ON LAGRANGE-HERMITE INTERPOLATION*

J. F. TRAUB†

1. Introduction. Let the \(p(n + 1) \) numbers \(y_{i}^{(m)} \), \(0 \leq i \leq n, \ 0 \leq m \leq p - 1 \), be given. It is well known that there exists a unique polynomial \(P_{n,p}(t) \) of degree \(p(n + 1) - 1 \) such that

\[
P_{n,p}(x_i) = y_{i}^{(m)}, \quad 0 \leq i \leq n, \quad 0 \leq m \leq p - 1.
\]

A classical problem is to find a formula for \(P_{n,p}(t) \) in the form

\[
P_{n,p}(t) = \sum_{i=0}^{n} \sum_{m=0}^{p-1} C_{m,i}^{n,p}(t)y_{i}^{(m)}.
\]

The conditions on the \(C_{m,i}^{n,p}(t) \) are that

\[
D_i^r C_{m,i}^{n,p}(x_r) = \delta_{j,m} \delta_{r,i}, \quad 0 \leq r \leq n, \quad 0 \leq j \leq p - 1,
\]

where \(D_i \equiv \frac{d}{dt} \) and \(\delta_{j,m} \) is a Kronecker symbol. These conditions are used by Householder [5, pp. 193–195] to derive the formulas for \(p = 1, 2 \). The formula for \(p = 3 \) is given by Salzer [9]. The solution for \(n = 0 \) is given by Taylor’s formula.

Many authors have reported on the case where \(p \) depends on \(i \). General prescriptions for a solution in this more general case may be found in Fort [2, pp. 85–88], Greville [3], Hermite [4], Krylov [6, pp. 45–49], Kuntzmann [7, pp. 167–169], and Spitzbart [12]; but these prescriptions do not determine the structure of the interpolating polynomial. By restricting ourselves to the case where \(p \) is independent of \(i \), which is the most important case in practice, we can determine the structure. Salzer [10] discovered some of the properties of \(P_{n,p}(t) \) by semiempirical means.

We shall obtain, by a partial fraction expansion, a solution of surprising simplicity. [See (3.6), (3.7), or (3.8).] The solution depends upon the Bell polynomials which we now discuss.

2. Bell polynomials. Let \(g = g(t) \) and define \(B_n \) by

\[
e^{-\omega g} D_t^n e^{\omega g} = B_n(\omega) = B_n(\omega; g_1, \cdots, g_n), \quad g_i \equiv g^{(i)}.
\]

\(B_n \) is a polynomial in \(\omega \) with coefficients which are polynomials in \(g_i \). Define \(U_{n,k} \) by

\[
B_n(\omega; g_1, \cdots, g_n) = \sum_{k=0}^{n} U_{n,k}(g_1, \cdots, g_{n-k+1})\omega^k.
\]

* Received by the editors May 4, 1964, and in revised form July 2, 1964.
† Bell Telephone Laboratories, Incorporated, Murray Hill, New Jersey.
ON LAGRANGE-HERMITE INTERPOLATION

Then

\[U_{n,k} = \frac{1}{k!} D_{x_k} B_n(0). \]

The \(B_n(1; g_1, \ldots, g_n) \) were studied by Bell [1]. (See also Schlömilch [11, p. 4].) An explicit formula for \(B_n \) is

\[B_n = n! \sum \omega^j \prod_{i=1}^{n} \frac{1}{b_i!} \left(\frac{g_i}{i!} \right)^{b_i}, \]

where \(j = \sum_{i=1}^{n} b_i \) and where the sum is taken over all nonnegative integers \(b_i \) for which \(\sum_{i=1}^{n} i b_i = n \).

Let \(F(t) = f[g(t)] \). Then

\[F^{(n)} = \sum_{k=0}^{n} f^{(k)} U_{n,k}(g', \ldots, g^{(n-k+1)}), \]

or

\[F^{(n)} = B_n(f; g', \ldots, g^{(n)}), \quad f^{(k)} = f^k. \]

Generating functions and symbolic recurrence relations for the Bell polynomials may be found in Bell [1] and Riordan [8, pp. 35–38, 45–48]. The first five \(B_n \) are:

\[\begin{align*}
B_0 &= 1, \\
B_1 &= \omega g_1, \\
B_2 &= \omega^2 g_1^2 + \omega g_2, \\
B_3 &= \omega^3 g_1^3 + 3\omega^2 g_1 g_2 + \omega g_3, \\
B_4 &= \omega^4 g_1^4 + 6\omega^3 g_1^2 g_2 + \omega^2(4g_1 g_3 + 3g_2^2) + \omega g_4.
\end{align*} \]

3. The formula for the interpolatory polynomial. Let \(P(t)/Q(t) \) be a proper rational function and let \(Q(t) \) have a zero of multiplicity \(p \) at \(x_i \). Let

\[\begin{align*}
\frac{1}{Q(t)} &= \sum_{j=1}^{p} \frac{\alpha_{p,j}}{(t - x_i)^j} + \eta(t), \\
\frac{P(t)}{Q(t)} &= \sum_{j=1}^{p} \frac{\beta_{p,j}}{(t - x_i)^j} + \lambda(t).
\end{align*} \]

Then it is easy to show that

\[\beta_{p,p-j} = \sum_{k=0}^{j} \alpha_{p,p-k} \frac{P^{(j-k)}(x_i)}{(j - k)!}. \]
This result is the key to the solution of the Lagrange-Hermite interpolation problem. It permits us to write the interpolatory polynomial as a linear combination of the $y_i^{(m)}$.

Let

$$
\pi(t) = \prod_{i=0}^{n} (t - x_i), \quad Q(t) = \pi^{p}(t),
$$

(3.2)

$$
R_i(t) = \frac{\pi(t)}{t - x_i}, \quad L_i(t) = \frac{R_i(t)}{R_i(x_i)}.
$$

We calculate the contribution to $P_{n,p}(t)$ due to x_i and then sum on i. We have

$$
P_{n,p}(t) \equiv \frac{Q(t) P_{n,p}(t)}{Q(t)} = Q(t) \sum_{i=1}^{p} \beta_{p,i}\frac{P^{(i-k)}(x_i)}{(i-k)!} + \rho(t),
$$

$$
\beta_{p,i}\frac{P^{(i-k)}(x_i)}{(i-k)!} = \sum_{k=0}^{i} \alpha_{p,i-k} \frac{P^{(i-k)}(x_i)}{(j-k)!}, \quad \alpha_{p,i-k} = \frac{1}{k!} D_k R_i^{-p}(x_i).
$$

Using

$$
P^{(i-k)}(x_i) = y_i^{(i-k)},
$$

we obtain, after some manipulation,

$$
P_{n,p}(t) = L_i^p(t) \sum_{m=0}^{p-1} y_i^{(m)} \frac{(t - x_i)^m}{m!} \sum_{r=0}^{p-1-m} \frac{(t - x_i)^r}{\nu!} R_i^p(x_i) D_i^\nu R_i^{-p}(x_i) + \rho(t).
$$

(3.3)

Let

$$
S_r \equiv S_r(x_i) = (-1)^r(\nu - 1)! \sum_{r=0}^{n} \frac{1}{(x_i - x_r)^r}.
$$

(3.4)

It follows from (2.1), (3.2), and (3.4) that

$$
R_i^p(x_i) D_i^\nu R_i^{-p}(x_i) = B_r(p; S_1, \ldots, S_r).
$$

(3.5)

Using (3.5) and adding the contributions from all the x_i, we obtain as a solution to our problem

$$
P_{n,p}(t) = \sum_{i=0}^{n} L_i^p(t) \sum_{m=0}^{p-1} \frac{(t - x_i)^m}{m!} y_i^{(m)} \sum_{r=0}^{p-1-m} \frac{(t - x_i)^r}{\nu!} \sum_{r=0}^{n} \frac{1}{(x_i - x_r)^r} B_r(p; S_1, \ldots, S_r).
$$

(3.6)

Thus the essence of the pth order Lagrange-Hermite formula is contained in the $B_r(p; S_1, \ldots, S_r)$, $0 \leq r \leq p - 1$. Let

$$
G_{p,i,m} = \sum_{r=0}^{p-1-m} \frac{(t - x_i)^r}{\nu!} B_r(p; S_1, \ldots, S_r).
$$
Observe that $G_{p,i,m}$ may be obtained from the polynomial $G_{p,i,0}$ by truncating the highest m terms. Hence for each p, $P_{n,p}(t)$ may be easily obtained from $G_p \equiv G_{p,i,0}$. The first five G are:

\[G_1 = 1, \]
\[G_2 = 1 + (t - x_i)2S_1, \]
\[G_3 = 1 + (t - x_i)3S_1 + \frac{1}{2}(t - x_i)^2[3^2S_1^2 + 3S_2], \]
\[G_4 = 1 + (t - x_i)4S_1 + \frac{1}{2}(t - x_i)^2[4^2S_1^2 + 4S_2] + \frac{1}{6}(t - x_i)^3[4^3S_1^3 + 3\cdot 4^2S_1S_2 + 4S_3], \]
\[G_5 = 1 + (t - x_i)5S_1 + \frac{1}{2}(t - x_i)^2[5^2S_1^2 + 5S_2] + \frac{1}{6}(t - x_i)^3[5^3S_1^3 + 3\cdot 5^2S_1S_2 + 5S_3] + \frac{1}{24}(t - x_i)^4[5^4S_1^4 + 6\cdot 5^2S_1^2S_2 + 5^2(4S_1S_3 + 3S_2^2) + 5S_4]. \]

Equation (3.6) may be written in a number of other ways. Let

\[T_v \equiv T_v(x_i) = (v - 1)! \sum_{r=0,r \neq i}^{n} \left(\frac{x_i - t}{x_i - x_r} \right)^v. \]

Then

\[(3.7) \quad P_{n,p}(t) = \sum_{i=0}^{n} L_i^p(t) \sum_{m=0}^{p-1} \frac{(t - x_i)^m}{m!} y_i^{(m)} \sum_{r=0}^{p-1-m} \frac{1}{\nu!} B_r(p; T_1, \ldots, T_v). \]

Let

\[H_{p,i,m,k} = \sum_{r=k}^{p-1-m} \frac{U_{r,k}}{\nu!} (T_1, \ldots, T_{r-k+1}). \]

Then

\[P_{n,p}(t) = \sum_{i=0}^{n} L_i^p(t) \sum_{m=0}^{p-1} \frac{(t - x_i)^m}{m!} y_i^{(m)} \sum_{k=0}^{p-1-m} H_{p,i,m,k} p^k. \]

A formula for $P_{n,p}(t)$ in which the coefficients are polynomials in the $L_i^{(j)}(x_i)$ may be obtained as follows. Let

\[R_i^{-p}(t) = f[g(t)], \quad f(u) = u^{-p}, \quad g(t) = R_i(t). \]

Then using (2.2), and with $L_i^{(j)} \equiv L_i^{(j)}(x_i)$,

\[R^p(x_i)D_t^jR^{-p}(x_i) = \sum_{k=0}^{r} (-1)^k k! C(p + k - 1, k) U_{v,k}(L', \ldots, L^{(r-k+1)}). \]

Hence

\[(3.8) \quad P_{n,p}(t) = \sum_{i=0}^{n} L_i^p(t) \sum_{m=0}^{p-1} \frac{(t - x_i)^m}{m!} y_i^{(m)} E_{p,i,m}, \]

\[E_{p,i,m} = \sum_{r=0}^{p-1-m} \frac{(t - x_i)^r}{\nu!} \sum_{k=0}^{r} (-1)^k k! C(p + k - 1, k) \]

\[\cdot U_{v,k}(L', \ldots, L^{(r-k+1)}). \]
Observe that $E_{p,i,m}$ may be obtained from the polynomial $E_{p,i,0}$ by truncating the highest m terms. Hence for each p, $P_{n,p}(t)$ may be easily obtained from $E_p = E_{p,i,0}$. The first five E_p are

\begin{align*}
E_1 &= 1, \\
E_2 &= 1 + (t - x_i)[-2L'], \\
E_3 &= 1 + (t - x_i)[-3L'] + \frac{1}{2}(t - x_i)^2[-3L'' + 12(L')^2], \\
E_4 &= 1 + (t - x_i)[-4L'] + \frac{1}{2}(t - x_i)^2[-4L'' + 20(L')^2] \\
&\quad + \frac{1}{6}(t - x_i)^3[-4L''' + 60(L'L') - 120(L')^3], \\
E_5 &= 1 + (t - x_i)[-5L'] + \frac{1}{2}(t - x_i)^2[-5L'' + 30(L')^2] \\
&\quad + \frac{1}{6}(t - x_i)^3[-5L''' + 90(L'L') - 210(L')^3] \\
&\quad + \frac{1}{24}(t - x_i)^4[-5L^{(4)} + 120L'L''' + 90(L'')^2 - 1260(L')^2L'' + 1680(L')^4].
\end{align*}

As far as calculation with these formulas is concerned, observe that

$$L_i^{(j)}(x_i) = \frac{R_i^{(j)}(x_i)}{R_i(x_i)}.$$

The $R_i^{(j)}(x_i), j \geq 0$, may be obtained from $\pi(t)$ by repeated synthetic division.

4. Some applications. The interpolation formula may be used to generalize the Cauchy relations,

$$t^j = \sum_{i=0}^{n} x_i^j I_i(t), \quad j = 0, 1, \ldots, n.$$

Corresponding to the case $j = 0$, we have the following generalization.

\begin{equation}
1 = \sum_{i=0}^{n} L_i^p(t) \sum_{r=0}^{p-1} \frac{(t - x_i)^r}{r!} B_r(p; S_1, \ldots, S_r).
\end{equation}

Since the leading coefficient of t on the right side of (4.1) vanishes,

\begin{equation}
\sum_{i=0}^{n} \frac{1}{\pi'(x_i)^p} B_{p-1}(p; S_1, \ldots, S_{p-1}) = 0.
\end{equation}

This generalizes

$$\sum_{i=0}^{n} \frac{1}{\pi'(x_i)} = 0.$$

We can derive a formula for the confluent divided difference with the same number of repetitions of all arguments, $f[x_0, p; x_1, p; \cdots; x_n, p]$.

This content downloaded from 128.59.160.233 on Thu, 10 Oct 2013 14:38:40 PM
All use subject to JSTOR Terms and Conditions
(This notation is introduced in Traub [13, pp. 241-242].) Since this divided difference is the coefficient of the highest degree term in (3.6), we obtain

\[f[x_0, p; x_1, p; \cdots; x_n, p] = \sum_{m=0}^{p-1} \frac{B_{p-1-m}(p; S_1, \cdots, S_{p-1-m})}{m!(p - 1 - m)!} \]

(4.2)

\[\cdot \sum_{i=0}^{n} \frac{f^{(m)}(x_i)}{\pi^i(x_i)} \]

REFERENCES