2013 Theses Doctoral
Large-Scale Pattern Discovery in Music
This work focuses on extracting patterns in musical data from very large collections. The problem is split in two parts. First, we build such a large collection, the Million Song Dataset, to provide researchers access to commercial-size datasets. Second, we use this collection to study cover song recognition which involves finding harmonic patterns from audio features. Regarding the Million Song Dataset, we detail how we built the original collection from an online API, and how we encouraged other organizations to participate in the project. The result is the largest research dataset with heterogeneous sources of data available to music technology researchers. We demonstrate some of its potential and discuss the impact it already has on the field. On cover song recognition, we must revisit the existing literature since there are no publicly available results on a dataset of more than a few thousand entries. We present two solutions to tackle the problem, one using a hashing method, and one using a higher-level feature computed from the chromagram (dubbed the 2DFTM). We further investigate the 2DFTM since it has potential to be a relevant representation for any task involving audio harmonic content. Finally, we discuss the future of the dataset and the hope of seeing more work making use of the different sources of data that are linked in the Million Song Dataset. Regarding cover songs, we explain how this might be a first step towards defining a harmonic manifold of music, a space where harmonic similarities between songs would be more apparent.
Subjects
Files
- BertinMahieux_columbia_0054D_11154.pdf application/pdf 2.62 MB Download File
More About This Work
- Academic Units
- Electrical Engineering
- Thesis Advisors
- Ellis, Daniel
- Degree
- Ph.D., Columbia University
- Published Here
- February 4, 2013