}\]To estimate the IES, researchers often follow Hall (1988) and use the log-linearized consumption Euler equation. The usual way to estimate elasticity of inter-temporal elasticity is that researchers regress consumption growth on the inter-temporal price of consumption, the relate rate of return.

\[\Delta c_{t+1} = \alpha_i + IES \times r_{i,t+1} + \epsilon_{i,t+1}\]

where, \(\Delta c_{t+1}\) denotes consumption growth at time \(t + 1\), \(r_{i,t+1}\) denotes the real return on asset \(i\) at time \(t + 1\), and \(\epsilon_{i,t+1}\) denotes the error term. The error term, \(\epsilon_{i,t+1}\), is correlated with the real return on asset, \(r_{i,t+1}\), so usually instruments are used to get consistent estimates of IES. Several studies estimated the above equation using US data, including Mankiw (1981), Hall (1988) and Campbell and Mankiw (1989). They found estimates of IES that were small (i.e., below 0.25) and barely statistically significant. As a result, from this point researchers began to examine this issue from different angles.
estimate the joint distribution of inter-temporal elasticity of substitution and default risks.

In the Korean consumer credit market, consumers may choose a type of loan, i.e. a collateralized loan or a credit loan, when they borrow money from a bank. After classifying consumers based on their observable risk factors, a bank suggests a menu of contracts. Each contract consists of an interest rate paired with a collateral requirement, where the loan interest rate is decreasing in the value of pledged collateral. Different types of loans generate a potentially different consumption path in the future. If a borrower chooses a collateralized loan, she loses pledged collateral once she defaults, potentially resulting in severe changes in her future consumption path. Therefore, those who derive larger disutility from a volatile consumption path will be more willing to bear large interest costs instead of pledging high levels of collateral. So inter-temporal elasticity of substitution plays an important role when they choose a type of loan, especially when the bank, which proposes the menu, has market power.

Under this market condition, we develop a structural econometric model to estimate private variation in inter-temporal elasticity of substitution and in default risk. Also we estimate their correlation structure from the data on choices of a loan type and default outcome in the Korean consumer credit market. A consumer credit market provides an obvious environment to estimate the inter-temporal elasticity of substitution since inter-temporal consumption smoothing is the primary reason for consumers to join the credit market.

We consider a rational and forward looking borrower who maximizes lifetime util-

4More details are provided in chapter 1.4.
5A collateralized loan is high powered contract, while a credit loan is relatively low powered contract.
6Please refer to the “credit market model” in Chapter 1 for the role of market power.
7In Cohen and Einav (2007), they argue that to the extent that extrapolating utility parameters from one market context to another necessitates additional assumptions, there is an advantage to obtaining such parameters from the same markets to which they are subsequently applied.
ity given an exogenous stochastic default rate for the model of loan type choices. If consumers choose a credit loan, they need to pay a higher loan interest rate instead of pledging any collateral. On the other hand, if they choose a collateralized loan, they can pay a lower interest rate but instead need to pledge collateral that is distressed when they default.

We then introduce bi-dimensional unobserved heterogeneity: one in default risk, and the other in consumption smoothing motives. Since a collateralized loan is a higher-powered contract, if the sole dimension of heterogeneity is consumers' default risk, then those who are riskier will choose a lowered-powered contract, i.e. a credit loan, while less risky consumers tend to choose a collateralized loan. On the other hand, consumers with low inter-temporal elasticity of substitution, i.e. with stronger consumption smoothing motives, are willing to pay a higher interest rate to reduce the collateral requirement by one unit. All else equal, they tend to choose a credit loan that charges a higher interest rate without a collateral requirement.

To identify the joint distribution of default risk and inter-temporal elasticity of substitution, we assume that the joint distribution is drawn from a bivariate lognormal distribution. On top of that, we assume that the default process follows a mixed proportional hazard model, which allows us to identify the default process only from the marginal distribution of default outcome.

The estimated inter-temporal elasticity of substitution is about 0.61, which is larger than the estimate of Hall (1988), but is less than the estimate of Attanasio and Weber (1993). Also the estimation results show that there is a strong and statistically significant positive correlation between default risk and the inter-temporal elasticity of substitution.

This positive correlation is consistent with the results in the previous chapters. The advantageous selection that I documented in chapter 1 is based on the fact that
consumer who have stronger consumption smoothing motives have higher opportunity cost of being excluded from the credit market so they exert more effort to prevent default as I showed in chapter 2. In sum, if default leads to exclusion from the credit market, there is a positive association between inter-temporal elasticity of substitution and default risks.8

This work is also related to the recent growing literature that studies asymmetric information in credit markets using structural models. Einav, Jenkins and Levin (2012) analyze the demand and pricing for subprime loans and Einav, Jenkins and Levin (2013b) evaluate the effect of introducing automated credit scoring and the changes it enabled in lending at a large auto finance company. Also more recently, Kawai, Onishi and Uetake (2014) analyze welfare impact of signaling in the online credit market. They found that a borrower’s reserve interest rate is used as a signaling device that reveals the borrower’s creditworthiness. And they explore how signaling affects market outcomes and welfare in several counterfactual settings.

The remainder of the paper is structured as follows. Chapter 3.2 describes the data. Chapter 3.3 discusses assumptions on the model primitives and also those for identification. Then, I describe the model of choices on a loan type. Chapter 3.4 discusses the identification of the joint distribution. Chapter 3.5 provides estimation process and the results. Finally, chapter 3.6 concludes.

3.2 The Data

We study the Korean consumer credit market that underwent a huge consolidation initiated by the governmental authority.9 As a result, Herfindahl-Hirschman Index

8Here, I assume that the default hazard does not depend on the choice of the loan type. However, it still can depend on the individual preference, in this case consumption smoothing motives.

9This consolidation had been conducted right after 1997 Asian financial crisis. As a result, the bank market integrated into small number of large banks. On top of that, variation of the banks size
(HHI) rose from 835.6 to 2,262.7 between the year 1995 and the year 2002 in the consumer credit market. This consolidation not only increased market concentration in the Korean consumer credit market but also increased market power of the bank that provides a menu of contracts.

The market share of the bank, the provider of our dataset, is about 42.6% in year 2002.10 Through the data period, the bank maintained its market power for consumer loans except for small fluctuations.11 The highly concentrated consumer loan market, as we proved in the previous section, provides an environment in which an additional dimension of heterogeneity may cause non-classical results. Here we introduce several features of the dataset but, for more details, please refer to the chapter 1 of dissertation.

The data is comprised of individual consumer loans initiated between April 2005 and May 2009. For each loan, the data contains its history from the initiation date till May 2009. As measures of consumer credit risk, we have credit score, credit class, behavior score, and introducing score. Credit score and credit class are rated by a third party agency and are most widely used in the consumer credit market. Behavior score is similar to the credit score but evaluated by the bank itself rather than by a third party agency. The bank observes the behavior of the borrower and updates the behavior score over time. Behavior score is more frequently updated than the credit score. Introducing score is only available for the first-time borrowers. Since banks do not have enough credit information for the first-time borrowers, they additionally build the introducing score. In addition to measuring credit, the introducing score also allows me to identify who are the first-time borrowers.

The crucial feature we exploit here is that the bank suggests a menu of contracts has been increased a lot, which generates high concentration in the market.

10In terms of mutual installment deposit market, the market share of this bank comes close to 61.5% in year 2002 and corresponding HHI is 4,040.8.

11Please refer to Figure 1.2 in chapter 1 for the figure showing the full history of bank merging in Korea.
composed of pairs of loan interest rates and collateral requirements after classifying consumers based on their observable risk factors. A borrower can choose whether to make a credit loan or a collateralized loan. There are several options for collateralized loans in terms of what will be kept as a pledge, such as real estate, savings, or warranty from a credit guarantee company.

The bank charges a higher loan interest rate for credit loans than for collateralized loans. Table 3.1 explicitly shows the negative correlation between a loan interest rate and value of pledged collateral in my dataset: the interest rate of credit loans is, on average, 1.88 percentage points higher than that of collateralized loans after conditioning on observable factors used in pricing the loans.

Here we briefly discuss the source of the negative correlation between a loan interest rate and value of pledged collateral. The interest rate charged on a loan can be decomposed into internal rate, education taxes, profit, and credit risk cost. Among them, the credit risk cost is the source of the negative correlation between a loan interest rate and the value of pledged collateral.

The credit risk cost is the expected cost of default for the bank, which is higher for consumers with a higher expected default rate and is lower for loans with high recovery. In turn, it means that a bank charges a higher interest rate to borrowers with lower credit ratings, while it offers a lower interest rate for collateralized loans than for credit loans, thereby generating a negative relationship between a loan interest rate and the value of pledged collateral, given credit ratings.

\[\text{Loan Interest Rate} = \text{Internal Rate} + \text{Tax} + \text{Credit Risk Cost} + \text{Profit}. \]

This negative relationship is a quite general feature. Dey and Dunn (2007) empirically show the negative correlation between the value of the pledged collateral by borrowers and the interest rate charged by bank in the HELOC (Home Equity Line of Credit) market. They support the sorting-by-private-information paradigm (borrowers who pledged higher amounts of collateral signal their superior risk-types and therefore are rewarded with lower interest rates by the bank) against the sorting-by-observed-risk paradigm, which predicts a positive correlation between collateral and borrower risk.
3.3 The Model of Loan Type Choice

We discuss a model of a loan type choice of a consumer who has bi-dimensional private information on consumption smoothing motives and default risks that follow an exogenous process. We then proceed to describe an empirical model and how we model unobserved heterogeneity both in default risks and consumption smoothing motives through mixed proportional hazard model and heterogenous inter-temporal elasticity of substitution separately. And then, we briefly discuss identification of the model, parametrization, and the estimation procedure. Identification and estimation procedure follow the idea from Einav, Finkelstein and Schrimpf (2010).

We consider the utility maximizing loan type choice of a rational, forward looking borrower with stochastic default rate and time-separable utility. If consumers choose a credit loan, they need to pay a higher loan interest rate instead of pledging collateral. On the other hand, if they choose a collateralized loan, they can pay a lower interest rate but instead need to pledge collateral that is distressed when they default. So if the sole dimension of heterogeneity is consumers’ default risk, then those who are riskier will choose a credit loan even with a higher interest rate, while less risky consumers tend to choose a collateralized loan, inducing the classical adverse selection story. This will be generalized soon since we also introduce unobserved heterogeneity in consumption smoothing motives and will recover the joint distribution of those bi-dimensional unobserved heterogeneity using data on default outcome and choices of a loan type.

When consumers and the bank make loan contracts at period t_0, the consumers expect exogenous probability of default every period. We allow unobserved heterogeneity in default process by using a mixed proportional hazard model. This mixed proportional hazard assumption on the default process facilitates identification of the marginal

distribution of default. Specifically, we assume that the default risk of consumer \(i \) at period \(t \) is characterized by \(\theta_{it} \).

\[
\theta_{it} = \lim_{h \to +0} \frac{Pr(m_i \in [t, t+h]|x_i, m_i \geq t)}{h} = \alpha_i \theta_0(x_i) \psi(t)
\]

Here, \(m_i \) denotes the time at default, and \(\alpha_i \in R^+ \) represents unobserved heterogeneity in default risk for each individual \(i \). Also \(\psi(t) \) denotes the baseline hazard rate which is common to all borrowers.

Furthermore, we assume that consumers have perfect foresight about their stochastic default process, that is to say, we assume that they know their \(\theta_{it} \). Under these assumptions we can construct \(\kappa_{it} \) that represents discrete hazard rate.

This discrete hazard rate of default is private information which is characterized by a default hazard \(\kappa_{it} \) during period \(t > t_0 \).

\[
\kappa_{it} = \frac{\exp(-\int_{0}^{t-1} \theta_{ir}d\tau) - \exp(-\int_{0}^{t} \theta_{ir}d\tau)}{\exp(-\int_{0}^{t-1} \theta_{ir}d\tau)}
\]

Now we will introduce the additional dimension of private information on consumption smoothing motives. This additional dimension matters in this market since the bank has market power. If the market is perfectly competitive, any other unobserved heterogeneity except default risk is irrelevant in the sense that it does not affect profit of the bank. So the bank does not consider when they set the optimal contract. On the other hand, if the bank has market power, it can increase it’s profit by exploiting heterogeneity in consumption smoothing motives when they set a menu of contracts.\(^{16}\)

Again, in this paper, inter-temporal elasticity of substitution is used as a shortcut to represent consumption smoothing motives.

\[
IES = \frac{d \log(c_{t+1}/c_t)}{d \log(R)} = -\frac{d \log(c_{t+1}/c_t)}{d \log u'(c_{t+1})/u'(c_t)}
\]

\(^{16}\) Jullien, Salanié and Salanié (2007) characterize the optimal menu of contracts when the agent’s risk-aversion is his private information.
Consumers have heterogeneous inter-temporal elasticity of substitution, γ_i, that also affects choice of loan types in the credit market and might also is correlated to the unobserved heterogeneity in default risks. Consumers with low inter-temporal elasticity of substitution are willing to pay a higher interest rate to reduce the collateral requirement by one unit. So if every other conditions are equal, then they tend to choose a credit loan that charges a higher interest rate instead of requiring any collateral to be pledged.

Model of Loan Type Choice

Now, consider a dynamic model of borrowers’ choices on a loan type. The period utility function of each consumer is as follows.

$$u(c, d) = \frac{1}{1 - \gamma} \left[c^\eta d^{1-\eta} \right]^{1-\gamma}$$

where, η is the relative importance of non-durable consumption to the durable consumption, and where γ is the source of unobserved heterogeneity in consumption smoothing motives of each consumer. Utility comes from two arguments, the value of durables, d, which can also be used as collateral (like house or car) and non-durable consumption, c.

Consumers optimize their lifetime utility by choosing consumption stream, and by choosing type of the loan based on their private information on default risks and consumption smoothing motives.

If a consumer does not default, she can borrow and save freely in the future. However, once she defaults she will fall into autarky economy.

The main value function is as follows.

$$V_\nu(b_0, w_0, d_0) = \max_{c_t, b_{t+1}} \sum_{t=0}^{T} \beta^t \left\{ a_t(\alpha) u(c_t, d_0) + f_t(\alpha) V^A u(b_t, w_t, d_0(1 - \nu \zeta)) \right\}$$

$$+ \beta^{T+1} a_T(\alpha) V^{gf}(b_{T+1}, w_{T+1}, d_0) \quad (3.1)$$
subject to wealth evolution,

\[b_{t+1} = Rb_t + w_t - c_t - F_\nu \]

where \(R \) is the per period growth savings interest rate, and where \(F_\nu \) is the monthly repayment amount which depends on the type of the loan \(\nu \). If \(\nu = 0 \), then it indicates the loan is a credit loan, while if \(\nu = 1 \), then it means the loan is collateralized. Since credit loans charge a higher interest rate than collateralized loans for the same amount of loan, the monthly due amount, \(F_\nu \), is higher for credit loans than for collateralized loans.

For the wage process we assume,

\[w_t = \delta^t w_0 + (1 - \delta^t) \bar{w} \]

where, the parameters \(w_0 \) and \(\bar{w} \) respectively represent the “initial” and the “long term” wage.

Also for the probability of default at period \(t \), \(f_t(\alpha) \),

\[f_t(\alpha) = \kappa_t(\alpha) \Pi_{s=1}^t (1 - \kappa_s(\alpha)) \]

and the probability of successfully repay at period \(t \), \(a_t(\alpha) \), is given by

\[a_t(\alpha) = \Pi_{s=1}^t (1 - \kappa_s(\alpha)) \]

Here, \(V^{Au}(b_t, w_t, d_0(1 - \nu \zeta)) \) represents the value function in autarky economy, and \(V^{gf}(b_{T+1}, w_{T+1}, d_0) \) represents the value function when the consumers complete the loan term without any default.

From this dynamic optimization program, the optimal choice of a loan type is then given by

\[\nu^* = \arg\max_{\nu \in \{0,1\}} V_\nu(b_0, w_0, d_0) \]
Then, the initial consumption17 will satisfy

\[c_0 = (R - 1)b_0 + \left[1 - \frac{R - 1}{R - \delta} \right] \bar{w} + \frac{R - 1}{R - \delta} w_0 \]

Consumption is “debt service in period 0” plus a convex combination of the initial wage and the long term wage since \(0 < \delta < 1 \).

The first order conditions to this problem are found by the Lagrangian:

\[L = \sum_{t=0}^{T} \beta^t \left\{ a_t(\alpha) u(c_t, d_0) + f_t(\alpha) V^{Au}(b_t, w_t, d_0(1 - \nu \zeta)) \right\} + \psi_t(b_t + c_t - F_\nu + w_t) + \beta^{T+1} a_T(\alpha) V^{gf}(b_{T+1}, w_{T+1}, d_0) \]

We get

1. From consumption FOC,

\[a_t(\alpha) u(c_t, d_0) = -\psi_t \]

2. Next period assets \(b_{t+1} \) FOC at periods \(0 \leq t \leq T - 1 \) implies

\[\psi_{t+1} = \psi_t + \beta f_{t+1}(\alpha) \partial_b V^{Au}(b_{t+1}, w_{t+1}, d_0(1 - \nu \zeta)) \]

3. Assets at \(b_{T+1} \) FOC:

\[\beta a_T(\alpha) \partial_b V^{gf}(b_{T+1}, w_{T+1}, d_0) = -\psi_T \]

where,

\[V^{gf}(b_0, w_0, d_0) = \frac{1}{1 - \beta} \frac{1}{1 - \gamma} \left\{ d_0^{1-\eta} \left[(R - 1)b_0 + \left(1 - \frac{R - 1}{R - \delta} \right) \bar{w} + \frac{R - 1}{R - \delta} w_0 \right] \eta \right\}^{1-\gamma} \]

\[= \frac{(R - 1)^{\eta(1-\gamma)}}{1 - \beta} \left\{ d_0^{1-\eta} \left[b_0 + \left(\frac{1}{R - 1} - \frac{1}{R - \delta} \right) \bar{w} + \frac{1}{R - \delta} w_0 \right] \eta \right\}^{1-\gamma} \]

Intuitively, everything else equal, more risky consumers tend to choose credit loans, which is a low-powered contract. While, everything else equal, consumers with lower

17Here we assume \(\beta R = 1 \).
elasticity of inter-temporal consumptions would choose credit loans since they are willing to pay a higher interest rate to reduce collateral requirements by one unit. Information about the consumers’ choice of loan types paired with the assumption that this choice is made optimally provides information about the consumers’ underlying preference and expected default parameters.

3.4 Identification

To identify the above model, we make several assumptions. Here we allow two dimensions of unobserved heterogeneity: one in default risk, and the other in consumption smoothing motives. The unobserved heterogeneity in default risk is represented by individual unobserved heterogeneity component in the mixed proportional hazard model, while the unobserved heterogeneity in consumption smoothing motives is captured by heterogeneous inter-temporal elasticity of substitution. Under these modeling of heterogeneity, here we summarize our identification assumptions.

Identification Assumptions

In this model, we make several assumptions for the identification. This identification strategy follows Einav, Finkelstein and Schrimpf (2010). These assumptions allow us to recover the joint distribution of unobserved heterogeneity in default risks and consumption smoothing motives that is represented by inter-temporal elasticity of substitution. Here we list and summarize the identification assumptions.

Assumption 1: Default outcome follows a mixed proportional hazard model

\[\theta_{it} = \alpha_i \theta_0(x_i) \psi(t). \]

Assumption 2: Default hazard rate does not depend on the choice of loan type
once it is conditioned on α_i.

Assumption 3: Consumers have perfect information about their default process

$$
\kappa_{it} = \frac{\exp(-\int_{0}^{t-1} \theta_{it}d\tau) - \exp(-\int_{0}^{t} \theta_{it}d\tau)}{\exp(-\int_{0}^{t-1} \theta_{it}d\tau)}
$$

The first assumption is crucial in that allowing us to recover the marginal distribution of default rate only from the default outcome. Here follows the well known proposition by Elbers and Ridder (1982), Heckman and Singer (1984), Ridder (1990), and Van den Berg (2001).

Proposition 1.

If $E[\alpha] < \infty$, $\theta_0(x_i)$ is not a constant, and if assumptions 1 holds, then the marginal distribution of α_i, $\theta_0(x_i)$, and $\psi(t)$ are identified up to the normalizations $E[\alpha] = 1$ and $\theta_0(x_i) = 1$ for some i from the conditional distribution of $F_{m}(m_i|x_i)$.

This proposition is directly resulted from the assumption that default outcome follows mixed proportional hazard model. It says that if we assume that default outcome follows the mixed proportional hazard model, it is identified non-parametrically up to the normalization.

Proposition 2. (Einav, Finkelstein and Schrmpf (2010))

If assumptions 1, 2, 3 hold, then the joint distribution of default outcome and loan type choice identifies $Pr(\nu(\alpha, \gamma) \leq y|\alpha)$. Moreover, if for every value of α, $\nu(\alpha, \gamma)$ is invertible with respect to γ, then $F_{\gamma|\alpha}$ is identified.
Parametrization

Since a choice of loan type is discrete, $\nu(\gamma|\alpha)$ is only weakly monotone in γ. That is to say, for any fixed level of private default risk, α, as γ increases, the optimal $\nu(\gamma|\alpha)$ changes from 0 to 1. For the identification, we need invertibility of $\nu(\gamma|\alpha)$ (Einav, Finkelstein and Schrimpf (2010)). So to attain identification, some parametric assumptions are needed to recover the entire distribution of γ, conditional on α. So here we assume that default hazard rate follows mixed proportional hazard function with exponential distribution on $\psi(t)$. As a result, the survival function becomes $S(\alpha, \lambda) = \exp[-\alpha \lambda t]$ based on the parametrization.

Furthermore, we assume that the joint distribution of α_i and γ_i is a bivariate log-normal distribution. This parametrization assumptions allow us to identify the joint distribution $F(\alpha, \gamma)$ even when the choice of loan type is discrete.

$$
\begin{pmatrix}
\log \alpha_i \\
\log \gamma_i
\end{pmatrix}
\sim
N
\begin{pmatrix}
\begin{pmatrix}
\mu_\alpha \\
\mu_\gamma
\end{pmatrix},
\begin{pmatrix}
\sigma^2_\alpha & \sigma_{\alpha\gamma} \\
\sigma_{\alpha\gamma} & \sigma^2_\gamma
\end{pmatrix}
\end{pmatrix}
$$

where, $\sigma_{\alpha\gamma} = \rho \sigma_\alpha \sigma_\gamma$ with correlation coefficient ρ.

3.5 Estimation and the Results

For each individual, we observe default outcome $m_i = (t_i, d_i)$. t_i is the duration of a consumer i. The definition of duration, t_i, is as follows. If a consumer defaults at some point, then the duration is the time until defaults. On the other hand, if a consumer completes the contract term without default or if the spell is censored, then duration is the time until the last observation period. Here, d_i indicates whether a consumer defaults ($d_i = 1$) or was censored ($d_i = 0$).
Here we estimate the parameters in two steps as in Einav, Finkelstein and Schrimpf (2010). In the first step, we estimate the exponential parameter, λ, through the maximum likelihood estimation. Here follows the way to construct the likelihood function for the first step estimation.

The contribution of an individual’s default to the likelihood, conditional on α_i, is

$$ Pr(m_i = (t_i, d_i)|\alpha, \lambda) = Pr(t = t_i|\alpha, \lambda)^{d_i} Pr(t \geq t_i|\alpha, \lambda)^{1-d_i} $$

where, $S(\alpha, \lambda) = \exp[-\alpha \lambda t]$, and $s(\alpha, \lambda) = \frac{\partial S(\alpha, \lambda)}{\partial t}$ under the exponential hazard distribution.

Then, the log likelihood of the default outcome is computed by integrating equation above over unobserved individual heterogeneity, α, and adding up all individuals. Again, note that we assume that $F(\alpha, \gamma)$ follows a bivariate lognormal distribution.

$$ L(\lambda, \mu_\alpha, \sigma_\alpha|(m_i)_{i=1}^N) = \sum_{i=1}^N \log\left(\int Pr(m_i|\alpha, \lambda) \frac{1}{\sigma_\alpha} \phi\left(\frac{\log \alpha - \mu_\alpha}{\sigma_\alpha} \right) d\alpha \right) \quad (3.2) $$

By maximizing the equation (3.2), we get $\hat{\lambda}$, $\hat{\mu}_\alpha$, and $\hat{\sigma}_\alpha$. Here, we can recover parameters of the mixed proportional hazard model only from data on default outcome, since we use mixed proportional hazard model as default process and assume the process is exogenous.

And then, in the second step, we recover the parameters of the bivariate lognormal distribution using data on consumers’ loan type choice and their default outcome.

First, the probability of choosing a specific type of loan conditional on individual unobserved default risk, α_i, is as follows.

$$ Pr(\nu_i|\alpha, \lambda) = \int 1(\nu_i = \arg\max_{\nu} V_\nu(b_\theta, w_0; \alpha, \lambda, \gamma)) dF_{\gamma|\alpha}(\gamma|\alpha) $$

where, $1(\cdot)$ is an indicator function.
In order to calculate the above probability, here we define $\gamma^*(\alpha, \lambda)$ such that

$$V_{\nu=0}(b_0, w_0; \alpha, \lambda, \gamma^*(\alpha, \lambda)) = V_{\nu=1}(b_0, w_0; \alpha, \lambda, \gamma^*(\alpha, \lambda))$$

Note that $\nu = 0$ indicates a credit loan while $\nu = 1$ indicates a collateralized loan. So, $\gamma^*(\alpha, \lambda)$ indicates the threshold level of inter-temporal elasticity which makes the value indifferent between choosing a credit loan and a collateralized loan, given individual unobserved default risk, α_i.

As we mentioned before, if all other conditions are the same, consumers with low inter-temporal elasticity of substitution, i.e. with high γ, tend to choose a credit loan. Therefore, we can set $\gamma^*(\alpha, \lambda)$ such as,

$$\begin{cases}
(0, \gamma^*(\alpha, \lambda)) : \text{choose a collateralized loan} \\
[\gamma^*(\alpha, \lambda), \infty) : \text{choose a credit loan}
\end{cases}$$

We estimate the function $\gamma^*(\alpha, \lambda)$ numerically by solving the dynamic program of individual loan type choice (Equation (3.1)). And please refer to Figure 3.1 for the numerically estimated graph of $\gamma^*(\alpha, \lambda)$.

In turn, we can recover the conditional probability of a consumer’s choice of loan type using the above $\gamma^*(\alpha, \lambda)$.

$$\Pr(\nu_i|\alpha, \lambda) = \begin{cases}
F_{\gamma|\alpha}(\gamma^*(\alpha, \lambda)) : \text{if a consumer chooses a collateralized loan} \\
1 - F_{\gamma|\alpha}(\gamma^*(\alpha, \lambda)) : \text{if a consumer chooses a credit loan}
\end{cases}$$

Since we assume that the joint distribution of $F(\alpha, \gamma)$ is a bivariate lognormal distribution,

$$F_{\gamma|\alpha}(\gamma^*(\alpha, \lambda)) = \Phi\left(\frac{\log(\gamma^*(\alpha, \lambda)) - \mu_{\gamma|\alpha}}{\sigma_{\gamma|\alpha}}\right)$$

where, $\mu_{\gamma|\alpha} = \mu_{\gamma} + (\frac{\sigma_{\gamma}}{\sigma_{\alpha}^2})(\log \alpha - \mu_{\alpha})$ and $\sigma_{\gamma|\alpha} = \sqrt{\frac{\sigma_{\gamma}^2}{\sigma_{\alpha}^2} - \frac{\sigma_{\alpha}^2}{\sigma_{\gamma}^2}}$.
So the full likelihood function becomes,

\[
L(\mu, \Sigma, \lambda) = \sum_{i=1}^{N} \log \left(\int \Pr(m_i|\alpha, \lambda) \Pr(\nu_i|\alpha, \lambda) \frac{1}{\sigma_\alpha} \phi \left(\frac{\log \alpha - \mu_\alpha}{\sigma_\alpha} \right) d\alpha \right)
\]

\[
= \begin{cases}
\sum_{i=1}^{N} \log \left(\int \Pr(m_i|\alpha, \lambda) F_{\gamma|\alpha}(\gamma^*(\alpha, \lambda)) \frac{1}{\sigma_\alpha} \phi \left(\frac{\log \alpha - \mu_\alpha}{\sigma_\alpha} \right) d\alpha \right) : \nu = 1 \\
\sum_{i=1}^{N} \log \left(\int \Pr(m_i|\alpha, \lambda)(1 - F_{\gamma|\alpha}(\gamma^*(\alpha, \lambda))) \frac{1}{\sigma_\alpha} \phi \left(\frac{\log \alpha - \mu_\alpha}{\sigma_\alpha} \right) d\alpha \right) : \nu = 0
\end{cases}
\]

By maximizing the full likelihood function, we can recover the bivariate lognormal distribution of unobserved individual default risk and inter-temporal elasticity of substitution.\(^{18}\)

Results

Table 3.2 shows the maximum likelihood estimates of the bivariate lognormal distribution. First, the mean of the estimate for the parameter \(\gamma\) is

\[
E\gamma = \exp (\mu_\gamma + \frac{\sigma_\mu^2}{2}) = 1.799
\]

Mathematically, inter-temporal elasticity of substitution (IES) equals the minus of the inverse of the elasticity of the marginal utility:

\[
IES = - \frac{d \log(c_t)}{d \log(u'(c_t))} = \frac{1}{1 - \eta(1 - \gamma)} = 0.61
\]

This estimate of the inter-temporal elasticity of substitution is larger than the estimate of Hall (1988), but is less than the estimate of Attanasio and Weber (1993).

Also the estimation results show that there is statistically significant negative association between default risk and consumption smoothing motive that is inversely proportional to the inter-temporal elasticity of substitution: \(\rho = -0.368\).

This negative correlation is tightly consistent to the results in the previous chapters. In this market, I find evidence of advantageous selection in the previous chapters.

\(^{18}\)Further details of estimation is provided in Appendix C.1
This advantageous selection is based on the fact that consumers who have stronger consumption smoothing motives have higher opportunity cost of being excluded from the credit market so they exert more effort to prevent default. In sum, if default leads to exclusion from the credit market, there is a negative association between consumption smoothing motives and default risks. Here, I assume that the default hazard rate does not depend on the choice of the loan type. However, it still can depend on the individual preference, in this case, consumption smoothing motives.

Finally, there are significant variations both in private information on default risks and private information on consumption smoothing motives. Statistically significant σ_α and σ_γ reveal these facts. Also, we can graphically check the dispersion in Figure 3.2 and Figure 3.3.

3.6 Concluding Remarks

The inter-temporal elasticity of substitution (IES) is one of the key parameters in economic models. The inter-temporal elasticity of substitution in consumption reflects households’ willingness to substitute consumption between time periods in response to changes in the expected real interest rate. Therefore, it represents a crucial parameter for a wide range of economic models involving inter-temporal choice; modeling the behavior of aggregate savings and modeling the impact of fiscal policy.

In this paper, we try to estimate inter-temporal elasticity of substitution using a dataset including choices of a loan type and related outcomes on default. Consumer credit markets provide a fascinating environment to estimate inter-temporal elasticity of substitution since inter-temporal consumption smoothing is the primary reason to join the consumer credit markets. Furthermore, we estimate its joint distribution with default risks.

Inter-temporal elasticity of substitution matters when consumers choose the type of
a loan, especially when the bank has market power. Consumers with low inter-temporal elasticity of substitution, i.e. with stronger consumption smoothing motives, are willing to pay a higher interest rate to reduce the collateral requirement by one unit. So if every other conditions are equal, then they tend to choose a credit loan that charges a higher interest rate instead of requiring any collateral to be pledged.

Following the intuition, we develop a structural econometric model to estimate inter-temporal elasticity of substitution, private default risk, and their correlation structure from the data on choices of a loan type and default outcome in the consumer credit market.

The estimated inter-temporal elasticity of substitution is about 0.61, which is larger than Hall (1988)’s result, but is less than Attanasio and Weber (1993)’s result. Also the estimation results show that there is a strong and statistically significant positive correlation between default risks and the inter-temporal elasticity of substitution.

This positive correlation is tightly consistent with the results in the previous chapters. In this market, I find evidence of advantageous selection in the first chapter. This advantageous selection is based on the fact that consumer who have stronger consumption smoothing motives have higher opportunity cost of being excluded from the credit market so they exert more effort to prevent default as I showed in the second chapter. In sum, if default leads to exclusion from the credit market, there is a positive association between inter-temporal elasticity of substitution and default risks.

Finally, we can confirm that there are significant variations both in private information on default risks and private information on consumption smoothing motives from the results of the structural estimation.
Table 3.1: Interest Rate Gap between Credit Loans and Collateralized Loans

<table>
<thead>
<tr>
<th>Consumer Loans</th>
<th>OLS</th>
<th>Credit Loan Dummy</th>
<th>1.88***</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dependent Variable</td>
<td>Loan Interest Rate</td>
<td></td>
<td>(0.095)</td>
</tr>
<tr>
<td>Credit Rating</td>
<td>Yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Consumer Characteristics</td>
<td>Yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Allow Full Interactions</td>
<td>Yes</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Adaptive lasso has been used to pick the relevant conditional variables.
Observations 14,480

Notes: Table reports the least squares estimates. Credit ratings includes all the credit rating variables that the bank uses when pricing the loans. It includes credit score and credit class which is provided by a third party credit rating company, and also includes behavior score and first score which are rated by the bank itself. Consumer characteristics includes income, occupation, location, real estate, previous bank loan amount, number of previous loans, and whether she is the owner or the renter of her house. I allow full interaction among the covariates and use adaptive lasso to pick the relevant variables.

* p < 0.10, ** p < 0.05, *** p < 0.01

Table 3.2: Parameter Estimates of the Bivariate Lognormal Distribution

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Estimates</th>
<th>Standard Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>μ_α</td>
<td>-4.243***</td>
<td>(0.0466)</td>
</tr>
<tr>
<td>σ_α</td>
<td>0.141**</td>
<td>(0.0535)</td>
</tr>
<tr>
<td>λ</td>
<td>0.342***</td>
<td>(0.0203)</td>
</tr>
<tr>
<td>μ_γ</td>
<td>0.568***</td>
<td>(0.0809)</td>
</tr>
<tr>
<td>σ_γ</td>
<td>0.195***</td>
<td>(0.0616)</td>
</tr>
<tr>
<td>ρ</td>
<td>-0.368***</td>
<td>(0.0643)</td>
</tr>
</tbody>
</table>

Notes: Table reports the maximum likelihood estimates. Each parameter is the parameter of the bivariate lognormal distribution, $F(\alpha, \gamma)$.

$$\begin{pmatrix} \log \alpha_i \\ \log \gamma_i \end{pmatrix} \sim N \left(\begin{pmatrix} \mu_\alpha \\ \mu_\gamma \end{pmatrix}, \begin{pmatrix} \sigma_\alpha^2 & \sigma_\alpha \sigma_\gamma \\ \sigma_\alpha \sigma_\gamma & \sigma_\gamma^2 \end{pmatrix} \right)$$

* p < 0.10, ** p < 0.05, *** p < 0.01
Figure 3.1: Estimated Threshold Level of the Parameter $\gamma^*(\alpha)$

Choose a Credit Loan

Choose a Collateralized Loan
Figure 3.2: Estimated Bivariate Lognormal Distribution of log γ and log α
Figure 3.3: Estimated Joint Distribution of γ and α
Conclusion

My dissertation focuses on the multidimensional unobserved heterogeneity of each borrowers in the consumer credit market. Under this multidimensional private information, the first and the second chapter reveal the full mechanism of advantageous selection, showing that this advantageous selection can be explained by combination of private information on consumption smoothing motives and the bank’s market power.

On the demand side, consumers who have stronger consumption smoothing motives are willing to pay higher interest rates to smooth consumption. At the same time, they exert more effort to prevent default since their opportunity cost of being excluded from the credit market is higher. On the supply side, sufficient market power allows the bank to charge higher interest rates to the borrowers who are willing to pay more for consumption smoothing.

By separately identifying moral hazard from adverse selection, I explicitly support the theoretical argument that consumers with stronger consumption smoothing motives do indeed exert more effort to prevent default, generating the endogenous negative association between consumption smoothing motives and default risks.

These results are complemented by the structural estimation in the last chapter. By constructing and estimating dynamic model of loan type choices, I and Gustavo Pereira recover the joint distribution of private information on default risk and consumption smoothing motives that is represented by inter-temporal elasticity of substitution. The estimated joint distribution reveals a strong and significant positive correlation between default risks and the inter-temporal elasticity of substitution. Also it gives a meaningful value of inter-temporal elasticity of substitution.
Finally, I would like to emphasize that an additional dimension should be selected according to each specific context. Here, I focus on the unobserved heterogeneity in consumption smoothing motives as an additional dimension of private information, since consumption smoothing is the main reason of joining the consumer credit market. On the other hand, Finkelstein and McGarry (2006) focus on the taste for insurance in the Long-Term Care Insurance Market, while Fang, Keane and Silverman (2008) focus on the cognitive ability as an additional dimension of private information in the Medigap Insurance Market. They also do not argue that those additional dimensions of private information are the uniquely relevant dimensions of unobserved heterogeneity in their markets, which implies that there may be multiple dimensions of relevant unobserved heterogeneity in some markets.

Appendix A

Appendix to Chapter 1
A.1 Heterogeneous Opportunity Cost of Default

I use a simple two-period model to show that a consumer with lower IES, implying stronger consumption smoothing motives, has a higher opportunity cost of being excluded from the credit market. In other words, I will show that a consumer with low IES is more willing to pay to join the credit market.

The basic steps and ideas are following. In the first step, I will show that the optimal borrowing amount is decreasing in the IES. That is to say, a consumer with low IES tends to borrow more from a bank at any given loan interest rate. And in the second step, more directly, I will show that the compensating income variation for which the consumer is indifferent to remain in autarky is larger for the consumer with lower IES.

Suppose the income of a consumer in period 1 is y_1 and $y_2 > y_1$ in period 2. Unless the interest rate, $R = 1 + r$, is too high, the consumer will borrow money and try to smooth consumption between period 1 and 2. In the following program, b represents the borrowing amount.

$$
\max_{c_1, c_2, b} \quad u(c_1) + u(c_2)
$$

s.t. \quad c_1 = y_1 + b

$$
\text{c}_2 = y_2 - Rb
$$

The first order condition is,

$$
\frac{\partial V}{\partial b} = u'(y_1 + b^*) - Ru'(y_2 - Rb^*) = 0 \quad (A.1)
$$

Suppose the consumer has iso-elastic utility function: $u(c_t) = \frac{c_t^{1-\gamma} - 1}{1-\gamma}$. One can easily show that if the cross partial derivative of the objective function with respect to b and γ is positive, then the optimal borrowing amount $b^*(\gamma)$ is an increasing function
in γ.

\[
\frac{\partial^2 V}{\partial b \partial \gamma} = -(y_1 + b)^{-\gamma} \log(y_1 + b) + R(y_2 - Rb)^{-\gamma} \log(y_2 - Rb)
\]

\[
= (y_1 + b)^{-\gamma} \log\left(\frac{y_2 - Rb}{y_1 + b}\right)
\]

\[
= \frac{1}{\gamma} (y_1 + b)^{-\gamma} \log R > 0
\]

The last equality follows from the first order condition. Solving the first order condition gives the optimal borrowing amount.

\[
b^* = \frac{y_2 - R^{1/\gamma} y_1}{R + R^{1/\gamma}}
\]

Here, let’s define a threshold interest rate R^* which induces $b = 0$, no borrowing point. Then, $R^* = \left(\frac{y_2}{y_1}\right)^\gamma$ increases as γ increases. It means that a consumer with lower IES is willing to pay higher interest cost to join the credit market.

Now, I will show that the amount of compensating income variation, d, for which the consumer is indifferent to remain in autarky is larger for the consumer with lower IES. The steps are following.

1. find the utility V, of a consumer who is allowed to smooth consumption through the credit market
2. find the compensating income variation, d for the consumer to be indifferent whether to remain in autarky or to join the credit market without any compensation.
3. show that d is increasing in γ:

\[
\frac{\partial d}{\partial \gamma} > 0
\]

From the equation (A.1), I can get the optimal borrowing amount b^* and the maximized value becomes,

\[
V = u(y_1 + b^*) + u(y_2 - Rb^*)
\]
Now let’s consider the same consumer who is not allowed to join the credit market (Autarky). And let’s set the compensation income d that makes the consumer to be indifferent whether to remain in autarky or to join the credit market without any compensation.

$$u(y_1 + d) + u(y_2 + d) = u(y_1 + b^*) + u(y_2 - Rb^*) = V$$

Using the first order Taylor approximation,

$$u(y_1) + u'(y_1)d + u(y_2) + u'(y_2)d = u(y_1) + u'(y_1)b^* + u(y_2) - u'(y_2)Rb^*$$

Then,

$$d = \frac{u'(y_1) - Ru'(y_2)}{u'(y_1) + u'(y_2)} b^*$$

For further illustration, let’s assume the consumer has iso-elastic preferences. Then,

$$b^* = \frac{R^{-\frac{1}{\gamma}} y_2 - y_1}{1 + R^{1 - \frac{1}{\gamma}}}$$

and d becomes,

$$d = \left(\frac{y_1^{-\gamma} - R y_2^{-\gamma}}{y_1^{-\gamma} + y_2^{-\gamma}}\right) \left(\frac{R^{-\frac{1}{\gamma}} y_2 - y_1}{1 + R^{1 - \frac{1}{\gamma}}}\right) \equiv Qb^*$$

where, $Q = \frac{y_1^{-\gamma} - R y_2^{-\gamma}}{y_1^{-\gamma} + y_2^{-\gamma}}$.

First note that $b^* \geq 0$, when $\gamma \geq \frac{\log R}{\log(y_2/y_1)} \equiv \gamma^*$. Consumers with high enough IES do not join the loan market since they prefer to consume more in the second period rather than to smooth consumption. Also it is easy to check that whenever $b^* \geq 0$, then $Q \geq 0$.

Now since

$$\frac{\partial Q}{\partial \gamma} = \frac{y_1^{-\gamma} y_2^{-\gamma} \log(y_2/y_1)}{(y_1^{-\gamma} + y_2^{-\gamma})^2} \geq 0$$

and since

$$\frac{\partial b^*}{\partial \gamma} = \frac{\log R}{\gamma^2} \frac{R^{-\frac{1}{\gamma}}}{(1 + R^{1 - \frac{1}{\gamma}})^2} \geq 0$$
the partial derivative of d with respect to γ is positive:

$$\frac{\partial d}{\partial \gamma} = \frac{\partial L}{\partial \gamma} b^* + L \frac{\partial b^*}{\partial \gamma} \geq 0$$

The result implies that a consumer with low IES needs higher income compensation d to be indifferent whether to remain in autarky or to join the credit market without any compensation. In sum, consumers with low IES have higher opportunity cost of being excluded from the credit market.
A.2 Validity of the proxy for Consumption Smoothing Motives

To directly show that unobserved heterogeneity in consumption smoothing motives, of which IES is used as a shortcut in a theoretical point of view, is the source of advantageous selection, I construct a proxy for IES using the credit card consumption pattern and balance in the savings account.

A set of consumers who

1. have outstanding debt, therefore cannot borrow anymore
2. have zero or small balance in their savings account
3. have upward savings trend or increasing income path
4. use the installment plan

is regarded as a group of consumers who have strong consumption smoothing motives, and I call them “consumption smoothing group”. Just to clarify, consumers in the consumption smoothing group should satisfy all three conditions.

Here I prove the validity of the proxy for consumption smoothing motives through a simple two period model. Again, IES is used as a shortcut representing heterogenous consumption smoothing motives in a theoretical perspective.

Suppose a consumer with borrowing constraint ($b \leq 0$ in the model). The only way she can smooth consumption is to save or to join the installment plan by purchasing goods using a credit card. Suppose her income in period 1 is y_1 and $y_2 > y_1$ in the second period. Let $R = 1 + r$ denotes the monthly gross interest from borrowing, and r^I denotes an interest rate imposed to the monthly installment. Note that the installment interest rate is higher than the borrowing rate, $r^I > r$.
A consumer’s optimization program is as follows.

\[
\begin{align*}
\max_{c_1, c'_1, c_2, s} \quad & u(c_1 + c'_1) + u(c_2) \\
\text{s.t.} \quad & \frac{c'_1}{2} + c_1 r^I + c_1 = y_1 + b \\
& c_2 = -Rb + y_2 - \frac{c'_1}{2} - \frac{c'_I r^I}{2} \\
& b \leq 0 \\
& c_1 \geq 0, \ c'_1 \geq 0, \ c_2 \geq 0
\end{align*}
\]

Here \(c_t \) is regular consumption in period \(t \) which includes purchasing by cash and by credit cards without the installment plan. And \(c'_1 \) is consumption by the installment plan in period 1. From now on, for convenience, let’s assume the consumer has isoelastic utility function.

Then, the Lagrangian equation and the Karush-Kuhn-Tucker problem are as follows.

\[
L = \frac{(y_1 + b + \frac{c'_I (1-2r^I)}{2})^{1-\gamma} - 1}{1-\gamma} + \frac{(-Rb + y_2 - \frac{c'_I (1+r^I)}{2})^{1-\gamma} - 1}{1-\gamma}
\]

\[
- \lambda_1 b + \lambda_2 (y_1 + b - \frac{(1 + 2r^I)}{2} c'_1) + \lambda_3 c'_1 + \lambda_4 (-Rb + y_2 - \frac{(1 + r^I)}{2} c'_1)
\]

with,

\[
\begin{align*}
& c_1 = y_1 + b - \frac{1 + 2r^I}{2} c'_1 \\
& c_2 = -Rb + y_2 - \frac{c'_1}{2} - \frac{c'_I r^I}{2}
\end{align*}
\]

The first order conditions become,

\[
\begin{align*}
L_{c'_1} &= (y_1 + b + \frac{c'_I (1-2r^I)}{2})^{-\gamma} (\frac{1 - 2r^I}{2}) - (-Rb + y_2 - \frac{c'_I (1+r^I)}{2})^{-\gamma} (\frac{1 + r^I}{2}) \\
& - \frac{(1 + 2r^I)}{2} \lambda_2 + \lambda_3 - \frac{(1 + r^I)}{2} \lambda_4 = 0 \\
L_b &= -(y_1 + b + \frac{c'_I (1-2r^I)}{2})^{-\gamma} + R(-Rb + y_2 - \frac{c'_I (1+r^I)}{2})^{-\gamma} \\
& + \lambda_1 - \lambda_2 + R \lambda_4 = 0
\end{align*}
\]
Also complementary slackness conditions are

1. \(\lambda_1 \geq 0 \) and \(\lambda_1 b = 0 \)
2. \(\lambda_2 \geq 0 \) and \(\lambda_2 (y_1 + b - \frac{(1 + 2rI)}{2}c_1^I) = 0 \)
3. \(\lambda_3 \geq 0 \) and \(\lambda_3 c_1^I = 0 \)
4. \(\lambda_4 \geq 0 \) and \(\lambda_4 (-Rb + y_2 - \frac{(1 + rI)}{2}c_1^I) = 0 \)

Note that the objective function is concave and the constraint set is compact, so the maximization program has a unique maximum. The maximum point depends on the parameter values. Under some parameter values, the maximum point may be characterized by \(c_1 = 0 \) or \(c_2 = 0 \). However, here I exclude those candidates since no one indeed does in my dataset. In other words, I only consider parameter values within a reasonable set which excludes no regular consumption, \(c_1 = 0 \) or \(c_2 = 0 \), in each period.

Consumption by installment plan \(c^I \) can be either 0 or positive. Here I try to show two points.

- Given \(\frac{y_2}{y_1} \), and \(R \), there exists a threshold point \(\gamma^* \) such that if \(\gamma > \gamma^* \), then \(c_1^I > 0 \) at the maximum point.
- \(\frac{\partial c_1^I}{\partial \gamma} > 0 \), when \(c_1^I > 0 \) at the maximum point.

Now let’s solve the program.

1. Suppose \(b < 0 \) and \(c_1^I > 0 \), then \(\lambda_i = 0 \ \forall i = 1, 2, 3, 4 \).

The first order conditions imply \(R = \frac{1 + r^I}{1 - 2r^I} \). It means that only when \(R = 1 + r = \frac{1 + r^I}{1 - 2r^I} \), all choice variables are positive at the maximum. Noting that \(r < r^I \), \(R = 1 + r \) is always less than \(1 + r^I \). So this cannot be the maximum point.

\(^1\)Again, note that I only consider the case \(c_1 > 0 \) and \(c_2 > 0 \).
2. Suppose \(b = 0 \) and \(c_i^t > 0 \), then \(\lambda_i = 0 \ \forall i = 2, 3, 4 \).

In this case, the first order conditions give

\[
\frac{c_1^t}{2y_2} = \frac{K - \frac{y_1}{y_2}}{(1 - 2r^I) + (1 + r^I)K} \tag{A.2}
\]

where, \(K = \left[\frac{1 - 2r^I}{(1 + r^I)} \right]^{1/\gamma} \).

Note that \(c_1^t > 0 \), only when \(K > \frac{y_1}{y_2} \). This condition gives the threshold \(\gamma^* \) in which if \(\gamma > \gamma^* \), then \(c_1^t > 0 \), otherwise \(c_1^t = 0 \).

From the condition \(K = \left[\frac{1 - 2r^I}{(1 + r^I)} \right]^{1/\gamma} > \frac{y_1}{y_2} \),

\[
\gamma^* = \frac{\log\left(\frac{1 + r^I}{1 - 2r^I}\right)}{\log\left(\frac{y_2}{y_1}\right)}
\]

Now from the equation (A.2), taking derivative with respect to \(\gamma \) gives,

\[
\frac{1}{2y_2} \frac{\partial c_1^t}{\partial \gamma} = \frac{\partial K}{\partial \gamma} \left[\frac{1 - 2r^I}{(1 + r^I)K} \right] - \left(K - \frac{y_1}{y_2} \right) (1 + r^I) \left(\frac{\partial K}{\partial \gamma} \right)
\]

\[
= \frac{\partial K}{\partial \gamma} \left[\frac{1 - 2r^I + \frac{y_1}{y_2}(1 + r^I)}{(1 - 2r^I) + (1 + r^I)K} \right]
\]

Since monthly installment interest rate \((r^I) \) is in between 0.83% \(\sim \) 1.78%,

\[
(1 - 2r^I) > 0
\]

So if \(\frac{\partial K}{\partial \gamma} > 0 \), then \(\frac{\partial c_1^t}{\partial \gamma} > 0 \).

Here, \(\frac{\partial K}{\partial \gamma} = \frac{K}{\gamma^2} \ln\left(\frac{1 + r^I}{1 - 2r^I}\right) \). Note that \(\frac{1 + r^I}{1 - 2r^I} > 1 \).

The result implies that a consumer with low IES tends to use installment plan more than a consumer with high IES given \(\frac{y_2}{y_1} \).
3. Suppose \(b = 0 \) and \(c_1^I = 0 \), which implies Autarky economy. In this case, \(c_1 = y_1 \) and \(c_2 = y_2 \).

4. Suppose \(b < 0 \) and \(c_1^I = 0 \), then \(\lambda_i = 0 \ \forall i = 1, 3, 4. \) In this case, from the first order conditions

\[
b = -\frac{y_1 - Ny_2}{NR + 1}
\]

where, \(N = \left[\frac{2}{1 + rI + R(1 + 2rI)} \right]^{1/\gamma} < 1. \)

Note that, \(b < 0 \) only when \(\frac{y_1}{y_2} > N. \)

Let \(\gamma^* = \frac{\log(\frac{1 + rI + R(1 + 2rI)})}{\log(\frac{y_2}{y_1})} \), then \(b < 0 \) only when \(\gamma < \gamma^* \).

It is not difficult to verify that \(\gamma^* > \gamma^* \).

In conclusion,

- when \(\gamma > \gamma^* \),

\[
c_1^I = \frac{2(y_2)K - 2y_1}{(1 - 2rI) + (1 + rI)K} > 0
\]

and at the same time \(\frac{\partial c_1^I}{\partial \gamma} > 0 \).

- when \(\gamma \leq \gamma^* \),

\[
c_1^I = 0
\]

Especially when \(\gamma^* \leq \gamma \leq \gamma^* \), \(c_1^I = 0 \) and also \(b = 0 \), i.e. Autarky economy.

- when \(\gamma < \gamma^* \), then still

\[
c_1^I = 0
\]

and \(b = \frac{y_1 - Ny_2}{NR + 1} < 0 \), save for the future.

The intuition behind the savings behavior of a consumer with very high IES, i.e. a consumer with very low \(\gamma \), is simple. Let’s consider an extreme case. Consider a
consumer with $\gamma = 0$, i.e. the infinite IES. At the optimum, the consumer chooses to save all the income in period 1, $b = -y_1$, unless β is too small. It is because she has a linear utility function, therefore, she saves all the income in the first period to gain interest from the saving, and will spend all in the second period.

In sum, the result implies that a consumer with low IES tends to use installment plan more than a consumer with high IES if their income paths are the same.
A.3 Interest Rate Plot on Credit Score

Corporate Loans

The above plot is the interest rate plot on credit score for corporate loans. There are several notable features. First, on average, the loan interest rate is higher for the credit loans than for the collateralized loans. Second, The interest rates of both credit loans and collateralized loans decrease as the credit score increases since bank charges
higher rate to the firms with lower credit score. The formula for the loan interest rate can explain these features.

\[
\text{Loan Interest Rate} = \text{Internal Rate} + \text{Tax} + \text{Credit Risk Cost} + \text{Profit}
\]

The loan interest rate is decomposed into internal rate, tax, credit risk cost, and profit. Among them, credit risk cost is the source of two features.

\[
\text{Credit Risk Cost} = \text{Expected Default Rate} \times (1 - \text{Recovery Rate})
\]

As you can see in the above equation, credit risk cost is composed of expected default rate, which is calculated based on credit score of each consumer, and (1- Recovery Rate). So if everything else is equal, as the credit score increases the loan interest rate decreases since decreased expected default rate lower the credit risk cost. While, if everything else is equal, recovery rate is lower for credit loans, which leads to a higher loan interest rate for the credit loans.
The above plot is the interest rate plot on credit score for consumer loans. Note that the interest rates of credit loans significantly decrease as the credit score increases while those of collateralized loans almost stay the same. It is because, for consumer loans, approved amounts of collateralized loans are usually less than the value of collateral, indicating full recovery even when a consumer defaults. With full recovery,
credit score does not affect to the interest rate much. Also note that there are several loans with a very low interest rate which are only offered to specific group of borrowers, e.g. employees by government or by major companies etc., implying that it is important to condition on individual occupations while empirically detecting asymmetric information.

\footnote{Again, the formula for the loan interest rate is as follows.}

\begin{equation*}
\text{Loan Interest Rate} = \text{Internal Rate} + \text{Tax} + \text{Credit Risk Cost} + \text{Profit}
\end{equation*}

And the credit risk cost does not depend much on expected default rate if recovery rate is close to 1. Note the formula for the credit risk cost below.

\begin{equation*}
\text{Credit Risk Cost} = \text{Expected Default Rate} \times (1 - \text{Recovery Rate})
\end{equation*}
Appendix B

Appendix to Chapter 2
B.1 The Model for Negative Occurrence
Dependence and Negative Lagged Duration
Dependence

Occurrence dependence is a causal relationship in that occurrence of delinquency changes the incentives of a borrower, in turn, changes the probability of future delinquency. Here I try to show that, under convex penalty scheme, if a consumer can change the probability of delinquency by exerting effort, then there should be negative occurrence dependence.

Let me consider a borrower who contracts a loan and receives stochastic flow of income. The borrower may choose to postpone repayment for which I am going to call delinquency. Several model primitives are following.

Model Primitives and Assumptions

1. The contract is composed of \((L, T, r_t, m_t)\), where \(L\) is loan amount, \(T\) is maturity, \(r_t\) is an yearly interest rate, \(m_t\) is monthly due amount. Of course, the monthly due amount \(m_t\) is determined by \(L, T, r_t\), and the delinquency status of a borrower.

2. Consumer’s instantaneous utility is \(u(v_t, c_t)\). Utility comes from two arguments, the value of durables, \(v_t\), which can also be used as collateral (like house or car) and non-durable consumption, \(c_t\). Here I assume \(u(v_t, c_t)\) is strictly concave, increasing, and twice continuously differentiable in the 2nd argument. Also I assume \(\lim_{c_t \to 0} u(v_t, c_t) = -\infty\) and Inada type condition on the second argument.

\[
\begin{align*}
\text{a)} & \quad u_2(v_t, c_t) > 0 \\
\text{b)} & \quad u_{22}(v_t, c_t) < 0 \\
\text{c)} & \quad \lim_{c_t \to 0} u(v_t, c_t) = -\infty
\end{align*}
\]
d) \(\lim_{c_t \to +\infty} u_2(v_t, c_t) = 0 \)

3. The income follows a process \(y_t = y_0 + e_t + \eta_t \), where \(y_0 \) is determined from personal own characteristics, \(e_t \) is costly effort, and \(\eta_t \) is stochastic part which is identically and independently distributed across time with \(E\eta_t = 0 \).

4. \(\Gamma(e_t) \) is the cost of effort \(e_t \). Assume that \(\Gamma \) is strictly convex, increasing, and twice continuously differentiable.
 a) \(\Gamma'(e_t) > 0 \)
 b) \(\Gamma''(e_t) > 0 \)

5. The value of durables at period 0, \(v_0 \), is given; \(v_t \) depreciates at a constant rate \(\delta \) so that \(v_t = (1 - \delta)v_{t-1} \).

6. Consumers cannot contract an additional loan during the contract period. I also abstract from savings, which is arguably restrictive.\(^1\)

Time Line

1. At date \(t \), a consumer chooses a level of effort \(e_t^* \) which depends on \(d_t^{t-1} \), the whole history of delinquency until time period \(t - 1 \).
2. \(\eta_t \) is drawn from the distribution, i.e. the monthly income \(y_t \) realizes.
3. After the income realizes a consumer chooses whether to be delinquent or not.

Moral Hazard

To define the case without moral hazard, let’s think of a specific costly effort function:

\[
\Gamma(e_t) = \begin{cases}
0, & \text{if } e_t \leq e_0 \\
\infty, & \text{if } e_t > e_0
\end{cases}
\]

\(^1\)Actually, consumers in my dataset do not save much.
Then, a consumer always chooses his effort level \(e^*_t = e_0 \).

Without moral hazard, the consumer repays whenever he can. So without moral hazard, \(y^*_t \) is irrelevant. As a result, given \(e^*_t = e_0 \), a consumer repays monthly due amount whenever his monthly income realizes not less than the due amount \((m_t) \).

With moral hazard, however, consumer optimizes his own value function and determines the optimal effort level \(e^*_t \). And then the consumer optimally chooses whether to be delinquent or not. In this context it is easy to see that there is negative occurrence dependence if \((y^*_t - e^*_t)\) decreases as the number of past delinquencies increases. Likewise, there is negative lagged duration dependence if \((y^*_t - e^*_t)\) decreases as the duration of past delinquencies increases.

Bellman Equation

A consumer optimally chooses the effort level by solving,

\[
e^*_t(v_t, m_t(d^{t-1})) = \arg \max_{e_t} \int V_t(v_t, y_t(d^{t-1}), m_t(d^{t-1}), e_t(d^{t-1})) f(y_t|e_t) dy_t \tag{B.1}
\]

Here, \(V_t(v_t, y_t, m_t, e_t, d^{t-1}) \), which is explicitly defined below, is the value function by optimally choose delinquency status at period \(t \) after the realization of \(\eta_t \), i.e. the realization of current income \(y_t \). Note that once we condition on \(e_t(d^{t-1}) \), \(y_t \) does not depend on \(d^{t-1} \) since the only source of dependence of \(y_t \) on past delinquency is through \(e_t(d^{t-1}) \).

\[
V_t(v_t, y_t(d^{t-1}), m_t(d^{t-1}), e_t(d^{t-1}))
= \max_{d_t} \{ u(v_t, y_t(d^{t-1}) - m_t(d^{t-1})) - \Gamma(e_t(d^{t-1})) \\
+ \beta E_t V_{t+1}(v_{t+1}, y_{t+1}(d^{t-1}, d_t = 0), m_{t+1}(d^{t-1}, d_t = 0), e_{t+1}(d^{t-1}, d_t = 0)) \tag{B.2} \\
\}
\]

\[
= u(v_t, y_t(d^{t-1})) - \Gamma(e_t(d^{t-1})) \\
+ \beta E_t V_{t+1}(v_{t+1}, y_{t+1}(d^{t-1}, d_t = 1), m_{t+1}(d^{t-1}, d_t = 1), e_{t+1}(d^{t-1}, d_t = 1))
\]

155
If the cumulative number of days being delinquent reached to 90 days at the decision period \(t \), the consumer loses collateral and at the same time loses all kinds of credits from any financial institutions. (Autarky)

\[
V_t(v_t, y_t(d_t^{-1}), m_t(d_t^{-1}), e_t(d_t^{-1}))
= \max_{d_t} \{ u(v_t, y_t(d_t^{-1}) - m_t(d_t^{-1})) - \Gamma(e_t(d_t^{-1})) \\
+ \beta E_t V_{t+1}(v_{t+1}, y_{t+1}(d_{t+1}^{-1}, d_t = 0), m_{t+1}(d_{t+1}^{-1}, d_t = 0), e_{t+1}(d_{t+1}^{-1}, d_t = 0)) \\
, u(v_t, y_t(d_t^{-1})) - \Gamma(e_t(d_t^{-1})) + \beta E_t V_{t+1}(v_{t+1}, y_{t+1}(d_{t+1}^{-1}, d_t = 1)) \} \tag{B.3}
\]

where,

\[
V_t^{Au}(v_t^D, y_t) = \mathbb{E}_t \sum_{\tau=0}^{\infty} \beta^\tau u(v_{t+\tau}^D, y_{t+\tau})
\]

\(v_{t+\tau}^D = 0 \) for securitized loans, and \(v_{t+\tau}^D = v_{t+\tau} \) for credit loans.

If a consumer repays in the final period.\(^2\)

\[
V_{T+1}(v_{T+1}, y_{T+1}(d_T), m_{T+1}(d_T), e_{T+1}(d_T)) = \sum_{\tau=1}^{\infty} \beta^{\tau-1} u(v_{T+\tau}, c_{T+\tau})
\]

Here, \(c_{T+\tau} \) is the consumption path when the consumer can still participate the financial market.

After the income, \(y_t \), realizes a consumer chooses whether to be delinquent or not. Let us set \(y_t^* \) as a threshold level of income that the consumer is indifferent whether to be delinquent or not. The threshold income \(y_t^* \) is determined by the equation below.\(^3\)

\[
u(v_t, y_t^* - m_t(d_t^{-1})) + \beta E_t V_{t+1}(v_{t+1}, y_{t+1}(d_{t+1}^{-1}, d_t = 0), m_{t+1}(d_{t+1}^{-1}, d_t = 0), e_{t+1}(d_{t+1}^{-1}, d_t = 0)) \\
= u(v_t, y_t^*) + \beta E_t V_{t+1}(v_{t+1}, y_{t+1}(d_{t+1}^{-1}, d_t = 1), m_{t+1}(d_{t+1}^{-1}, d_t = 1), e_{t+1}(d_{t+1}^{-1}, d_t = 1)) \tag{B.4}
\]

\(^2\)If a borrower is delinquent in the last period \(T \), he needs to repay the debt in the next period.

\(^3\)I omit the dependence of \(y_t^* \) on \(d_t^{-1} \).
Proposition C.1.

There exists a threshold income y^*_t, such that a consumer optimizes to be delinquent if $y_t < y^*_t$, otherwise repays the monthly due amount. Furthermore,

$$y^*_t \beta E_t[V_{t+1}(v_{t+1}, y_{t+1}(d^{t-1}, d_t = 0), m_{t+1}(d^{t-1}, d_t = 0), e_{t+1}(d^{t-1}, d_t = 0))$$

$$- V_{t+1}(v_{t+1}, y_{t+1}(d^{t-1}, d_t = 1), m_{t+1}(d^{t-1}, d_t = 1), e_{t+1}(d^{t-1}, d_t = 1))]$$

is decreasing in the argument.

Proof.

y^*_t satisfies the below equation which comes from the equation (B.4)

$$u(v_t, y^*_t) - u(v_t, y^*_t - m_t(d^{t-1})) = \beta E_t[V_{t+1}(v_{t+1}, y_{t+1}(d^{t-1}, d_t = 0), m_{t+1}(d^{t-1}, d_t = 0), e_{t+1}(d^{t-1}, d_t = 0))$$

$$- V_{t+1}(v_{t+1}, y_{t+1}(d^{t-1}, d_t = 1), m_{t+1}(d^{t-1}, d_t = 1), e_{t+1}(d^{t-1}, d_t = 1))]$$

• Existence

First, by the strict increasing concavity in the 2nd argument of $u(v_t, c_t)$ and the optimality of $e^*_{t+1}(d^{t-1}, d_t = 0)$, it is easy to see that

$$E_t V_{t+1}(v_{t+1}, y_{t+1}(d^{t-1}, d_t = 0), m_{t+1}(d^{t-1}, d_t = 0), e_{t+1}(d^{t-1}, d_t = 0))$$

$$> E_t V_{t+1}(v_{t+1}, y_{t+1}(d^{t-1}, d_t = 1), m_{t+1}(d^{t-1}, d_t = 0), e_{t+1}(d^{t-1}, d_t = 1))$$

$$> E_t V_{t+1}(v_{t+1}, y_{t+1}(d^{t-1}, d_t = 1), m_{t+1}(d^{t-1}, d_t = 1), e_{t+1}(d^{t-1}, d_t = 1))$$

And note that $u(v_t, y_t) - u(v_t, y_t - m_t)$ is continuous in y_t.

Since $u(v_t, y_t)$ is twice continuously differentiable in the 2nd argument,

$$u(v_t, y_t) - u(v_t, y_t - m_t) = u(v_t, y_t) - u(v_t, y_t) - u_2(v_t, c^*_t)(-m_t) = m_t u_2(v_t, c^*_t)$$

157
where \(c_t^* \in (y_t - m_t, y_t) \).

As a result,
\[
\lim_{y_t \to +\infty} [u(v_t, y_t) - u(v_t, y_t - m_t)] = 0
\]

Also since \(\lim_{c_t \to 0} u(v_t, c_t) = -\infty \), it is easy to show that
\[
\lim_{y_t \to m_t} [u(v_t, y_t) - u(v_t, y_t - m_t)] = +\infty
\]

In sum,
1. \(u(v_t, y_t) - u(v_t, y_t - m_t) \) is continuous in \(y_t \).
2. \(\lim_{y_t \to +\infty} [u(v_t, y_t) - u(v_t, y_t - m_t)] = 0 \).
3. \(\lim_{y_t \to m_t} [u(v_t, y_t) - u(v_t, y_t - m_t)] = +\infty \).
4. \(E_t V_{t+1}(v_{t+1}, y_{t+1}(d_t-1, d_t = 0), m_{t+1}(d_t-1, d_t = 0), e_{t+1}(d_t-1, d_t = 0)) \\
> E_t V_{t+1}(v_{t+1}, y_{t+1}(d_t-1, d_t = 1), m_{t+1}(d_t-1, d_t = 1), e_{t+1}(d_t-1, d_t = 1)) \)

These four facts give the existence of \(y^*_t \in (m_t, +\infty) \).

- Uniqueness

Uniqueness directly comes from the strict concavity of \(u(v_t, c_t) \) in the 2nd argument. Suppose there exists \(y^*_t \neq y^{**}_t \) such that
\[
u(v_t, y^*_t) - u(v_t, y^*_t - m_t) \\
= \beta E_t[V_{t+1}(v_{t+1}, y_{t+1}(d_t-1, d_t = 0), m_{t+1}(d_t-1, d_t = 0), e_{t+1}(d_t-1, d_t = 0)) - V_{t+1}(v_{t+1}, y_{t+1}(d_t-1, d_t = 1), m_{t+1}(d_t-1, d_t = 1), e_{t+1}(d_t-1, d_t = 1))]
\]
\[
u(v_t, y^{**}_t) - u(v_t, y^{**}_t - m_t) \\
= \beta E_t[V_{t+1}(v_{t+1}, y_{t+1}(d_t-1, d_t = 0), m_{t+1}(d_t-1, d_t = 0), e_{t+1}(d_t-1, d_t = 0)) - V_{t+1}(v_{t+1}, y_{t+1}(d_t-1, d_t = 1), m_{t+1}(d_t-1, d_t = 1), e_{t+1}(d_t-1, d_t = 1))]
\]

\[158\]
Since $u_{22}(v_t, c_t) < 0$

$$\frac{\partial}{\partial y_t}[u(v_t, y_t) - u(v_t, y_t - m_t)] = u_2(v_t, y_t) - u_2(v_t, y_t - m_t)$$

$$= u_2(v_t, y_t) - [u_2(v_t, y_t) + u_{22}(v_t, c_t^*)(-m_t)]$$

$$= u_{22}(v_t, c_t^*) m_t < 0$$

where, $c_t^* \in (y_t - m_t, y_t)$

So, if $y_t^* \neq y_t^{**}$,

$$u(v_t, y_t^*) - u(v_t, y_t^* - m_t) \neq u(v_t, y_t^{**}) - u(v_t, y_t^{**} - m_t)$$

Contradiction.

- Property

Now let’s focus on proving

$$y_t^*(\beta E_t[V_t+1(v_{t+1}, y_{t+1}(d_{t-1}, d_t = 0), m_{t+1}(d_{t-1}, d_t = 0), e_{t+1}(d_{t-1}, d_t = 0))$$

$$- V_{t+1}(v_{t+1}, y_{t+1}(d_{t-1}, d_t = 1), m_{t+1}(d_{t-1}, d_t = 1), e_{t+1}(d_{t-1}, d_t = 1)])$$

is increasing in the argument.

Since, $\partial/\partial y_t[u(v_t, y_t) - u(v_t, y_t - m_t)] < 0$, if RHS of equation (B.5), which is the argument itself, increases then y_t^* decreases.

As I showed in Proposition C.1, if

$$E_t[V_{t+1}(v_{t+1}, y_{t+1}(d_{t-1}, d_t = 0), m_{t+1}(d_{t-1}, d_t = 0), e_{t+1}(d_{t-1}, d_t = 0))$$

$$- V_{t+1}(v_{t+1}, y_{t+1}(d_{t-1}, d_t = 1), m_{t+1}(d_{t-1}, d_t = 1), e_{t+1}(d_{t-1}, d_t = 1))]$$

increases as the number of past delinquencies and/or duration of past delinquencies increases.
In turn, it means y_t^* decreases as the past number of delinquencies increases. I insist, under the convex penalty scheme and if marginal cost of increasing effort level is high enough then

$$E_t[V_{t+1}(v_{t+1}, y_{t+1}(d_t^{-1}, d_t = 0), m_{t+1}(d_t^{-1}, d_t = 0), e_{t+1}(d_t^{-1}, d_t = 0))]$$

$$-V_{t+1}(v_{t+1}, y_{t+1}(d_t^{-1}, d_t = 1), m_{t+1}(d_t^{-1}, d_t = 1), e_{t+1}(d_t^{-1}, d_t = 1))]$$

increases as the number of past delinquencies and/or duration of past delinquencies increases.\(^4\)

As a result, optimal income threshold $y_t^*(d_t^{-1})$ is decreasing in the number of past delinquencies and/or duration of past delinquencies.

Now, let’s focusing on the optimal effort problem of the consumer.

Proposition C.2.

The optimal effort level, $e_t^*(d_t^{-1})$, increases as the past number of delinquencies and/or the past duration of delinquencies increases when m_t is relatively small.

proof.

\(^4\)Note that as the number of past delinquencies changes, all future optimal level of effort also changes. If this change is large,

$$E_t[V_{t+1}(v_{t+1}, y_{t+1}(d_t^{-1}, d_t = 0), m_{t+1}(d_t^{-1}, d_t = 0), e_{t+1}(d_t^{-1}, d_t = 0))]$$

$$-V_{t+1}(v_{t+1}, y_{t+1}(d_t^{-1}, d_t = 1), m_{t+1}(d_t^{-1}, d_t = 1), e_{t+1}(d_t^{-1}, d_t = 1))]$$

may not increase in d even under convex penalty scheme. To prevent those result, here I assume the marginal cost of increasing effort level is high.
From equation (B.1),

$$e_t^* = \arg\max_{e_t} \int V_t(v_t, y_t, m_t, e_t, d_t^{l-1}) f(y_t|e_t) dy_t$$

$$= \arg\max_{e_t} \int_{y_t^0 - y_0 - e_t}^{\infty} [u(v_t, y_t(d_t^{l-1}) - m_t(d_t^{l-1})) + \beta E_t V_{t+1}(v_{t+1}, y_{t+1}(d_t^{l-1}, d_t = 0), m_{t+1}(d_t^{l-1}, d_t = 0), e_{t+1}(d_t^{l-1}, d_t = 0), (d_t^{l-1}, d_t = 0)) f(\eta_t) d\eta_t + \int_{-\infty}^{y_t^0 - y_0 - e_t} [u(v_t, y_t(d_t^{l-1}) - m_t(d_t^{l-1})) + \beta E_t V_{t+1}(v_{t+1}, y_{t+1}(d_t^{l-1}, d_t = 1), m_{t+1}(d_t^{l-1}, d_t = 1), e_{t+1}(d_t^{l-1}, d_t = 1), (d_t^{l-1}, d_t = 1))] f(\eta_t) d\eta_t - \Gamma(e_t)$$

(B.6)

Using the Leibniz rule, first order condition of equation (B.6) becomes,

$$\Gamma'(e_t^*) = f(y_t^* - y_0 - e_t^*) \{u(v_t, y_t^* - m_t(d_t^{l-1}) - u(v_t, y_t^*)

+ \beta E_t[V_{t+1}(v_{t+1}, y_{t+1}(d_t^{l-1}, d_t = 0), m_{t+1}(d_t^{l-1}, d_t = 0), e_{t+1}(d_t^{l-1}, d_t = 0), (d_t^{l-1}, d_t = 0))

- V_{t+1}(v_{t+1}, y_{t+1}(d_t^{l-1}, d_t = 1), m_{t+1}(d_t^{l-1}, d_t = 1), e_{t+1}(d_t^{l-1}, d_t = 1), (d_t^{l-1}, d_t = 1))] \}

+ \int_{y_t^0 - y_0 - e_t^*}^{\infty} u_2(v_t, y_0 + e_t^* + \eta_t - m_t) f(\eta_t) d\eta_t

+ \int_{-\infty}^{y_t^0 - y_0 - e_t^*} u_2(v_t, y_0 + e_t^* + \eta_t) f(\eta_t) d\eta_t

From equation (B.5), we know that

$$u(v_t, y_t^* - m_t(d_t^{l-1}) - u(v_t, y_t^*)$$

$$+ \beta E_t[V_{t+1}(v_{t+1}, y_{t+1}(d_t^{l-1}, d_t = 0), m_{t+1}(d_t^{l-1}, d_t = 0), e_{t+1}(d_t^{l-1}, d_t = 0), (d_t^{l-1}, d_t = 0))

- V_{t+1}(v_{t+1}, y_{t+1}(d_t^{l-1}, d_t = 1), m_{t+1}(d_t^{l-1}, d_t = 1), e_{t+1}(d_t^{l-1}, d_t = 1), (d_t^{l-1}, d_t = 1))] = 0$$

161
So the F.O.C becomes,

\[
\Gamma'(e_t^*) = \int_{y_t^*-y_0-e_t^*}^{\infty} u_2(v_t, y_0 + e_t^* + \eta_t - m_t) f(\eta_t) d\eta_t \\
+ \int_{-\infty}^{y_t^*-y_0-e_t^*} u_2(v_t, y_0 + e_t^* + \eta_t) f(\eta_t) d\eta_t
\]

(B.7)

Now using the implicit function theorem,

\[
[\Gamma''(e_t^*) - \{u_2(v_t, y_t^* - m_t) - u_2(v_t, y_t^*)\} f(y_t^* - y_0 - e_t^*) \\
- \int_{y_t^*-y_0-e_t^*}^{\infty} u_{22}(v_t, y_0 + e_t^* + \eta_t - m_t) f(\eta_t) d\eta_t \\
- \int_{-\infty}^{y_t^*-y_0-e_t^*} u_{22}(v_t, y_0 + e_t^* + \eta_t) f(\eta_t) d\eta_t \frac{\partial e_t^*}{\partial y_t^*}] \\
= -\{u_2(v_t, y_t^* - m_t) - u_2(v_t, y_t^*)\} f(y_t^* - y_0 - e_t^*) \\
- \int_{y_t^*-y_0-e_t^*}^{\infty} u_{22}(v_t, y_0 + e_t^* + \eta_t - m_t) f(\eta_t) d\eta_t \\
- \int_{-\infty}^{y_t^*-y_0-e_t^*} u_{22}(v_t, y_0 + e_t^* + \eta_t) f(\eta_t) d\eta_t \frac{\partial e_t^*}{\partial y_t^*} \\
\]

Note that

1. \(\Gamma''(e_t^*) > 0\)
2. \(\{u_2(v_t, y_t^* - m_t) - u_2(v_t, y_t^*)\} f(y_t^* - y_0 - e_t^*) > 0\)
3. \(u_{22}() < 0\).

So if

\[
\Gamma''(e_t^*) - \int_{y_t^*-y_0-e_t^*}^{\infty} u_{22}(v_t, y_0 + e_t^* + \eta_t - m_t) f(\eta_t) d\eta_t \\
- \int_{-\infty}^{y_t^*-y_0-e_t^*} u_{22}(v_t, y_0 + e_t^* + \eta_t) f(\eta_t) d\eta_t > \{u_2(v_t, y_t^* - m_t) - u_2(v_t, y_t^*)\} f(y_t^* - y_0 - e_t^*) \\
\]

then, \(\frac{\partial e_t^*}{\partial y_t^*} < 0\).

If \(m_t\) is relatively small, inequality (B.8) is satisfied.

q.e.d

The intuition behind the need of relatively small \(m_t\) is that effort reduces the utility not only in case of well-repayed but also in case of delinquency, so that a risk averse con-
sumers facing high m_t may opt for increasing his worst-case income instead of reducing the probability of delinquency.

In sum, as the number and/or duration of past delinquencies increases, y_t^* decreases by Proposition 1, and e_t^* increases by Proposition 2.

As a result,

$$\max\{y_t^*, m_t\} - e_t^*$$

decreases, i.e. there are negative occurrence dependence and negative lagged duration dependence.
Appendix C

Appendix to Chapter 3
C.1 Estimation Procedure

Estimation

Following Einav, Finkelstein and Schrimpf (2010), the estimation of the joint distribution of default risk and inter-temporal elasticity of substitution is done in two steps. In the first step, we recover the exponential hazard parameter using only from data on default outcome.

Afterwards, we do a second round of maximum likelihood estimation using the choices of a loan type and related default outcome.

For the first step, we use a dataset including the outcome of default. The outcome of default is composed of $m_i = (t_i, d_i)$, where t_i denotes the time until the last observation period whether due to default, due to completion of the contract, or censored. And d_i is an indicator for default for individual i.

$$d_i = \begin{cases}
1 & : \text{if defaults.} \\
0 & : \text{non-default, including censored.}
\end{cases}$$

Conditional on her unobservable default risk α, the contribution of individual i to the likelihood is given by

$$\Pr(m_i = (t_i, d_i)|\alpha, \lambda) = \Pr(t = t_i|\alpha, \lambda)^{d_i} \Pr(t \geq t_i|\alpha, \lambda)^{1-d_i}$$

$$= (s(\alpha, \lambda))^{d_i} (S(\alpha, \lambda))^{1-d_i}$$

where λ is a common default hazard parameter. The functions s and S are respectively the exponential density and exponential survival functions, given by

$$s(\alpha, \lambda, t_i) = -\lambda \alpha e^{-\lambda \alpha t_i}$$

$$S(\alpha, \lambda, t_i) = e^{-\lambda \alpha t_i}$$
Based on these primitives, the expression for the likelihood function used in the first step is

$$L(\lambda, \mu_\alpha, \sigma_\alpha| m_i) = \sum_{i=1}^{N} \log\left(\int \Pr(m_i|\alpha, \lambda) \frac{1}{\sigma_\alpha} \Phi\left(\frac{\log \alpha - \mu_\alpha}{\sigma_\alpha}\right) d\alpha\right)$$

To integrate out the individual unobserved heterogeneity, α, we apply a Gauss-Chebyshev quadrature integration method using the change of variables.

$$x \equiv \frac{(\log(\alpha) - \mu_\alpha)}{\sigma_\alpha}$$

which follows a standard normal distribution. Note that we assume a bivariate normal distribution on the joint distribution of individual unobserved hazard and inter-temporal elasticity of substitution.

We obtain 20 nodes of the standard normal between $[-2.1, 2.1]$ thus covering a mass of around 98%. The integral above for individual i evaluates to

$$\sum_{j=1}^{20} w_j \phi(x_j) \Pr\left(m_i = (t_i, d_i)|\lambda, e^{\sigma_\alpha x_j + \mu_\alpha}\right)$$

where w_j are the Gauss-Chebyshev weights, x_j are the nodes and ϕ denotes the standard normal density function.

We employ an interior solution algorithm through Artelys Knitro’s MATLAB implementation in order to maximize the above full likelihood over λ, μ_α and σ_α.

The second step relies computing the function $\gamma^*(\lambda, \alpha)$ which returns the (inverse) IES for which the individual is indifferent between a credit and collateralized loan. Dropping unrelated variables, we find

$$V_{\nu=0}(b_0, w_0; \alpha, \lambda, \gamma^*(\alpha, \lambda)) = V_{\nu=1}(b_0, w_0; \alpha, \lambda, \gamma^*(\alpha, \lambda)) \quad (C.1)$$

where, $\nu = 0$ indicates a credit loan while $\nu = 1$ indicates a collateralized loan.

The details of the computation of V_{cred} and V_{col} are deferred to the following subsection. The likelihood of the parameters $\mu = (\mu_\alpha, \mu_\gamma)$ and $\Sigma = (\sigma_\alpha, \sigma_\gamma, \rho_{\alpha,\gamma})$ is computed through the following steps:
1. fix \(\lambda \) to the value estimated in the first step.

2. solve Equation C.1 for a finite grid of \(\alpha \), using MATLAB’s solver \texttt{fsolve}, thus obtaining pairs \(\{ (\alpha_1, \gamma^*_1), \ldots, (\alpha_K, \gamma^*_K) \} \).

3. approximate the function \(\gamma^* \) by linearly interpolating \(\{ \gamma^*_k \} \) over the \(\alpha \) grid.

4. use the conditional probability of choosing collateral/credit loans to write the likelihood function.

\[
\begin{align*}
Pr(v_i|\alpha, \lambda) &= \int 1(\nu_i = \arg\max_{\nu} V_\nu(b_0, w_0; \alpha, \lambda, \gamma)) dF_{\gamma|\alpha}(\gamma|\alpha) \\
&= \begin{cases}
F_{\gamma|\alpha}(\gamma^*(\alpha, \lambda)) & \text{if } \nu_i = \text{collateralized loan} \\
1 - F_{\gamma|\alpha}(\gamma^*(\alpha, \lambda)) & \text{if } \nu_i = \text{credit loan}
\end{cases}
\end{align*}
\]

where,

\[
F_{\gamma|\alpha}(\gamma^*(\alpha, \lambda)) = \Phi\left(\frac{\log(\gamma^*(\alpha, \lambda)) - \mu_{\gamma|\alpha}}{\sigma_{\gamma|\alpha}}\right)
\]

with \(\mu_{\gamma|\alpha} = \mu_\gamma + \left(\frac{\sigma_\gamma}{\sigma^2}\right)(\log \alpha - \mu_\alpha) \) and \(\sigma_{\gamma|\alpha} = \sqrt{\sigma^2_\alpha - \frac{\sigma^2_\gamma}{\sigma^2}} \). Then, the likelihood function becomes

\[
L(\mu, \Sigma, \lambda) = \sum_{i=1}^N \log(\int Pr(m_i|\alpha, \lambda) Pr(v_i|\alpha, \lambda) \frac{1}{\sigma_\alpha} \phi\left(\frac{\log \alpha - \mu_\alpha}{\sigma_\alpha}\right) d\alpha)
\]

where, \(\mu_{\gamma|\alpha} = \mu_\gamma + \left(\frac{\sigma_\gamma}{\sigma^2}\right)(\log \alpha - \mu_\alpha) \) and \(\sigma_{\gamma|\alpha} = \sqrt{\sigma^2_\beta - \frac{\sigma^2_\alpha \gamma}{\sigma^2}} \).

The integral is again computed through a Gauss-Chebyshev quadrature method with the same nodes, weights and change of variables.

The estimates for parameters are again found using the MATLAB implementation of Knitro.
Value function

The value function for the loans is computed through the first order conditions. Specifically, in order to solve for

\[V_{\nu}(b_0, w_0, d_0) = \max_{c_t, b_{t+1}} \sum_{t=0}^{T} \beta^t \{ a_t(\alpha)u(c_t, d_0) + f_t(\alpha)V^{Au}(b_t, w_t, d_0(1 - \nu\zeta)) \} + \beta^{T+1} a_T(\alpha)V^{gf}(b_{T+1}, w_{T+1}, d_0) \]

subject to wealth evolution,

\[b_{t+1} = Rb_t + w_t - c_t - F_{\mu} \]

For the wage process we assume,

\[w_t = \delta^t w_0 + (1 - \delta^t) \bar{w} \]

where, the parameters \(w_0 \) and \(\bar{w} \) respectively represent the “initial” and the “long term” wage.

We fix \(c_0 \) and use the first order conditions of the problem to generate recursions \(\{c_t, \psi_t, b_{t+1}\}_{t=1}^{T} \) such that

\[-\psi_t = a_t(\alpha)u(c_t, d_0) \]

\[\psi_{t+1} = \psi_t + \beta f_{t+1}(\alpha)\partial_b V^{Au}(b_{t+1}, w_{t+1}, d_0(1 - \nu\zeta)) \]

\[b_{t+1} = Rb_t + w_t - F_{\nu} - c_t \]

Computing the value of the above consumption/debt path, we get a function

\[V_{\nu}(c_0; b_0, w_0) \]

which we then maximize over \(c_0 \).
C.2 Calibration

The calibrated parameters were the Cobb-Douglas weight of non-durable consumption \(\eta \), the monthly discount factor \(\beta \) and the interest rate \(R \). We use a monthly value of 0.9763 for the discount factor, which corresponds to an annualized discount factor of around 0.998. With our assumption that \(\beta R = 1 \), this implies a yearly savings interest rate of around 2.4%, a value that roughly matches interest rates in those years for the Korean economy. The parameter \(\eta \) is set to 0.8. Changes in this parameter have little impact on the estimated cut-off \(\gamma^*(\alpha, \lambda) \).

We also set the initial and long term wages to reasonable values for the individuals in the sample: initial monthly wage is set to one thousand dollars, long term wage to three thousand dollars, and the increase speed parameter \(\delta \) is such that the midpoint between long run and initial wage is attained in 10 years. The fixed payments of the collateralized and credit loans are set to quantitatively match the observed loan interest rates in the data.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Meaning</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\beta)</td>
<td>Discount factor</td>
<td>0.9763</td>
</tr>
<tr>
<td>(R)</td>
<td>Gross interest rate</td>
<td>1.002</td>
</tr>
<tr>
<td>(\eta)</td>
<td>Cobb-Douglas weight on non-durable utility</td>
<td>0.8</td>
</tr>
<tr>
<td>(w_0)</td>
<td>Initial wage</td>
<td>2000</td>
</tr>
<tr>
<td>(\bar{w})</td>
<td>Long term wage</td>
<td>6000</td>
</tr>
<tr>
<td>(\delta)</td>
<td>Wage increase parameter</td>
<td>0.9942</td>
</tr>
<tr>
<td>(F_{\text{coll}})</td>
<td>Fixed payment for collateralized loan</td>
<td>160</td>
</tr>
<tr>
<td>(F_{\text{cred}})</td>
<td>Fixed payment for credit loan</td>
<td>252</td>
</tr>
<tr>
<td>(T_{\text{coll}})</td>
<td>Loan maturity for collateralized loans</td>
<td>120 month</td>
</tr>
<tr>
<td>(T_{\text{cred}})</td>
<td>Loan maturity for credit loans</td>
<td>60 month</td>
</tr>
</tbody>
</table>