Theses Doctoral

Embedded System Security: A Software-based Approach

Cui, Ang

We present a body of work aimed at understanding and improving the security posture of embedded devices. We present results from several large-scale studies that measured the quantity and distribution of exploitable vulnerabilities within embedded devices in the world. We propose two host-based software defense techniques, Symbiote and Autotomic Binary Structure Randomization, that can be practically deployed to a wide spectrum of embedded devices in use today. These defenses are designed to overcome major challenges of securing legacy embedded devices. To be specific, our proposed algorithms are software- based solutions that operate at the firmware binary level. They do not require source-code, are agnostic to the operating-system environment of the devices they protect, and can work on all major ISAs like MIPS, ARM, PowerPC and X86. More importantly, our proposed defenses are capable of augmenting the functionality of embedded devices with a plethora of host-based defenses like dynamic firmware integrity attestation, binary structure randomization of code and data, and anomaly-based malcode detection. Furthermore, we demonstrate the safety and efficacy of the proposed defenses by applying them to a wide range of real- time embedded devices like enterprise networking equipment, telecommunication appliances and other commercial devices like network-based printers and IP phones. Lastly, we present a survey of promising directions for future research in the area of embedded security.

Files

  • thumnail for Cui_columbia_0054D_12978.pdf Cui_columbia_0054D_12978.pdf application/pdf 20.6 MB Download File

More About This Work

Academic Units
Computer Science
Thesis Advisors
Stolfo, Salvatore
Degree
Ph.D., Columbia University
Published Here
January 20, 2016