Academic Commons

Reports

Controlling Window Protocols for Time-Constrained Communication in a Multiple Access Environment

Kurose, James F.; Schwartz, Mischa; Yemini, Yechiam

For many time-constrained communication applications, such as packetized voice, a critical performance measure is the percentage of messages which are transmitted within a given amount of time after their arrival at a sending station. We examine the use of a group random access protocol based on time windows for achieving time-constrained communication in a multiple access environment. First, we formulate a policy for controlling protocol operation in order to minimize the percentage of messages with waiting times greater than some given bound. A semi-Markov decision model is then developed for protocol operation and three of the four optimal control elements of this policy are then determined. Although the semi-Markov decision model can also be used to obtain performance results, the procedure is too computationally expensive to be of practical use. Thus, an alternate performance model based on a centralized queueing system with impatient customers is developed. Protocol performance under the optimal elements of the control policy shows significant improvements over cases in which the protocol is not controlled in this manner. Simulation results are also presented to corroborate the analytic results.

Subjects

Files

More About This Work

Academic Units
Computer Science
Publisher
Department of Computer Science, Columbia University
Series
Columbia University Computer Science Technical Reports, CUCS-075-83
Published Here
October 26, 2011
Academic Commons provides global access to research and scholarship produced at Columbia University, Barnard College, Teachers College, Union Theological Seminary and Jewish Theological Seminary. Academic Commons is managed by the Columbia University Libraries.