2015 Reports
Identifying Effects of Multivalued Treatments
Multivalued treatment models have only been studied so far under restrictive assumptions: ordered choice, or more recently unordered monotonicity. We show how marginal treatment effects can be identified in a more general class of models. Our results rely on two main assumptions: treatment assignment must be a measurable function of threshold-crossing rules; and enough continuous instruments must be available. On the other hand, we do not require any kind of monotonicity condition. We illustrate our approach on several commonly used models; and we also discuss the identification power of discrete instruments.
Subjects
Files
- Salanie_1516_02.pdf application/pdf 572 KB Download File
More About This Work
- Academic Units
- Economics
- Publisher
- Department of Economics, Columbia University
- Series
- Department of Economics Discussion Papers, 1516-02
- Published Here
- December 2, 2015