Discussion

SPENCER G. LUCAS New Mexico Museum of Natural History, 1801 Mountain Road N.W., Albuquerque, New Mexico 87104
MAUREEN B. STEINER Department of Geology and Geophysics, University of Wyoming, Laramie, Wyoming 82071
PHILLIP HUBER Department of Geological Sciences, Ohio University, Athens, Ohio 45701
ADRIAN P. HUNT Department of Geology, University of Colorado at Denver, 1200 Larimer St., Denver, Colorado 80217

Chinle Group sequence has been as intensively studied as the Newark, the same pattern in pole positions is observed. This similarity argues not only against remagnetization, but also for similar ages of magnetization.

The magnetostratigraphic data from the two rock units (Fig. 1) also are similar. Reeve and Helsley (1972) measured magnetostratigraphic sections in only the uppermost part of the Chinle Group. In east-central New Mexico, at Luciano Mesa, Reeve and Helsley (1972, spelled *Lucianna* in their text) sampled the upper 60 m of the 95-m-thick Bull Canyon Formation and the entire 85 m of the Redonda Formation. They sampled the Redonda Formation again 40 km to the east (Mesa Redonda) and obtained the same magnetostratigraphy. The 145-m-thick section that Reeve and Helsley sampled overlies 400-500 m of additional Upper Triassic strata (Lucas and Hunt, 1989).

The early-middle Norian age of the Bull Canyon Formation in east-central New Mexico is well established by tetrapod correlations based principally on phytosaurs and aetosaurs (Lucas and Hunt, 1989), corroborated by Norian palynomorphs in correlative units on the Colorado Plateau (Litwin and others, 1991).

The Redonda Formation also is of Norian age, and fossil vertebrates and sequence stratigraphic correlations indicate it is late Norian or Rhaetian, younger than the Columbianus Zone of ammonoid biochronology and therefore post-Alaunian (Lucas, 1991). The Redonda Formation is a correlative of the upper part of the Passaic Formation in the Newark basin, no older than the Ukrainian Village Member (Fig. 1). Therefore, the uppermost normal interval of the Redonda correlates to the 1st interval in the Newark basin, and the lowest normal interval in the Reeve and Helsley section is equivalent to, or perhaps younger than, the 1st normal interval of the Newark basin (Fig. 1).

This correlation appears to indicate that several short intervals of normal polarity are recorded in the Redonda Formation but not in the upper Passaic Formation. Close examination of Reeve and Helsley's (1972) data, however, suggests that several of the short intervals they interpreted as normal polarity may be incorrect. The upper of the two closely spaced, short, normal-polarity intervals at Luciano Mesa (Reeve and Helsley, 1972, fig. 3) is not convincingly of normal polarity and may be the product of unremoved secondary magnetization of recent origin. Also, more samples and better demagnetization are needed to verify the lower of those two short normal-polarity intervals. Likewise, the short normal-polarity interval near the top of Reeve and Helsley's Mesa Redonda section appears to be an overprint of present-field magnetization on reversed polarity, similar to overprints seen ~10 m lower.

With or without these caveats, however, the Newark Group magnetostratigraphy correlates well with the Chinle Group magnetostratigraphy (Fig. 1). This correlation indicates that the Chinle Group preserves at least one more pair of normal and reversed-polarity intervals than does the coeval Newark sequence. One explanation of this apparent lack of temporal resolution in the Newark basin may be the very coarse sampling density and long, unsampled stratigraphic intervals (as much as 500-1,000 m thick) enforced on Witte and others (1991) by the lack of outcrop. Nevertheless, the Newark Group correlates well with the Chinle Group magnetostratigraphy, and the Chinle sequence provides better temporal resolution than does the much thicker Newark section.

REFERENCES CITED

MANUSCRIPT RECEIVED BY THE SOCIETY NOVEMBER 24, 1992 MANUSCRIPT ACCEPTED FEBRUARY 25, 1993

Reply

WILLIAM K. WITTE DENNIS V. KENT PAUL E. OLSEN

Lamont-Doherty Earth Observatory of Columbia University, Palisades, New York 10964

The Discussion of Lucas and others underscores the potential usefulness of magnetostratigraphy for correlation between red beds of the broadly coeval Chinle Group of the western interior and the Newark Supergroup of eastern North America. Detailed magnetostratigraphic correlation between the Newark and the Chinle is very likely to change significantly, however, with the addition of new data from both of these units, and hence such an attempt as proposed in the Discussion may be premature.

In view of positive reversal tests reported for the Owl Rock Member (Bazard and Butler, 1991) and our restudy of the Church Rock Member (Kent and Witte, 1993), we have also concluded that complete remagnetization of the Chinle is increasingly unlikely. As described in Kent and Witte (1993), the similarities and differences between the sequence of Newark poles and Chinle poles from on and off the Colorado Plateau are instead better explained by post-Triassic tectonic rotations of the Colorado Plateau with respect to cratonic North America. Unremoved overprints, nevertheless, confound the interpretation of the Chinle magnetostratigraphy reported by Reeve and Helsley (1972).

Although the Discussion suggests that the magnetostratigraphic records from the Newark and Chinle sections are similar, this characterization is misleading in several respects. The Newark samples were subjected to complete progressive thermal demagnetization in 15 to 20 steps to at least 680 °C, and characteristic directions were estimated from principal components analysis of the magnetization remaining above 640 °C. Of the 64 sedimentary sites in the Newark...
The discussion reiterates our conclusion (Witte and others, 1991) that some magnetozone may have been missed in the Chinle sections studied by Reeve and Helsley (1972), especially in the lower Luciano Mesa section, where several sampling gaps are at least as wide (−10 m) as some of the thinner magnetozones (−1 to 5 m) they interpret in the Chinle. Through recent continuous coring in the Newark basin (Olsen and Kent, 1990; Kent and Olsen, 1992), we are in the process of obtaining a complete high-resolution record of Late Triassic geomagnetic polarity history (Kent and others, 1992). It would be extremely useful if there were a complementary modern restudy of the Luciano Mesa and Redonda Mesa sections, consisting of detailed demagnetization analysis of a sufficiently high density of samples, to delineate with high reliability the fine structure of Chine magnetostratigraphy.

With a complete Newark magnetic-polarity reference section and the results from magnetostratigraphic studies of the Chinle all based upon well-isolated characteristic magnetization directions, it should then be possible to establish very detailed correlations between the Newark and the various Chinle sections (Reeve and Helsley, 1972; Bazard and Butler, 1991; Molina-Garza and others, 1991). This should allow the evaluation of the temporal extent of the regional unconformities in the Chinle described by Lucas (1991b) and provide an exciting opportunity to calibrate the exceptionally rich vertebrate biostatigraphy of the Chinle with the Newark’s continuous time stratigraphic section and cyclostratigraphic numerical chronology (Olsen and others, 1992).

ACKNOWLEDGMENTS

This research was supported by National Science Foundation Earth Sciences Grant EAR89-16726. This is Lamont-Doherty Earth Observatory contribution no. 5052.

REFERENCES CITED

