Articles

A novel approach to non-biased systematic random sampling : a stereologic estimate of Purkinje cells in the human cerebellum

Agashiwala, Rajiv M.; Louis, Elan D.; Hof, Patrick R.; Perl, Daniel P.

Non-biased systematic sampling using the principles of stereology provides accurate quantitative estimates of objects within neuroanatomic structures. However, the basic principles of stereology are not optimally suited for counting objects that selectively exist within a limited but complex and convoluted portion of the sample, such as occurs when counting cerebellar Purkinje cells. In an effort to quantify Purkinje cells in association with certain neurodegenerative disorders, we developed a new method for stereologic sampling of the cerebellar cortex, involving calculating the volume of the cerebellar tissues, identifying and isolating the Purkinje cell layer and using this information to extrapolate non-biased systematic sampling data to estimate the total number of Purkinje cells in the tissues. Using this approach, we counted Purkinje cells in the right cerebella of four human male control specimens, aged 41, 67, 70 and 84 years, and estimated the total Purkinje cell number for the four entire cerebella to be 27.03, 19.74, 20.44 and 22.03 million cells, respectively. The precision of the method is seen when comparing the density of the cells within the tissue: 266,274, 173,166, 167,603 and 183,575 cells/cm3, respectively. Prior literature documents Purkinje cell counts ranging from 14.8 to 30.5 million cells. These data demonstrate the accuracy of our approach. Our novel approach, which offers an improvement over previous methodologies, is of value for quantitative work of this nature. This approach could be applied to morphometric studies of other similarly complex tissues as well.

Subjects

Files

Also Published In

More About This Work

Academic Units
Center for Parkinson's Disease and Other Movement Disorders
Published Here
August 1, 2012