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Abstract	

Proprioceptor	subtype	identity	specified	by	limb-derived	signals	

Amy	L.	Norovich	

	

	

The	provision	of	proprioceptive	feedback	from	limb	muscle	to	spinal	motor	

neuron	 is	 essential	 for	 the	 generation	 of	 coordinated	 movement.	 Proprioceptive	

sensory	neurons	form	a	precise	matrix	of	connections	with	motor	neurons	and	do	so	

in	the	absence	of	patterned	activity,	implying	the	existence	of	proprioceptor	subtype	

identities	that	mediate	selective	connectivity.	The	developing	limb	has	been	shown	

to	influence	the	pattern	of	connections	made	by	proprioceptors	with	motor	neurons,	

suggesting	that	the	patterning	cues	distributed	along	its	cardinal	axes	are	capable	of	

influencing	the	molecular	identities	of	proprioceptors.		

	

In	 this	 thesis,	 I	 describe	 efforts	 to	 characterize	 the	 molecular	 diversity	 of	

proprioceptors	 supplying	 distinct	 muscles	 located	 at	 different	 dorsoventral	 and	

proximodistal	 positions	 within	 the	 mouse	 hindlimb.	 I	 demonstrate	 the	 selective	

expression	of	several	genes	–	cdh13,	vstm2b,	sema5a,	and	crtac1	–	by	proprioceptors	

supplying	defined	positional	domains	of	 the	 limb.	 I	proceed	to	determine	the	 limb	

tissue	source	of	proprioceptor	patterning	information	by	examining	the	expression	

of	these	genes	in	mice	in	which	one	of	three	tissues	encountered	by	proprioceptors	

–	 the	 motor	 axon,	 limb	 mesenchyme,	 and	 target	 muscle	 –	 has	 been	 genetically	

manipulated,	 revealing	 that	 both	mesenchyme	 and	muscle	 supply	 cues	 capable	 of	



directing	 proprioceptor	 gene	 expression.	 Finally,	 I	 show	 that	 one	 marker	 of	

proprioceptor	 muscle-type	 identity,	 cdh13,	 mediates	 the	 formation	 of	 selective	

connections	 between	 proprioceptors	 and	 motor	 neurons,	 thereby	 establishing	 a	

molecular	 link	 between	 proprioceptor	 subtype	 identity	 and	 patterned	 central	

connectivity.	
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1	

1			Proprioceptor	subtypes	are	required	for	motor	control	

	

	 Proprioceptive	 feedback	 plays	 an	 essential	 role	 in	 the	 refinement	 and	

coordination	 of	motor	 behavior.	 The	 ability	 of	 proprioceptors	 to	modulate	motor	

output	is	predicated	on	their	formation	of	highly	stereotyped	patterns	of	excitatory	

monosynaptic	 connections	 with	 motor	 neurons.	 The	 requirement	 that	

proprioceptors	innervating	each	of	the	approximately	50	muscles	of	the	limb	locate	

and	 synapse	 with	 a	 distinct	 subpopulation	 of	 spinal	 motor	 neurons	 represents	 a	

significant	 developmental	 challenge.	 The	 complex	 pattern	 of	 sensory-motor	

synapses	forms	largely	in	the	absence	of	patterned	neuronal	activity,	suggesting	that	

proprioceptors	 possess	 distinct	 molecular	 identities	 that	 underlie	 their	 ability	 to	

synapse	 with	 discrete	 populations	 of	 motor	 neurons.	 Nevertheless,	 the	 nature	 of	

proprioceptor	 subtype	 identity	 with	 respect	 to	 peripheral	 target	 innervation	

remains	uncharacterized.	

	

	 In	 this	 thesis,	 I	 describe	 our	 efforts	 to	 characterize	 proprioceptor	 “muscle-

type”	identities.	I	first	discuss	the	results	of	a	comparative	screen	designed	to	probe	

proprioceptor	gene	expression	along	the	dorsoventral	and	proximodistal	axes	of	the	

limb.	 I	show	that	proprioceptors	exhibit	apparently	hierarchical	subtype	 identities	

that	 respect	 the	 biomechanical	 organization	 of	 the	 limb	 and,	 by	 extension,	 their	

patterns	 of	 connectivity	 within	 the	 spinal	 cord.	 I	 then	 assess	 the	 impact	 of	

manipulating	 several	 peripheral	 tissues	 –	 motor	 axon,	 limb	 mesenchyme,	 and	

muscle	 –	 on	 the	 expression	 of	 proprioceptor	 muscle-type	 genes,	 thereby	
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demonstrating	 that	 limb	 mesenchyme	 and	 muscle	 supply	 independent	 yet	

overlapping	programs	of	patterning	information	that	may	enable	specification	of	the	

~50	proprioceptor	subtypes	presumed	necessary	to	establish	selective	connectivity	

with	 motor	 neurons.	 Finally,	 I	 provide	 evidence	 of	 a	 functional	 link	 between	

proprioceptor	muscle-type	 identity	 and	 the	 ability	 of	 these	 neurons	 to	 selectively	

target	 spinal	 motor	 subsets.	 This	 work	 suggests	 that	 positionally	 restricted	 limb	

signals	 from	 multiple	 tissue	 sources	 are	 integrated	 by	 proprioceptors	 to	 specify	

molecular	 recognition	 programs	 that	 underly	 the	 accurate	 formation	 of	 spinal	

circuitry,	thereby	enabling	coordinated	limbed	movement.	

	

Proprioceptive	feedback	is	essential	for	movement	

	

Proprioceptive	sensory	neurons	play	a	critical	role	 in	refining	the	output	of	

the	 spinal	 motor	 system	 by	 supplying	 feedback	 signals	 that	 convey	 the	 state	 of	

muscle	activity	 to	motor	neurons	(Figure	1.1).	Axons	extending	 into	the	periphery	

from	 proprioceptor	 cell	 bodies	 located	 in	 dorsal	 root	 ganglia	 (DRG)	 supply	

specialized	 sensory	 receptors	 known	 as	muscle	 spindles	 and	Golgi	 tendon	 organs	

(GTOs)	 in	 skeletal	 muscle,	 where	 they	 detect	 changes	 in	 muscle	 tension.	

Proprioceptors	innervating	the	muscle	spindle	respond	to	increases	in	muscle	fiber	

length	through	the	monosynaptic	excitation	of	spinal	motor	neurons	innervating	the	

same	muscle	(Brown,	1981;	Burke	and	Nelson,	1966),	thereby	causing	the	muscle	to	

contract	in	opposition	to	the	original	force.		
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Figure	1.1	Structure	of	the	stretch	reflex	
	
Motor	neurons	located	in	the	ventral	spinal	cord	project	to	individual	muscles	in	
the	 limb	 and	 trigger	 the	 contraction	 of	 muscle	 fibers	 upon	 excitation.	
Proprioceptors	located	in	the	dorsal	root	ganglion	(DRG)	innervate	these	muscles	
and	 detect	 changes	 in	muscle	 fiber	 length,	 upon	which	 they	 provide	 excitatory	
monosynaptic	 feedback	 to	 the	 motor	 neuron	 (a),	 resulting	 in	 contraction	 to	
restore	 the	 length	 of	 the	 muscle	 (Muscle	 1:	 a	 joint	 flexor).	 Joint	 position	 is	
stabilized	in	part	through	the	provision	of	proprioceptive	feedback	to	inhibitory	
interneurons,	which	negatively	regulate	the	activity	of	motor	neurons	controlling	
opposing	muscles	(Muscle	2:	a	joint	extensor).	

a b 
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Figure	1.2	Patterns	of	muscle	activation	during	the	step	cycle	
	
Electromyographic	 (EMG)	 patterns	 of	 hindlimb	 muscle	 activation	 during	 the	
locomotor	step	cycle.	Adapted	from	Yakovenko	et	al.,	2002.	



Chapter	1:	Proprioceptor	subtypes	are	required	for	motor	control	

	 5	

The	 most	 basic	 function	 of	 this	 feedback	 circuit	 is	 the	 provision	 of	 a	

homeostatic	mechanism	by	which	the	resting	position	of	the	muscle	is	restored.	This	

reflex	 circuitry	has	 also	been	 suggested	 to	 contribute	 to	 the	 stability	of	 individual	

joints	 and	 to	 postural	 support	 (Sherrington,	 1906).	However,	 the	 requirement	 for	

proprioception	 is	 perhaps	 most	 marked	 during	 limbed	 movement.	 Limb-based	

locomotion	 requires	 the	 precise	 temporal	 activation	 of	 spinal	 motor	 neurons	 in	

order	to	coordinate	the	activity	of	the	approximately	50	muscles	of	the	limb	across	

the	 duration	 of	 the	 step	 cycle	 (Figure	 1.2;	 Machado	 et	 al.,	 2015;	 Rossignol;	

Yakovenko	 et	 al.,	 2002).	 The	 activation	 of	 motor	 neurons	 is	 gated	 by	 their	

presynaptic	inputs,	which	are	supplied	by	three	distinct	cellular	sources:	descending	

tract	neurons,	local	spinal	interneurons,	and	proprioceptors	(Kiehn,	2016).	Of	these,	

monosynaptic	 proprioceptive	 feedback	 represents	 the	 most	 direct	 mechanism	 by	

which	motor	neuron	activity	is	regulated.	

	

Evidence	from	multiple	model	systems	has	demonstrated	the	importance	of	

peripheral	 sensory	 information	 in	 coordinating	 locomotor	 output.	 Transections	 of	

hindlimb	dorsal	 roots	 in	 cat	 result	 in	 varying	degrees	 of	 perturbation	 of	 the	EMG	

muscle	 activity	 pattern	 observed	 during	 locomotion	 (Grillner	 and	 Zangger,	 1984;	

Hiebert	and	Pearson,	1999).	In	addition,	cats	treated	with	an	overdose	of	pyroxidine	

(vitamin	 B6)	 exhibit	 loss	 of	 proprioceptive	 and	 large-diameter	 cutaneous	

proprioceptive	sensory	afferents,	resulting	in	delayed	postural	reactions	and	ataxic	

locomotor	behavior	(Stapley	et	al.,	2002).	Mice	in	which	spindle	afferent	activation	

has	 been	 impaired	 by	 mutation	 of	 the	 gene	 Egr3,	 which	 is	 required	 for	 muscle	
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spindle	development,	exhibit	attenuated	proprioceptive	sensory	feedback,	resulting	

in	 a	 degraded	 ambulatory	 pattern	 characterized	 by	 loss	 of	 the	 inter-joint	

coordination	and	 flexor-extensor	alternation	 typical	of	 limbed	movement	 (Akay	et	

al.,	2014).		

	

Thus,	 the	role	of	 information	supplied	by	muscle	spindle	and	GTO	afferents	

extends	 beyond	 the	 unconscious,	 reflexive	 regulation	 of	 posture	 and	 movement.	

Proprioception	 plays	 an	 active	 role	 in	 coordinating	 limb	 trajectory	 during	

locomotion.	

	

Anatomical	and	physiological	features	of	proprioceptors	

	

Proprioceptors	terminate	in	one	of	two	transduction	systems	within	muscles:	

muscle	 spindles	 and	 Golgi	 tendon	 organs	 (GTOs)	 (Figures	 1.3	 and	 1.4;	Matthews,	

1972).	Muscle	spindles	are	composed	of	several	intrafusal	muscle	fibers	enveloped	

by	 a	 collagen	 sheath	 called	 the	 outer	 capsule.	 There	 are	 three	 types	 of	 intrafusal	

fibers,	each	with	specialized	characteristics:	 (i)	dynamic	nuclear	bag	 fibers	(bag1),	

(ii)	 static	nuclear	bag	 fibers	 (bag2),	 and	 (iii)	 nuclear	 chain	 fibers.	Muscle	 spindles	

typically	receive	innervation	from	one	group	Ia	afferent	and	two	group	II	afferents	

(Hunt,	1974),	as	well	as	gamma	motor	neurons.	Group	Ia	afferents	contact	each	type	

of	 intrafusal	 fiber	 and	 form	 primary	 endings	 with	 a	 characteristic	 annulospiral	

morphology.	Terminations	of	group	II	afferents	are	referred	to	as	secondary	endings	

and	are	found	predominantly	on	chain	intrafusal	fibers,	where	they	display	either		
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Figure	1.3	Morphology	of	proprioceptor	sensory	endings	
	
(A-D)	 Whole-mount	 muscle	 preparation	 revealing	 intact	 proprioceptive	
innervation	of	the	mouse	soleus	muscle.	(A)	Composite	20X	confocal	image	from	
a	 P5	 mouse	 genetically	 manipulated	 to	 express	 the	 fluorescent	 reporter	
tdTomato	 in	 proprioceptors.	 (B-D)	 Representative	 composite	 60X	 confocal	
images	 of	 a	 GTO	 and	 two	muscle	 spindles	 are	 shown,	 identified	 in	 (A)	 by	 red	
boxes.	(B)	GTOs	are	invariably	supplied	by	a	single	Ib	afferent.	(C)	Example	of	a	
muscle	 spindle	 supplied	by	two	afferents,	 likely	one	group	 Ia	and	one	group	 II.	
(D)	Example	of	a	muscle	spindle	supplied	by	three	afferents,	likely	one	group	Ia	
and	two	group	II.	Scale	bars	represent	100	μm.	Adapted	from	Sonner	et	al.,	2017.	
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Figure	1.4	Diagrammatic	representation	of	the	muscle	spindle	
	
Sensory	 nerve	 endings	 supplying	 the	 muscle	 spindle	 include	 group	 Ia	 and	 II	
afferents,	whereas	those	terminating	in	the	GTO	are	group	Ib.	Efferent	nerves	are	
indicated	by	blue	arrows	and	afferent	nerves	by	red	arrows.	
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Figure	1.5	Dorsoventral	termination	zones	of	proprioceptive	afferents		
	
(A,	 C,	 E)	 Transverse	 sections	 depict	 the	 innervation	 pattern	 of	 single	
proprioceptive	afferent	fibers	as	they	enter	the	lumbosacral	spinal	cord	in	cat.	(B,	
D,	F)	The	pattern	of	axon	collateral	innervation	across	segments	displays	precise	
and	 segmental	 organization.	 (A	 and	 B)	 Group	 Ia	 afferent;	 (C	 and	 D)	 group	 Ib	
afferent;	(E	and	F)	group	II	afferent.	Adapted	from	Brown,	1982.	
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spiral-like	or	flower-spray	morphology.	The	number	of	muscle	spindles	present	in	a	

given	muscle	 is	 variable;	 in	 the	mouse	 soleus	muscle,	 for	 example,	 the	number	 of	

spindles	 ranges	between	8	 and	16	per	muscle	 (Sonner	 et	 al.,	 2017).	 Furthermore,	

the	number	of	spindles	found	in	a	muscle	tends	to	scale	with	the	size	of	the	muscle.	

	

GTOs	 are	 located	 at	 the	 junction	 between	 tendon	 and	muscle	 fiber,	 where	

their	 arrangement	 in	 series	 with	 muscle	 fibers	 enables	 sensitivity	 to	 muscle	

contraction.	 	 GTOs	 are	 innervated	 by	 a	 single	 group	 Ib	 proprioceptive	 afferent	

(Hunt,	1974),	which	branches	extensively	and	intercalates	with	collagen	fibers	that	

are	connected	at	one	end	to	muscle	fibers	and	at	the	other	merge	with	the	tendon.	

Increases	in	tensile	forces	upon	muscle	contraction	cause	these	collagen	bundles	to	

tighten,	thereby	distorting	Ib	terminals	(Schoultz	and	Swett,	1972).	As	with	muscle	

spindles,	there	is	substantial	variability	in	the	number	of	GTOs	in	a	given	muscle;	in	

mouse	soleus,	 the	number	of	GTOs	per	muscle	ranges	between	3	and	7	(Sonner	et	

al.,	 2017).	 Typical	 GTOs	 associate	with	 small	 groups	 of	muscle	 fibers,	 and	 not	 all	

muscle	fibers	feed	into	GTOs	(Scott,	2005).	However,	calculations	performed	on	data	

from	 cat	 hindlimb	 experiments	 indicate	 that	 the	 relatively	 small	 number	 of	 GTOs	

populating	a	given	muscle	is	sufficient	to	adequately	track	motor	unit	activity.	

	

	 Proprioceptive	 afferents	 innervating	 muscle	 spindles	 and	 GTOs	 adopt	

distinct	axonal	trajectories	within	the	spinal	cord	that	result	in	their	termination	in	

different	 dorsoventral	 zones	 (Figure	 1.5;	 Brown,	 1981b;	 Chen	 et	 al.,	 2006).	 All	

proprioceptive	afferents	–	 groups	 Ia,	 II,	 and	 Ib	–	project	 to	 an	 intermediate	 target	
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zone	 within	 the	 spinal	 cord	 (Windhorst,	 2007).	 While	 group	 Ib	 afferents	 do	 not	

extend	beyond	the	intermediate	zone	(Figures	1C	and	D),	group	II	afferents	project	

sparsely	and	group	Ia	afferents	extensively	into	the	ventral	spinal	cord	(Figures	1.4A	

and	B,	E	and	F;	Windhorst,	2007).	These	projection	patterns	restrict	the	repertoire	

of	 postsynaptic	partners	 available	 to	 each	 class	of	 proprioceptive	 afferents.	 In	 the	

intermediate	 zone,	 muscle	 spindle	 and	 GTO	 afferents	 form	 synapses	 with	 spinal	

interneuron	 populations,	 thereby	 exerting	 a	 polysynaptic	 influence	 on	 motor	

neuron	 activity.	 In	 the	 ventral	 horn,	 muscle	 spindle	 afferents	 –	 overwhelmingly	

group	Ia	-	form	monosynaptic	connections	with	motor	neurons	(Eccles	et	al.,	1957).	

Consequently,	the	most	direct	mechanism	by	which	proprioceptive	sensory	neurons	

influence	 the	output	of	 spinal	motor	neurons	 is	 the	monosynaptic	 reflex	mediated	

by	group	Ia	proprioceptive	afferents.		

	

Monosynaptic	 connectivity	 between	 proprioceptors	 and	 motor	 neurons	

conforms	to	limb	biomechanics	

	 	

	 The	 range	 of	motion	 available	 to	 the	 limb	 is	 dictated	 by	 constraints	 of	 the	

musculoskeletal	 system.	 The	mouse	 hindlimb	 contains	 approximately	 50	muscles,	

the	biomechanical	properties	of	which	are	determined	by	muscle	fiber	content,	fiber	

length,	 and	 sites	 of	 tendon	 origin	 and	 insertion	 with	 respect	 to	 bone	 (Biewener,	

2016).	 Each	muscle	 produces	 a	 unique	 torque	 at	 a	 joint,	 the	direction	of	which	 is	

determined	 by	 its	 sites	 of	 origin	 and	 insertion	 and	 can	 be	 represented	 by	 the	

degrees	of	 flexion	versus	extension	with	respect	 to	 the	 joint	and	abduction	versus	
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adduction	 with	 respect	 to	 the	 body	 axis.	 Across	 these	 axes,	 muscles	 can	 be	

categorized	 according	 to	 biomechanical	 similarity	 as	 producing	 synergistic	

(cooperative)	 or	 antagonistic	 (opposing)	 functions	 at	 a	 joint	 (Nichols	 et	 al.,	 2002,	

2016).	 The	 ability	 of	 a	 proprioceptive	 sensory	 afferent	 to	 refine	 and	 coordinate	

limbed	motor	output	is	dependent	on	its	pattern	of	monosynaptic	connectivity	with	

motor	neurons	supplying	synergist	and	antagonist	muscles.	

	

	 The	pattern	of	monosynaptic	input	from	limb-innervating	proprioceptors	to	

motor	 neurons	 was	 first	 characterized	 through	 intracellular	 recording.	 After	

identifying	 the	 muscle	 connectivity	 of	 an	 individual	 motor	 neuron	 by	 antidromic	

stimulation,	EPSPs	were	recorded	in	the	same	motor	neuron	following	stimulation	

of	 distinct	 muscle	 nerves	 containing	 the	 proprioceptive	 sensory	 afferents	

innervating	 the	 same	 muscle	 (Eccles	 et	 al.,	 1957).	 Direct	 monosynaptic	 input	 to	

motor	 neurons	 can	 be	 differentiated	 from	 polysynaptic	 sensory	 input	 relayed	 via	

interneuronal	 populations	 by	 the	 latency	 between	 stimulus	 and	 EPSP.	 In	 every	

vertebrate	 characterized,	 motor	 neurons	 innervating	 a	 given	 muscle	 have	 been	

found	 to	 receive	 strong	 proprioceptive	 input	 from	 the	 same	 muscle,	 termed	

homonymous	 proprioceptive	 feedback,	 and	 weaker	 feedback	 from	 muscles	 with	

synergist	 function	at	a	 joint,	 termed	heteronymous	 feedback	 (Figure	1.6;	Eccles	et	

al.,	 1957;	 Frank	 and	 Westerfield,	 1983;	 Hongo,	 1984).	 This	 selective	 innervation	

establishes	 a	 negative	 feedback	 loop:	 the	 stretch	 of	 a	muscle	 results	 in	 its	 strong	

contraction	and	the	weaker	contraction	of	synergist	muscles	via	monosynaptic	input	

from	homonymous	sensory	neurons.	In	contrast,	proprioceptive	feedback	is	not		
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Figure	1.6	Proprioceptive	feedback	respects	limb	biomechanics	
	
(A)	 Mechanical	 similarity	 of	 muscle	 actions.	 Cells	 are	 coded	 according	 to	 the	
cosine	of	the	angle	between	the	lines	of	action	of	each	pair	of	muscles.	The	colors	
depict	 a	 continuum	 ranging	 from	 completely	 agonistic	 muscles	 (dark	 red)	 to	
completely	antagonistic	muscles	(dark	blue),	with	a	midpoint	where	muscle	pairs	
have	no	 shared	actions	at	 a	 joint	 (light	green).	The	 order	of	 the	muscles	 in	 the	
rows	 and	columns	was	 chosen	based	 on	a	 cluster	 analysis	 that	groups	muscles	
according	 to	 their	 normalized	 moment	 arm	 vector.	 (B)	 Magnitude	 of	
proprioceptive	length	feedback	between	muscle	pairs.	Excitatory	connections	are	
shown	 in	 yellow,	 red	 and	 dark	 red,	 with	 darker	 color	 representing	 increased	
strength	 of	 excitation.	 Inhibitory	 connections	 are	 shown	 in	 cyan	 and	 blue.	
Connections	 that	 can	 be	 either	 excitatory	 or	 inhibitory	 are	 shown	 in	 green.	
Adapted	from	Nichols	et	al.,	2016.	



Chapter	1:	Proprioceptor	subtypes	are	required	for	motor	control	

	 14	

supplied	to	motor	neurons	innervating	muscles	of	unrelated	or	antagonist	function.	

Rather,	 these	 Ia	 afferents	 contact	 Ia	 inhibitory	 interneurons	 to	 form	 reciprocal	

inhibitory	circuits	that	silence	motor	neurons	of	opposing	function	(refer	to	Figure	

1.1).	

	

Several	cellular	properties	account	for	the	relative	strength	of	heteronymous	

compared	to	homonymous	sensory-motor	connections.	Individual	Ia	afferent	fibers	

contact	 both	 homonymous	 and	 heteronymous	motor	 neurons	 (Scott	 and	Mendell,	

1976).	However,	while	nearly	all	motor	neurons	innervating	a	given	muscle	receive	

homonymous	 input,	only	~40-70%	of	 these	motor	neurons	 receive	heteronymous	

input	(Mendell	and	Henneman,	1968;	Nelson	and	Mendell,	1978;	Scott	and	Mendell,	

1976).	On	individual	motor	neurons,	heteronymous	boutons	are	observed	at	a	lower	

density	 than	 their	 homonymous	 counterparts	 (Brown	 and	Fyffe,	 1981;	Burke	 and	

Glenn,	1996).	The	size	of	EPSP	evoked	by	a	heteronymous	synapse	is	comparable	to	

that	of	a	homonymous	synapse,	suggesting	that	the	difference	in	strength	between	

these	types	of	feedback	is	due	to	the	difference	in	the	number	of	synaptic	contacts	

supplied	by	proprioceptor	subtypes	(Kuno	and	Miyahara,	1969).	

	

The	role	of	activity	in	patterning	monosynaptic	sensory-motor	connectivity	

	 	

Activity-dependent	refinement	acts	throughout	the	developing	CNS	to	shape	

neural	 circuits	 by	 eliminating	 inappropriate	 synapses	 and	 strengthening	 desired	

connections	(Okawa	et	al.,	2014).	It	is	therefore	possible	that	the	stereotyped	matrix	
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of	monosynaptic	connections	formed	between	proprioceptors	and	motor	neurons	is	

the	result	of	patterned	neural	activity.	

	

Agonist-antagonist	 specificity	 is	 apparent	 in	 mouse,	 chick	 and	 frog	 at	 late	

embryonic	 stages	 and	 remains	 stable	 through	 early	 postnatal	 development,	

suggesting	 that	 these	 connections	 are	 not	 subject	 to	 postnatal	 refinement	 (Frank	

and	 Westerfield,	 1983;	 Lee	 and	 O’Donovan,	 1991;	 Mears	 and	 Frank,	 1997).	

Furthermore,	 coordinated	 electrical	 activity	 in	 sensory	 and	motor	 neurons	 is	 not	

required	 for	 these	 connections	 to	 form	 correctly	 (Frank	 and	 Jackson,	 1986;	

Mendelson	and	Frank,	1991;	Shneider	et	al.,	2009;	Wang	et	al.,	2012).	In	one	study	

performed	 in	 chick,	 coordinated	 neurogenic	muscle	 contractions	were	 blocked	 in	

developing	 embryos	 by	 treatment	 with	 d-turbocurarine	 (dtc),	 which	 inhibits	 the	

nicotinic	acetylcholine	receptor	at	the	neuromuscular	junction.	Electrophysiological	

examination	 of	 sensory-motor	 innervation	 in	 experimental	 animals	 revealed	 that	

antagonist	 specificity	was	unaltered	 following	peripheral	activity	blockade	 (Figure	

1.7;	Mendelson	and	Frank,	1991).	

	

The	 fidelity	 of	 sensory-motor	 connections	 has	 also	 been	 examined	 in	 the	

context	 of	 impaired	 muscle	 spindle	 function	 (Shneider	 et	 al.,	 2009;	 Wang	 et	 al.,	

2012).	 Genetic	 elimination	 of	 the	 ErbB2	 receptor	 or	 the	 transcription	 factor	 Egr3	

from	developing	 intrafusal	muscle	 fibers	blocks	 the	maturation	of	muscle	spindles	

but	does	not	impact	the	survival	of	proprioceptive	sensory	afferents	and	results	in	

only	a	modest	reduction	in	the	density	of	anatomically	defined	sensory-motor		
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Figure	1.7	Activity-independent	formation	of	monosynaptic	contacts	in	chick	
	
(A)	Strength	of	input	from	Group	Ia	proprioceptive	afferents	to	identified	motor	
neurons	 was	 assayed	 by	 intracellular	 recording	 following	 peripheral	 nerve	
stimulation.	(B)	The	gross	pattern	of	homonymous	 input	 to	motor	neurons	was	
unchanged	 in	 embryos	 treated	 with	 dtc.	 Adapted	 from	 Mendelson	 and	 Frank,	
1991.	
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synapses	 (Shneider	 et	 al.,	 2009;	Wang	 et	 al.,	 2012).	Despite	 the	 fact	 that	 sensory-

motor	synapses	in	these	mutants	are	functionally	silent,	they	form	with	appropriate	

antagonist	specificity,	corroborating	the	notion	that	sensory	activity	is	dispensable	

for	sensory	avoidance	of	antagonist	motor	neurons.	

	

These	 studies,	 however,	 reached	 the	 conclusion	 that	 sensory-motor	

connections	are	shaped	independent	of	activity	based	on	the	presence	homonymous	

connections	and	persistence	of	antagonist	avoidance	in	experimental	preparations.	

More	recent	genetic	studies	in	mouse	have	demonstrated	a	limited	but	selective	role	

for	 activity	 in	 refining	 heteronymous	 connections	 between	 proprioceptors	 and	

motor	neurons	(Mendelsohn	et	al.,	2015).	Sensory-motor	transmission	was	blocked	

presynaptically	 through	 proprioceptor-specific	 expression	 of	 tetanus	 toxin,	 which	

prevents	 neurotransmitter	 release	 through	 the	 cleavage	 of	 synaptic	 vesicle	 fusion	

proteins	 (Humeau	 et	 al.,	 2000).	 In	 these	 animals,	 the	 density	 of	 heteronymous	

connections	 observed	 by	 anatomical	 tracing	 methods	 increased	 2-fold,	 while	 the	

incidence	 of	 homonymous	 synapses	 was	 unaffected	 (Mendelsohn	 et	 al.,	 2015).	 If	

activity	 were	 the	 sole	 determinant	 of	 heteronymous	 synaptic	 density,	 one	 might	

expect	 blockade	 of	 sensory	 transmission	 to	 equalize	 homonymous	 and	

heteronymous	 input	 strengths.	 Instead,	 the	 overall	 incidence	 of	 heteronymous	

synapses	 remained	 substantially	 lower	 than	 that	 of	 homonymous	 synapses	

(Mendelsohn	et	al.,	2015),	suggesting	that	molecular	recognition	may	nevertheless	

contribute	to	the	specificity	of	heteronymous	reflex	arcs.	
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	 Thus,	while	the	weighting	of	heteronymous	synapses	seems	to	rely	in	part	on	

activity-dependent	 refinement,	 activity	 does	 not	 appear	 to	 be	 involved	 in	

establishing	 the	 pattern	 of	 homonymous	 inputs	 by	 proprioceptors	 to	 motor	

neurons.	 This	 conclusion,	 combined	 with	 the	 selectivity	 of	 connections	 formed	

between	spindle	afferents	and	motor	neurons,	 implies	that	proprioceptors	possess	

muscle-specific	molecular	identities	capable	of	directing	monosynaptic	connectivity	

within	the	spinal	cord.	I	will	now	discuss	current	knowledge	of	the	molecular	events	

underlying	 specification	 of	 the	 proprioceptive	 lineage	 (Figure	 1.8),	 followed	 by	

efforts	to	characterize	proprioceptor	subtype	diversity.	

	

Genetic	specification	of	the	proprioceptive	lineage	

	

	 All	DRG	sensory	neurons	are	derived	from	neural	crest	cells,	which	arise	as	a	

seemingly	homogenous	population	of	multipotent	cells	along	the	dorsal	neural	tube	

and	 migrate	 on	 a	 ventral	 path	 between	 somite	 and	 neural	 tube	 to	 coalesce	 into	

segmentally	 reiterated	 ganglia	 (Horstadius,	 1950).	 The	 earliest	 steps	 of	 sensory	

neuron	 specification	 are	 controlled	 by	 the	 basic	 helix-loop-helix	 transcription	

factors	Ngn1	and	Ngn2	(Perez	et	al.,	1999;	Sommer	et	al.,	1996).		In	the	mouse,	Ngn2	

is	 expressed	 in	 early	migratory	 neural	 crest	 cells	 and	 is	 responsible	 for	 an	 initial	

wave	 of	 neurogenesis	 that	 gives	 rise	 exclusively	 to	 proprioceptive	 and	 cutaneous	

mechanosensitive	 neurons,	 whereas	 Ngn1	 is	 required	 by	 a	 later-differentiating	

lineage	 that	 generates	 most	 or	 all	 nociceptive	 neurons,	 as	 well	 as	 a	 subset	 of	

proprioceptors	and	mechanoreceptors	(Ma	et	al.,	1999).	The	requirement	for	Ngn1		
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Figure	1.8	Molecular	hierarchy	governing	the	specification	of	proprioceptors	
	
DRG	neuron	diversification	during	development.	Schematic	representation	of	the	
main	 lineages	 (outlined	 by	 color	 shading)	 during	 the	 course	 of	 sensory	 neuron	
differentiation	in	mouse.	Proprioceptors	are	located	in	the	green	column	and	are	
defined	by	 the	expression	of	TrkC,	Runx3	and	Pv.	Adapted	 from	Lallemend	and	
Ernfors,	2012.	
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and	Ngn2	 in	 distinct	 classes	 of	 sensory	neurons	does	 not	mean	 that	 these	 factors	

necessarily	encode	sensory	neuron	subtype:	Ngn1	compensates	for	the	loss	of	Ngn2	

by	 supplementing	 neurons	 of	 the	 proprioceptive	 and	 mechanosensitive	 lineages	

(Ma	 et	 al.,	 1999).	Nevertheless,	 the	 commitment	 of	 neural	 crest	 cells	 to	 a	 sensory	

neuronal	identity	requires	the	expression	of	Ngn	proteins	(Greenwood	et	al.,	1999).	

	

The	 transition	 from	 sensory	 neurogenesis	 to	 subtype	 specification	 is	

dependent	on	pan-sensory	expression	of	the	homeobox	transcription	factors	Islet1	

and	brain-specific	homeobox/Pou	domain	protein	3A	(Brn3a,	also	called	Pou4f1)	in	

early	 postmitotic	 DRG	 neurons	 (Fedtsova	 and	 Turner,	 1995).	 Analysis	 of	 mice	

deficient	 in	 Islet1	and	Brn3a	has	 revealed	 their	 requirement	 for	 the	expression	of	

lineage-specific	genes.	Islet1	mutants	lack	molecular	markers	of	cutaneous	sensory	

neurons	 mediating	 the	 sensations	 of	 pain	 and	 touch,	 while	 the	 expression	 of	

proprioceptor	markers	 is	preserved	 (Sun	et	 al.,	 2008).	Conversely,	Brn3a	mutants	

do	not	express	the	proprioceptor	genes	TrkC	and	Runx3.		

	

Emergent	 somatosensory	 lineages	 are	 marked	 by	 their	 differential	

expression	 of	 the	 tyrosine	 receptor	 kinase	 (Trk)	 family	 of	 neurotrophin	 factor	

receptors	(Lallemend	and	Ernfors,	2012).	TrkA,	the	receptor	for	nerve	growth	factor	

(NGF),	 is	 expressed	 in	 nociceptive	 and	 thermoceptive	 sensory	 neurons.	 TrkB,	 the	

receptor	for	brain-derived	neurotrophic	factor	(BDNF)	and	neurotrophin-4	(NT-4),	

is	expressed	in	touch-sensitive	neurons.	TrkC,	the	high-affinity	receptor	for	NT-3,	is	

expressed	 in	proprioceptors.	As	part	of	 their	normal	development,	 somatosensory	
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neurons	–	 including	proprioceptors	–	undergo	a	period	of	programmed	cell	death	

that	is	rooted	in	competition	for	peripheral	trophic	support	(Ernfors	and	Lee,	1994;	

Henderson,	 1996).	 Each	 of	 the	 Trk	 receptors	 is	 required	 for	 the	 survival	 of	 the	

distinct	class	of	neurons	that	it	marks,	indicating	that	neurotrophin	signaling	plays	a	

permissive	role	in	sensory	neuron	development	(Fariñas	et	al.,	1994;	Lallemend	and	

Ernfors,	2012).		

	

Uncoupling	Trk	signaling	from	its	function	in	neuronal	survival	has	revealed	

an	 instructive	 role	 in	 the	 specification	 of	 somatosensory	 lineages.	 Presumptive	

nociceptive	neurons	in	mice	lacking	Bax	protein,	which	is	required	for	apoptosis	in	

somatosensory	neurons	 (White	 et	 al.,	 1998),	 fail	 to	 innervate	 the	 skin	 and	do	not	

express	molecular	markers	in	the	absence	of	the	TrkA	receptor	(Patel	et	al.,	2000).	

In	Bax-/-,	NT3-/-	mice	 lacking	peripheral	NT3,	proprioceptive	 axons	 express	Pv	but	

fail	to	extend	into	the	dorsal	horn,	similar	to	the	phenotype	observed	in	mice	lacking	

Er81	 (Patel	 et	 al.,	 2003).	 Furthermore,	 expression	 of	 TrkC	 from	 the	TrkA	 locus	 is	

sufficient	to	direct	presumptive	nociceptors	to	a	proprioceptive	fate,	confirming	that	

signaling	through	TrkC	does	not	merely	provide	a	generic	survival	signal	but	in	fact	

directs	features	of	generic	proprioceptor	identity,	including	Pv	and	Er81	expression	

and	muscle	spindle	formation	(Moqrich	et	al.,	2004;	Patel	et	al.,	2003).		

	

NT3	signaling	through	the	TrkC	receptor	plays	a	complex	role	 in	regulating	

proprioceptor	 identity.	 Proprioceptors	 are	 exposed	 to	multiple	 sources	 of	 NT3	 at	

different	 points	 in	 their	 maturation.	 During	 embryonic	 development,	 NT3	 is	
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expressed	 by	 intrafusal	 and	 extrafusal	 skeletal	muscle	 fibers,	 by	 the	mesenchyme	

surrounding	 peripheral	 projection	 pathways,	 and	 by	motor	 neurons	 in	 the	 spinal	

cord.	However,	 shortly	 after	birth,	 its	 expression	 is	 restricted	 to	 intrafusal	muscle	

fibers	 (Copray	 and	Brouwer,	 1994;	 Ernfors	 et	 al.,	 1994;	 Farinas	 et	 al.,	 1996).	 The	

level	 of	 NT3	 expressed	 by	 the	 extrafusal	 fibers	 of	 distinct	 muscles	 varies	 and	 is	

correlated	with	dependence	on	the	transcription	factor	Er81	(Etv1)	 for	survival	 in	

proprioceptors	(de	Nooij	et	al.,	2013).	Thus,	in	addition	to	promoting	proprioceptor	

survival	 and	 regulating	 generic	 features	 of	 proprioceptor	 identity,	 graded	 NT3	

signaling	 appears	 to	 elicit	 distinct	 molecular	 responses	 in	 proprioceptors	 in	 a	

muscle-by-muscle	manner	(de	Nooij	et	al.,	2013).	Indeed,	altering	the	level	of	muscle	

NT3	 expression	 in	 transgenic	 mice	 has	 been	 found	 to	 erode	 the	 selective	

connectivity	 of	 proprioceptive	 afferents	 with	 target	 motor	 neurons	 (Wang	 et	 al.,	

2007).	 Furthermore,	 recent	 studies	 have	 reported	 changes	 in	 gene	 expression	 in	

proprioceptors	in	response	to	elevated	NT3	signaling	(Lee	et	al.,	2012).	

	

Numerous	 studies	 have	 established	 that	 expression	 of	 the	 Trk	 receptors	 is	

much	 broader	 shortly	 after	 neurogenesis	 than	 at	 later	 stages,	 indicating	 that	 the	

diversification	 of	 somatosensory	 subtypes	 involves	 not	 only	 transcriptional	

activities	 that	 induce	 and	 maintain	 expression	 of	 the	 Trk	 receptors,	 but	 also	

repressor	 activities	 that	 extinguish	 their	 expression,	 thereby	 driving	 segregation	

into	 functional	 subtypes	 (Lallemend	 and	 Ernfors,	 2012).	 In	 proprioceptors,	

maintenance	 of	 trkC	 expression	 is	 dependent	 on	 expression	 of	 the	 transcription	
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factor	 Runx3.	 Runx3	 also	 represses	 the	 expression	 of	 TrkB,	 thereby	 driving	

differentiation	toward	the	proprioceptive	lineage	(Kramer	et	al.,	2006).		

	

Eliminating	 the	 function	 of	 genes	 involved	 in	 proprioceptor	 differentiation	

often	impacts	the	ability	of	proprioceptors	to	project	into	the	ventral	domain	of	the	

spinal	cord,	where	monosynaptic	connections	with	motor	neurons	are	formed.	Er81	

mutant	 mice	 exhibit	 severe	 deficits	 in	 motor	 coordination,	 yet	 the	 induction	 of	

muscle	 spindles	 occurs	 normally.	 The	 defect	 in	 these	 mutants	 occurs	 due	 to	 the	

failure	of	group	Ia	proprioceptive	afferents	to	terminate	in	the	ventral	horn	(Arber	

et	al.,	2000).	Similarly,	altering	 the	 level	of	Runx3	activity	 in	proprioceptors	alters	

the	 dorsoventral	 termination	 zones	 of	 proprioceptor	 axons	 in	 chick	 spinal	 cord	

(Chen	 et	 al.,	 2006).	 Er81	 and	 Runx3	 are	 expressed	 by	 all	 proprioceptors	 but	 at	

varying	levels.	The	effect	of	these	genes	on	the	dorsoventral	termination	of	sensory	

axons	 has	 led	 to	 the	 hypothesis	 that	 their	 graded	 expression	 leads	 to	 the	

differentiation	 of	 muscle	 spindle	 and	 GTO	 afferents,	 which	 are	 characterized	 by	

distinctions	in	the	dorsoventral	extent	of	their	projection	(Chen	et	al.,	2006;	de	Nooij	

et	al.,	2013).	

	

In	addition	to	the	network	of	transcription	factors	and	downstream	effectors	

required	 for	 generic	 proprioceptor	 specification,	 several	 terminal	 features	 of	

proprioceptor	 differentiation	 have	 been	 identified.	 Proprioceptors	 are	

glutamatergic	 and	 express	 vesicular	 glutamate	 transporter	 1	 (vGluT1),	 which	 is	

present	 peripherally	 at	 muscle	 spindles	 and	 GTOs,	 as	 well	 as	 at	 proprioceptor	
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synapses	 with	 motor	 neurons	 (Wu	 et	 al.,	 2004).	 The	 calcium-binding	 protein	

Parvalbumin	 (Pv)	 is	 also	 expressed	 by	 all	 post-mitotic	 proprioceptors	 in	 DRG,	

although	its	function	in	sensory	neurons	is	unclear	(Ernfors	and	Lee,	1994).	In	the	

periphery,	 proprioceptor	 expression	 of	 Neuregulin1	 signals	 through	 the	 Erbb2	

receptor	in	intrafusal	fibers	to	regulate	the	formation	of	the	muscle	spindle	(Leu	et	

al.,	 2003).	More	 recently,	progress	has	been	made	 in	 characterizing	 the	molecular	

mechanism	 underlying	 the	 conversion	 of	 mechanical	 deformations	 of	 the	 muscle	

spindle	and	GTO	 into	afferent	 firing.	Piezo2,	a	mechanically	activated	nonselective	

cation	channel,	is	expressed	in	sensory	endings	of	proprioceptors	innervating	both	

muscle	spindles	and	GTOs,	where	it	is	required	for	stretch-evoked	neuronal	activity	

in	these	cells	(Woo	et	al.,	2015).	Whirlin	(Whrn),	a	PDZ-scaffold	protein	involved	in	

vestibular	 and	 auditory	 hair	 cell	 transduction,	 was	 found	 to	 be	 expressed	 nearly	

selectively	among	DRG	neurons	by	proprioceptors,	where	it	 localizes	to	peripheral	

sensory	 endings	 and	 facilitates	 afferent	 firing	 in	 response	 to	 muscle	 stretch	 (De	

Nooij	 et	 al.,	 2015).	 In	 vitro	 recordings	 of	 piezo2-deficient	 pv-expressing	 neurons	

revealed	residual	rapidly	adapting	currents	in	response	to	mechanical	deformation,	

suggesting	 that	 there	 may	 be	 additional	 as-yet-unidentified	 channel	 proteins	

involved	in	proprioceptor	mechanotransduction	(Woo	et	al.,	2015).	

	

In	 summary,	 the	 neuronal	 context	 conferred	 by	Ngn2	 and	Brn3a	 results	 in	

the	expression	of	Runx3,	 thereby	 consolidating	proprioceptor	 identity.	 Expression	

of	 the	TrkC	 receptor	by	proprioceptors	 confers	 survival	 in	 response	 to	peripheral	

NT3	and	 specifies	 gross	afferent	 trajectory	within	 the	 spinal	 cord	via	 induction	of	
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Er81	 and	maintenance	 of	 Runx3	 expression,	 the	 graded	 expression	 of	which	may	

drive	 the	 specification	 of	 muscle	 spindle	 and	 GTO	 afferents.	 In	 the	 periphery,	

formation	of	the	muscle	spindle	requires	proprioceptor	expression	of	Neuregulin1,	

and	proprioceptor	mechanosensitivity	 is	 dependent	 on	 the	presence	 of	Whrn	 and	

Piezo2	 at	 the	 end	 organ.	 To	 date,	 no	 individual	 marker	 distinguishing	 the	

proprioceptive	lineage	from	other	DRG	sensory	modalities	has	been	identified,	often	

due	 to	 substantial	 overlap	 in	 gene	 expression	 between	 proprioceptors	 and	

cutaneous	 mechanoreceptors.	 However,	 the	 proprioceptor	 population	 is	

demarcated	by	the	intersection	of	Runx3	and	Pv	expression	(de	Nooij	et	al.,	2013).	

	

Characterization	of	proprioceptor	subtype	diversity	

	

Despite	 our	 knowledge	 of	 the	 transcriptional	 networks	 that	 assign	 generic	

proprioceptor	 identity,	 our	 understanding	 of	 the	 molecular	 correlates	 of	

proprioceptor	subtype	identity	is	woefully	limited.	This	is	perhaps	because	sensory	

neurons	 lack	 an	 overt	 topography	within	 the	DRG.	 Proprioceptors	 are	 intermixed	

with	various	cutaneous	lineages,	and	although	somatosensory	cell	bodies	of	distinct	

modalities	 can	 be	 differentiated	 to	 some	 extent	 by	 diameter,	 fiber	 type	 and	

molecular	 profile,	 there	 is	 often	 non-trivial	 overlap	 in	 marker	 gene	 expression	

between	 the	 proprioceptive	 and	 cutaneous	 sensory	 modalities	 (Lallemend	 and	

Ernfors,	2012).	Moreover,	proprioceptors	innervating	a	given	muscle	are	scattered	

among	 several	 DRG,	 complicating	 their	 identification	 in	 the	 absence	 of	molecular	

markers.	 At	 present,	 proprioceptors	 innervating	 different	 muscles	 or	 end	 organs	
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within	 a	 muscle	 can	 only	 be	 accessed	 by	 way	 of	 distinctions	 in	 peripheral	

termination.	

	

Several	 molecular	 screens	 have	 taken	 an	 unbiased	 approach	 to	

characterizing	 the	 diversity	 of	 DRG	 sensory	 neurons.	 These	 efforts	 have	 utilized	

single-cell	 RNA-Sequencing	 (RNA-Seq)	 of	 individual	 DRG	 neurons	 combined	 with	

principal	 component	 analysis	 in	 an	 attempt	 to	determine	 the	number	of	 neuronal	

classes	required	for	function	of	the	somatosensory	system	(Li	et	al.,	2016;	Usoskin	

et	 al.,	 2014).	 By	 identifying	 proprioceptors	 post-hoc	 via	 their	 co-expression	 of	

Runx3	 and	Pv,	 these	 screens	have	provided	 some	 insight	 into	 the	diversity	 of	 the	

proprioceptor	class	as	a	whole.	However,	salient	features	of	proprioceptor	subtype	

identity	 were	 not	 preserved	 in	 these	 screens;	 it	 is	 impossible	 to	 determine	 from	

these	 datasets	 whether	 an	 individual	 proprioceptor	 is	 a	 muscle	 spindle	 or	 GTO	

afferent	or	which	muscle	 it	supplies,	hence	preventing	the	extraction	of	associated	

differences	in	gene	expression.	

	

An	RNA-Seq-based	approach	has	been	utilized	to	assess	distinctions	in	gene	

expression	between	muscle	spindle	(groups	Ia	and	II)	and	GTO	(group	Ib)	afferents.	

In	 this	 study,	 an	 Egr3::Wga-mCherry	 transgenic	 mouse	 line	 was	 used	 to	 direct	

expression	 of	 the	 transsynaptic	 neural	 tracer	 wheat	 germ	 agglutinin	 to	 egr3-

expressing	 intrafusal	muscle	 fibers,	 thereby	 selectively	 labeling	 the	 cell	 bodies	 of	

group	 Ia	 and	 II	 muscle	 spindle	 afferents	 with	 WGA-mCherry	 fusion	 protein	 (De	

Nooij	 et	 al.,	 2015).	 In	 combination	 with	 YFP	 expression	 under	 control	 of	 the	 pv	
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promoter,	 dual-labeled	 group	 Ia	 and	 II	 proprioceptors	 can	 be	 distinguished	 from	

YFP+,	 mCherry-	 group	 Ib	 cell	 bodies,	 enabling	 the	 purification	 and	 comparison	 of	

these	 populations	 (De	 Nooij	 et	 al.,	 2015).	 While	 this	 approach	 has	 identified	

candidate	genes	expressed	in	proprioceptor	subsets,	confirmation	of	their	status	as	

bona	 fide	 muscle	 spindle	 or	 GTO	 afferent	 markers	 is	 pending	 (Joriene	 de	 Nooij,	

personal	communication).	

	

Several	 studies	 performed	 in	 chick	 have	 identified	 genetic	 distinctions	

associated	with	proprioceptor	muscle	innervation.	Chick	proprioceptors	have	been	

found	 to	 selectively	 express	 several	 members	 of	 the	 type	 II	 cadherin	 family	 of	

recognition	 molecules	 in	 association	 with	 their	 limb	 muscle	 target	 (Price	 et	 al.,	

2002).	Furthermore,	 the	ETS	transcription	factors	Er81	and	Pea3	are	expressed	in	

proprioceptors	 in	 a	 manner	 correlated	 to	 muscle	 innervation	 (Lin	 et	 al.,	 1998),	

although	these	distinctions	do	not	hold	in	mouse.	One	chick	study	took	an	unbiased	

approach	to	profiling	differences	in	proprioceptor	gene	expression	associated	with	

muscle	 innervation	 (Chen	 et	 al.,	 2002).	 This	 screen	 identified	 the	 transcription	

factor	 Lmo4,	 which	 was	 found	 to	 be	 expressed	 in	 a	 majority	 of	 proprioceptors	

innervating	 adductor	 muscle,	 but	 was	 nearly	 absent	 from	 proprioceptors	

innervating	several	other	hindlimb	muscles	 (Chen	et	al.,	2002).	 	However,	none	of	

these	genes	are	expressed	in	an	all-or-none	manner	by	an	entire	cohort	of	muscle-

type	 proprioceptors,	 and	 the	 logic	 underlying	 their	 specification	 and	 function	 in	

sensory	neurons	remain	unclear.	
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In	mouse,	a	fragmented	knowledge	of	proprioceptor	muscle-type	identity	has	

been	gleaned	 from	studies	of	 selective	synapse	 formation	between	proprioceptors	

and	 motor	 neurons,	 which	 have	 often	 taken	 a	 candidate	 approach	 to	 identifying	

relevant	 molecules	 involved	 in	 sensory	 axon	 pathfinding	 and	 target	 recognition.	

Repellant	signaling	between	Semaphorin3e	(Sema3e),	expressed	by	motor	neurons,	

and	 its	 receptor	 PlxnD1	 in	 muscle-specific	 subsets	 of	 proprioceptors	 has	 been	

shown	 to	 mediate	 the	 choice	 between	 poly-	 and	monosynaptic	 connectivity	 with	

motor	 neurons	 as	 well	 as	 the	 formation	 of	 specific	 monosynaptic	 contacts	

(Fukuhara	et	al.,	2013;	Pecho-Vrieseling	et	al.,	2009).	Furthermore,	type	II	cadherins	

are	 expressed	 in	 subsets	 of	mouse	 DRG	 neurons,	 indicating	 that	 their	 expression	

could	be	 restricted	 to	muscle-type	 subpopulations	of	proprioceptors	 (Demireva	et	

al.,	 2011),	 although	 the	 function	 of	 cadherins	 in	 sensory	 neurons	 is	 at	 present	

unclear.	

	

Nevertheless,	the	recognition	systems	identified	by	candidate	screens	are	far	

from	 sufficient	 to	 direct	 the	 formation	 of	 the	 complex	 matrix	 of	 connectivity	

observed	 between	 proprioceptors	 and	motor	 neurons.	 Despite	 the	 importance	 of	

proprioceptor	subtypes	for	the	formation	of	spinal	circuitry,	the	molecular	identities	

of	proprioceptors	innervating	distinct	limb	muscles	have	never	been	systematically	

profiled	in	mice.		

	

Role	of	the	periphery	in	proprioceptor	subtype	specification	
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	 During	development,		proprioceptors	innervate	targets	in	the	periphery	prior	

to	 forming	 synaptic	 connections	 with	 neurons	 in	 the	 CNS	 (Ramon	 y	 Cajal,	 1911,	

1929;	Vaughn	and	Grieshaber,	1973;	Windle	and	Baxter,	1936).	As	discussed	above,	

proprioceptors	 innervating	different	peripheral	 targets	 establish	 connections	with	

distinct	and	characteristic	subsets	of	neurons	within	the	spinal	cord.	One	hypothesis	

regarding	 how	 this	 specificity	 is	 achieved	 holds	 that	 developing	 sensory	 neurons	

acquire	 molecular	 identities	 from	 their	 peripheral	 targets	 that	 endow	 them	 with	

affinities	for	the	correct	subsets	of	neurons	in	the	CNS	(Miner,	1956;	Sperry,	1963).	

In	 the	 case	 of	 Ia	 monosynaptic	 connections	 with	 motor	 neurons,	 the	 activity-

independent	 formation	 of	 patterned	 homonymous	 connectivity	 (Mendelson	 and	

Frank,	1991)	lends	credence	to	this	theory.	

	

Proprioceptors	 appear	 to	 be	 uncommitted	 with	 respect	 to	 specific	 muscle	

target	and	rely	on	association	with	motor	axons	to	establish	appropriate	patterns	of	

peripheral	connectivity	(Treubert-Zimmermann	et	al.,	2002).	When	motor	neurons	

are	 ablated	 before	 axonal	 outgrowth	 into	 the	 limb,	 sensory	 axons	 that	 normally	

project	to	muscles	reroute	to	project	along	cutaneous	nerves,	resulting	in	a	 lack	of	

sensory	 muscle	 innervation	 (Gallarda	 et	 al.,	 2008;	 Landmesser	 and	 Honig,	 1986;	

Swanson	 and	 Lewis,	 1986;	 Wang	 and	 Scott,	 2000).	 In	 addition,	 transplantation	

experiments	have	 suggested	 that	 the	 ability	 of	 displaced	 sensory	neurons	 to	 form	

segmentally	appropriate	projections	 is	dependent	on	 the	presence	of	motor	axons	

extending	 from	 relocated	 neural	 tube	 segments	 (Landmesser	 and	 Honig,	 1986;	

Landmesser	 et	 al.,	 1983).	 Together,	 these	 studies	 suggest	 a	 model	 in	 which	
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peripheral	sensory	neurons	extend	opportunistically	along	permissive	tissue	tracts,	

where	they	are	directed	by	their	interactions	with	motor	axons.	

	

Classical	 developmental	 studies	 performed	 in	 several	 model	 systems	 have	

demonstrated	 the	 instructive	 influence	 of	 peripheral	 elements	 on	 developing	

sensory	 neurons.	 In	 frogs,	 thoracic	 sensory	 axons	 redirected	 to	 project	 along	 the	

brachial	 nerve	 into	 the	 developing	 front	 leg	 of	 the	 tadpole	 supply	 spindles	 in	

forelimb	muscles,	which	they	do	not	normally	contact	 in	wild-type	animals	(Frank	

and	 Westerfield,	 1982a).	 Although	 proprioceptors	 in	 thoracic	 ganglia	 do	 not	

normally	 form	 direct	 connections	 with	 motor	 neurons	 (Frank	 and	 Westerfield,	

1982b),	 anatomical	 and	 physiological	 evidence	 demonstrated	 that	 rerouted	

proprioceptors	 established	 monosynaptic	 connections	 with	 the	 motor	 neurons	

innervating	 muscles	 of	 the	 forelimb,	 indicating	 that	 a	 cue	 supplied	 by	 forelimb	

motor	axons,	the	brachial	nerve	pathway,	or	the	target	muscles	themselves	directed	

the	formation	of	novel	but	appropriate	central	connections	(Frank	and	Westerfield,	

1982a,	1982b;	Smith	and	Frank,	1987).		

	

Subsequent	 studies	 performed	 in	 chick	 attempted	 to	 pinpoint	 the	 tissue	

source	of	this	limb-derived	cue.	At	a	developmental	time	point	prior	to	innervation,	

ventral	 tissue	of	the	developing	hindlimb	was	surgically	removed	just	distal	 to	the	

base	 of	 the	 limb	 and	 replaced	with	 dorsal	 tissue	 (Figure	 1.9;	Wenner	 and	 Frank,	

1995).	This	manipulation	resulted	in	embryos	with	a	duplicate	set	of	dorsal	muscles	

in	the	ventral	half	of	the	limb	that	are	supplied	by	the	motor	neurons	that	normally		
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Figure	1.9	Proprioceptor	central	connectivity	is	dictated	by	the	periphery	
	
(A-C)	Surgical	limb	duplication	experiments	in	chick	reveal	the	influence	of	limb	
dorsoventral	 identity	 on	 synaptic	 specificity.	 (A)	 In	 wild-type	 animals,	
proprioceptors	innervating	dorsal	muscles	(muscle	A;	purple)	 form	connections	
with	 laterally	 situated	 motor	 neurons	 innervating	 the	 same	 dorsal	 muscle.	
Likewise,	 proprioceptors	 innervating	 ventral	 muscle	 (muscle	 B;	 beige)	 form	
synapses	with	medial	motor	 neurons	 innervating	 the	 same	 ventral	muscle.	 (B)	
Experimental	 preparation:	 dorsodistal	 limb	 tissue	 was	 grafted	 in	 place	 of	
dorsoventral	 tissue,	 and	 the	 central	 connections	 formed	 by	 proprioceptors	
innervating	 the	 ectopic	 limb	 domain	 (muscle	 A’)	 were	 assayed.	 (C)	
Proprioceptors	 innervating	 muscle	 A’	 were	 found	 to	 form	 synapses	 with	 the	
motor	 neurons	 specified	 to	 innervate	 muscle	 A,	 rather	 than	 those	 specified	 to	
innervate	muscle	B	that	in	the	experimental	preparation	supply	muscle	A’.	
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innervate	 ventral	 musculature	 (Lance-Jones,	 1986).	 In	 this	 preparation,	 sensory	

axons	 project	 along	 ventral	 nerve	 pathways	 aside	 the	motor	 axons	 that	 normally	

innervate	 ventral	 muscles,	 only	 to	 encounter	 ectopic	 dorsal	 tissue	 from	 the	

proximodistal	 level	 of	 the	 thigh	 onward.	 When	 the	 central	 connections	 made	 by	

proprioceptors	 supplying	 ectopic	 dorsal	 musculature	 were	 assayed,	 these	

proprioceptors	were	 found	to	synapse	with	 the	same	motor	neurons	contacted	by	

proprioceptors	 supplying	 the	 corresponding	 normal	 dorsal	muscles	 (Wenner	 and	

Frank,	1995).	Sensory	neurons	therefore	made	synaptic	connections	appropriate	for	

their	 dorsal	 target	 muscle	 rather	 than	 for	 their	 proximal	 ventral	 environment	

(Wenner	 and	Frank,	 1995),	 indicating	 an	 influence	 of	 the	 dorsoventral	 identity	 of	

peripheral	 tissue	 on	 the	 patterning	 of	 proprioceptor	 connections	 with	 motor	

neurons.	

	

Because	these	sensory	axons	projected	to	novel	muscle	targets	but	did	so	via	

their	 normal	 proximal	 pathways	 in	 association	 with	 their	 normal	 motor	 axon	

partners,	 the	 authors	 of	 the	 study	 concluded	 that	 proprioceptor	 connectivity	was	

influenced	 by	 target	muscle	 (Wenner	 and	 Frank,	 1995).	 However,	 this	 conclusion	

overlooks	 the	 possibility	 that	 transplanted	 limb	 mesenchyme	 –	 which,	 like	

transplanted	 muscle,	 is	 dorsal	 in	 character	 –	 could	 influence	 sensory	 patterning.	

Furthermore,	in	light	of	more	recent	studies	of	motor	neuron	subtype	specification,	

a	role	for	motor	axon	in	patterning	sensory	identity	cannot	be	dismissed.	Aspects	of	

motor	 neuron	 subtype	 character	 are	 retrogradely	 influenced	 by	 peripheral	 target	

muscle	(Vrieseling	and	Arber,	2006),	raising	the	possibility	that	motor	axon	identity	
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is	 altered	 in	 the	 chick	 dorsal	 graft	 preparation	 and	might	 therefore	 be	 capable	 of	

instructing	 the	 observed	 pattern	 of	 sensory-motor	 connectivity.	 Thus,	 it	 remains	

uncertain	which	 tissue	 in	 the	developing	 limb	supplies	 the	patterning	 information	

that	instructs	proprioceptor	connectivity	with	motor	neurons.				

	

In	 this	 thesis,	 I	 describe	 the	 results	 of	 a	 comparative	 screen	 designed	 to	

detect	 molecular	 distinctions	 in	 proprioceptors	 innervating	 muscles	 or	 muscle	

groups	spanning	the	extent	of	the	dorsoventral	and	proximodistal	axes	of	the	limb.	

The	 object	 of	 this	 screen	was	 threefold:	 (1)	 to	 uncover	 principles	 of	muscle-type	

diversity	 for	 proprioceptors	 innervating	 the	 hindlimb;	 (2)	 to	 establish	 genetic	

markers	of	proprioceptor	subtype	 identity	 that	could	be	used	to	assess	 the	role	of	

several	 peripheral	 tissues	 in	 their	 specification;	 and	 (3)	 to	 identify	 genes	 with	

potential	roles	in	establishing	selective	contacts	between	proprioceptors	and	motor	

neurons.	 In	 Chapter	 2,	 I	 present	 the	 results	 of	 our	 characterization	 of	 gene	

expression	 in	 proprioceptors	 innervating	 different	 muscles	 and	 discuss	 the	

implications	 of	 these	 findings	 for	 the	 specification	 of	 hierarchical	 proprioceptor	

identity.	In	Chapters	3-5,	I	assess	the	expression	of	several	novel	molecular	markers	

of	 proprioceptor	 muscle-type	 identity	 in	 transgenic	 mouse	 lines	 in	 which	 one	 of	

three	peripheral	 tissues	–	motor	axon,	 limb	mesenchyme,	and	 target	muscle	–	has	

been	genetically	manipulated.	 Finally,	 in	Chapter	6,	 I	 examine	whether	 two	of	 the	

proprioceptor	 muscle-type	 genes	 identified	 in	 our	 screen	 are	 involved	 in	

establishing	selective	contacts	with	spinal	motor	neurons.	
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2	Muscle-specific	correlates	of	proprioceptor	identity	

2.1	Introduction	

	

Formation	 of	 the	 precise	 matrix	 of	 monosynaptic	 connections	 between	

proprioceptors	 and	 spinal	 motor	 neurons	 in	 the	 absence	 of	 patterned	 activity	

implicates	 molecular	 recognition	 between	 subsets	 of	 each	 cell	 type.	 While	 the	

molecular	identities	of	motor	neurons	are	comparatively	well-characterized	(Arber,	

2012),	 little	 is	 known	 about	 the	 distinctions	 between	 proprioceptors	 that	 could	

mediate	selective	connectivity	with	postsynaptic	partners.	In	this	chapter,	I	describe	

the	 results	 of	 a	 comparative	 screen	 performed	 to	 detect	 molecular	 distinctions	

between	proprioceptors	innervating	different	muscles	–	here	termed	“muscle-type”	

proprioceptors	 –	of	 the	mouse	hindlimb.	 I	 validate	our	 findings	 in	vivo	 for	 a	 large	

cohort	of	 these	genes	and	use	a	genetic	 reporter	 to	characterize	 the	expression	of	

one	gene,	cdh13,	at	the	level	of	individual	muscles.	

	

2.2	Results	

2.2.1	Identifying	genetic	distinctions	between	muscle-type	proprioceptors	

	

	 To	 characterize	 the	 molecular	 diversity	 of	 proprioceptors	 terminating	 in	

distinct	 regions	 of	 the	mouse	 hindlimb,	we	 performed	 an	 RNA-Sequencing	 (RNA-

Seq)-based	 screen	 to	 identify	differences	 in	gene	expression	between	muscle-type	

proprioceptors.	 We	 chose	 to	 profile	 proprioceptors	 innervating	 five	 muscles	

spanning	the	proximodistal	and	dorsoventral	extents	of	 the	hindlimb:	gluteus	(GL;	
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dorsal	hip	extensor/rotator),	quadriceps	(Q;	dorsal	knee	extensor),	 tibalis	anterior	

(TA;	dorsal	ankle	flexor),	gastrocnemius	(GS;	ventral	ankle	extensor),	and	intrinsic	

foot	 (IF)	musculature	(Figures	2.1A	and	B).	These	muscles	or	muscle	groups	were	

chosen	because	they	lie	at	distinct	proximodistal	and	dorsoventral	limb	coordinates	

representing	distinct	zones	of	proprioceptor	termination	(Figure	2.1B).		

	

	 We	 used	 a	 combination	 of	 genetic	 and	 retrograde	 labeling	 methods	 to	

identify	 proprioceptors	 according	 to	 muscle	 innervation.	 Proprioceptive	 neurons	

are	marked	by	the	expression	of	parvalbumin	(Pv;	Figure	2.1C),	which	also	labels	a	

small	 population	 of	 low-threshold	 cutaneous	mechanoreceptors	 (Ernfors	 and	 Lee,	

1994;	 de	Nooij	 et	 al.,	 2013).	Parvalbumin::Cre	 (Pv::Cre)	mice	were	 crossed	with	 a	

Thy1::lox-STOP-lox::YFP	reporter	line	to	generate	Pv::YFP	mice	(Figure	2.1D;	Buffelli	

et	al.,	2003;	Hippenmeyer	et	al.,	2005;	Figure	2.1D).	We	 found	 that	~96%	of	YFP+	

sensory	neurons	in	lumbar	DRG	of	these	mice	expressed	Pv	at	postnatal	day	1	(P1).	

The	high	coincidence	of	Pv	and	YFP	protein	expression	 indicated	 that	Pv::YFP	 is	a	

reliable	 reporter	 of	 endogenous	 Pv	 expression	 and	 can	 be	 used	 to	 distinguish	

proprioceptors	from	DRG	neurons	of	other	sensory	modalities.	

	

	 To	 identify	 proprioceptors	 on	 the	 basis	 of	 muscle	 target,	 we	 injected	 the	

retrograde	tracer	cholera	toxin	B	subunit	conjugated	to	Alexa	Fluor	555	(ctb555)	into	

the	selected	hindlimb	muscles	of	P0	Pv::YFP	mice	(Figure	2.1D).	To	assess	specificity	

of	 labeling,	we	dissected	out	 the	 targeted	muscle	and	examined	 the	 localization	of	

Alexa	Fluor	555	in	surrounding	tissue.	When	targeting	TA	muscle,	ctb555	was	nearly		
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Figure	2.1	Identification	and	isolation	of	muscle-specific	proprioceptors	
	
(A)	Three-dimensional	renderings	of	the	muscles	or	muscle	groups	injected	with	
ctb555.	From	left	 to	right:	GL	=	gluteus	maximus	(light	blue)	and	gluteus	medius	
(dark	blue);	Q	=	vastus	 lateralis	(pink)	and	vastus	medialis,	vastus	 intermedius,	
and	rectus	femoris	(not	shown;	medial	to	vastus	lateralis);	tibialis	anterior	(red;	
TA);	GS	=	gastrocnemius	lateralis	(green)	and	medialis	(dark	green),	soleus,	and	
plantaris	 (neon	 green);	 and	 IF	 =	 musculature	 of	 the	 intrinsic	 foot	 (shades	 of	
purple).	GL,	Q	and	TA	derive	 from	 the	dorsal	muscle	mass,	whereas	GS	derives	
from	the	ventral	muscle	mass	(Lance-Jones,	1979).	Note	that	the	gastrocnemius	is	
partially	 obscured	 by	 the	 biceps	 femoris	 laterally	 and	 the	 semitendinosus	
medially.	P:	proximal;	D:	distal.	 (B)	Schematic	of	 the	regions	 sampled	along	 the	
proximodistal	 and	 dorsoventral	 limb	 axes.	 (C-E)	 Purification	 of	 proprioceptors.	
(C)	 Pv	 immunostaining	 in	 P0	 L4	 DRG	 distinguishes	 proprioceptors	 from	 other	
sensory	neurons.	Scale	bar,	25	μm.	(D)	Left:	GL,	Q,	TA,	GS,	and	IF	proprioceptors	
were	 retrogradely	 labeled	 via	 muscle	 injection	 of	 ctb555	 in	 Pv::Cre,	 Thy1::lox-
STOP-lox::YFP	 mice	 (Pv::YFP;	 arrowheads	 represent	 loxP	 sites).	 Right:	 ctb555-
labeled	YFPon	proprioceptors	 innervating	TA	muscle	 in	PI	L4	DRG.	Scale	bar,	20	
μm.	 (E)	 Dissociated	 sensory	 neurons.	 Top:	 generic	 proprioceptor.	Middle:	 non-
proprioceptive	DRG	sensory	neuron.	Bottom:	proprioceptor	identified	by	muscle	
innervation;	o.i.,	oblique	illumination.	Scale	bar,	12	μm.	
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always	 confined	 to	 the	 TA.	 However,	 when	 targeting	 GL,	 Q,	 and	 GS,	 ctb555	 was	

frequently	detected	in	adjacent	muscles	due	to	their	close	anatomical	apposition	to	

the	target	(see	Figure	2.1A)	and	the	tendency	of	ctb	to	diffuse	through	tissue.	 	For	

GL,	 Q,	 and	 GS	muscles,	 we	 therefore	 elected	 to	 isolate	 proprioceptors	 labeled	 via	

ctb555	 injections	 confined	 to	 the	 targeted	muscle	 and	 its	 synergists:	 “GL”	 samples	

included	 proprioceptors	 innervating	 gluteus	 maximus	 or	 gluteus	 medius;	 “Q”	

samples	 included	 proprioceptors	 innervating	 any	 of	 the	 four	 heads	 of	 the	

quadriceps	 (rectus	 femoris,	 vastus	 lateralis,	 vastus	 medialis,	 and	 vastus	

intermedialis);	 and	 “GS”	 samples	 included	 proprioceptors	 innervating	

gastrocnemius	 lateralis,	 gastrocnemius	medialis,	 soleus,	 or	 plantaris.	 The	 intrinsic	

foot	 (IF)	 musculature	 is	 comprised	 of	 ~20	 small	 muscles;	 our	 backfills	 were	

therefore	targeted	to	all	muscles	of	the	ventral	footpad	rather	than	to	any	individual	

muscle.		

	

While	 we	 would	 have	 liked	 to	 include	 proprioceptors	 innervating	 ventral	

muscles	 at	 the	 proximodistal	 positions	 of	 hip	 and	 thigh	 in	 our	 screen,	 limb	

morphology	 precluded	 the	 isolation	 of	 these	 muscle-type	 proprioceptor	

populations.	 The	 ventral	 equivalent	 of	 the	 GL,	 the	 iliopsoas	 (IP),	 is	 located	 deep	

within	 the	hip	socket	and	 is	 inaccessible	 to	retrograde	 tracing	 techniques,	and	 the	

hamstring/adductor	 group	 of	 muscles,	 which	 operates	 at	 the	 knee,	 is	 largely	

obscured	 by	 muscles	 of	 dorsal	 origin.	 We	 therefore	 omitted	 proprioceptors	

innervating	these	limb	domains	from	our	analysis.	
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Lumbar	DRG	 containing	 ctb555+	 neurons	 labeled	by	 specific	 injections	were	

removed	 24	 h	 after	 injection	 and	 dissociated.	 Individual	 YFP+,	 ctb555+	 cells	 were	

isolated	 (Figure	 2.1E),	 and	 25-30	 neurons	 were	 pooled	 to	 generate	 samples	 of	

muscle	 target-defined	 GL,	 Q,	 TA,	 GS,	 and	 IF	 proprioceptors	 in	 triplicate.	 After	

extraction	of	total	RNA,	cDNA	libraries	were	prepared	for	gene	expression	profiling	

by	RNA-Seq.		

	

	 To	 assess	 the	 ability	 of	 RNA-Seq	 to	 detect	 differences	 between	 30-cell	

samples,	we	performed	a	pilot	 screen	 comparing	L2-L6	YFP+	proprioceptors	 from	

Pv::YFP	mice	to	large-diameter	YFP-	sensory	neurons	isolated	from	the	same	ganglia	

(see	Figure	2.1E).	As	expected,	expression	of	pv	was	detected	in	YFP+	but	not	YFP-	

cells,	albeit	at	ectopically	low	levels	due	to	the	insertion	of	Cre	at	the	pv	locus	(2.2A;	

Hippenmeyer	 et	 al.,	 2005).	 Furthermore,	 expression	 of	 the	 genes	 etv1,	 runx3	 and	

whirlin	 -	 generic	 markers	 of	 the	 proprioceptive	 lineage	 (Lallemend	 and	 Ernfors,	

2012;	 De	 Nooij	 et	 al.,	 2015)	 –	was	 significantly	 upregulated	 in	 YFP+	 cells	 (Figure	

2.2B).	We	therefore	concluded	that	RNA-Seq	is	sufficiently	sensitive	to	characterize	

distinctions	between	30-cell	samples.		

	

	 Analysis	of	our	screen	data	revealed	140	genes	with	>5-fold	enrichment	in	at	

least	 one	 of	 the	 five	 muscle-specific	 populations	 profiled	 and	 a	 minimum	 RPKM	

(reads	per	kilobase	per	million;	RPKMmin)	value	of	10	for	at	least	one	replicate	of	the	

upregulated	 population	 (p<0.001;	 Table	 2.1).	 A	 majority	 of	 the	 differentially	

expressed	genes	could	be	categorized	into	5	functional	classes:	guidance	and		
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Figure	2.2	Validation	of	RNA-Seq	for	small	somatosensory	samples	
	
(A-B)	Proprioceptor	marker	gene	expression	in	30-cell	samples	of	proprioceptive	
and	non-proprioceptive	DRG	neurons.	(A)	Expression	of	pv	in	YFP+	and	YFP-	DRG	
neurons	 isolated	 from	 Pv::YFP	mice.	 (B)	 Expression	 of	 etv1,	 trkC,	 and	whrn	 in	
YFP+	and	YFP-	DRG	neurons.	*,	p<10-4.		**,	p<10-5.	***,	p<10-6.	
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Figure	2.3	Heat	map	representation	of	differential	gene	expression	
	
(A-G)	 Note	 that	 samples	 are	 arranged	 with	 respect	 to	 the	 proximodistal	 and	
dorsoventral	 limb	 axes.	 (A)	 Guidance,	 adhesion,	 and	 uncharacterized	
transmembrane	 proteins.	 (B)	 Transcription	 factors	 and	 transcriptional	
regulators.	 (C)	 Neurotransmission.	 (D)	 Morphogen,	 growth	 factor,	 and	
intracellular	signaling.	(E)	Cellular	metabolism.	(F)	Other.		
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Table	 2.1	 Genes	 determined	 by	 RNA-Sequencing	 to	 exhibit	 differential	
expression	 between	 muscle-type	 proprioceptor	 populations.	 All	 values	 are	 in	
reads	 per	 kilobase	 per	 million	 (RPKM).	 (A)	 Guidance,	 adhesion,	 and	
uncharacterized	 transmembrane	 proteins.	 (B)	 Transcription	 factors	 and	
transcriptional	reguators.	(C)	Neurotransmission.	(D)	Morphogen,	growth	factor,	
and	 intracellular	signaling.	(E)	Cellular	metabolism.	(F)	Other;	 includes	markers	
of	non-proprioceptive	DRG	lineages.	
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adhesion	 molecules,	 regulators	 of	 gene	 expression,	 genes	 involved	 in	

neurotransmission,	 mediators	 of	 signal	 transduction,	 and	 genes	 with	 roles	 in	

metabolic	pathways	(Figures	2.3A-F).		

	

	 The	largest	cohort	of	differentially	expressed	genes	(DEGs)	was	comprised	of	

guidance	and	adhesion	molecules	(Figure	2.3A),	in	accord	with	the	requirement	for	

muscle-type	 proprioceptors	 to	 target	 and	 synapse	 with	 distinct	 populations	 of	

spinal	 motor	 neurons	 during	 late	 embryonic	 development.	 We	 identified	 four	

members	 of	 the	 Ig	 superfamily	 of	 adhesion	 molecules	 (alcam,	 bcam,	 ncam2,	 and	

amigo2).	 We	 also	 identified	 several	 classical	 type	 II	 (cdh7	 and	 cdh20)	 and	 GPI-

anchored	(cdh13)	cadherins	-	effectors	of	cell-cell	adhesion	and	cell	migration	(Basu	

et	 al.,	 2015)	 –	 as	well	 as	 non-clustered	 protocadherins	 (pcdh17	 and	pcdh19)	with	

roles	 in	modulating	 classical	 cadherin-mediated	 cell	 adhesion	and	 regulating	axon	

extension	(Hayashi	and	Takeichi,	2015).	We	detected	five	candidate	genes	involved	

in	 semaphorin	 signaling	 (sema5a,	 sema6d,	 plxna2,	 plxna4,	 and	 nrp1)	 and	 one	 in	

ephrin	 signaling	 (epha4),	 both	 well-characterized	 axon	 guidance	 pathways	

(Kolodkin	et	al.,	2012).	Crtac1,	a	Nogo	receptor	agonist,	has	been	implicated	in	the	

formation	 of	 the	 lateral	 olfactory	 tract	 (Sato	 et	 al.,	 2011),	 and	 rgma	 acts	 as	 a	

repulsive	guidance	molecule	(Lah	and	Key,	2012).	Two	teneurins	(odz1	and	odz3),	

type	 II	 transmembrane	 proteins	 implicated	 in	 the	 formation	 of	 the	 visual	 system	

(Young	 and	 Leamey,	 2009;	 Leamey	 and	 Sawatari,	 2014),	 were	 found	 to	 be	

differentially	 expressed.	We	also	detected	 two	 integrins	 (itga2	 and	 itga3),	 two	CD	

proteins	 (cd9	 and	 cd44),	 chl1,	 pkp4,	 cntn4,	 and	 hapln4.	 Finally,	 we	 identified	 a	
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number	 of	 transmembrane	 proteins	 whose	 function	 in	 neurons	 has	 not	 been	

characterized	but	whose	 localization	 and	predicted	domain	 structures	make	 them	

candidates	 for	 mediating	 cellular	 recognition:	 vstm2b,	 tagln2,	 gm2115,	 gm10428,	

tmem72,	tmem176a,	tmem196,	tspan9,	C530028O21Rik	(pianp),	and	fam70a.		

	

	 Several	 differentially	 expressed	 genes	 indicate	 possible	 contamination	 by	

RNA	from	non-proprioceptive	DRG	neurons.	The	gene	calca,	which	is	upregulated	in	

GL	 and	 Q	 samples,	 encodes	 calcitonin	 gene-related	 peptide	 (CGRPα),	 a	marker	 of	

prurinergic	nociceptors	(McCoy	et	al.,	2012).	Likewise,	expression	of	lxn,	detected	in	

GS	 and	 IF	 samples,	 is	 confined	 to	 a	 population	 of	 thermosensitive	 DRG	 neurons	

(Takiguchi-Hayashi	et	al.,	1998).	The	presence	of	 these	 transcripts	may	stem	from	

the	accidental	inclusion	of	non-proprioceptive	DRG	neurons	in	our	samples,	or	could	

be	 due	 to	 the	 presence	 of	 transcript	 from	 lysed	 cells	 in	 the	 medium	 following	

dissociation.	Nevertheless,	we	proceeded	to	characterize	the	expression	patterns	of	

candidate	genes	in	P1	lumbar	DRG	tissue.	

	

	 We	 performed	 in	 situ	 hybridization	 to	 assess	 the	 expression	 of	 candidate	

genes	 in	 lumbar	 DRG	 of	 early	 postnatal	 mice	 (Figure	 2.4).	 If	 a	 candidate	 gene	 is	

expressed	 in	 a	 subset	 of	 proprioceptors,	 we	would	 expect	 to	 see	 expression	 in	 a	

subset	 of	 large-diameter	 DRG	 neurons	 (pv	expression	 is	 shown	 in	 Figure	 2.4A	 to	

illustrate	 the	 density	 and	 size	 of	 generic	 proprioceptors	 in	 lumbar	 DRG).	 Among	

guidance	and	adhesion	molecules	(Figure	2.4B),	alcam,	cdh7,	cdh13,	pcdh17,	pcdh19,	

sema5a,	 sema6d,	 plxna2,	 amigo2,	 cntn4,	 crtac1,	 cd9,	 tagln2,	 hapln4,	 chl1,	 vstm2b,	
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gm2115,	and	c530028o21rik	were	expressed	in	a	subset	of	DRG	neurons,	indicating	

that	 they	might	 also	 be	 expressed	 in	 subsets	 of	 proprioceptors.	 In	 contrast,	 rgma	

and	itga2	were	ubiquitously	expressed	in	lumbar	ganglia,	and	bcam,	ncam2,	cdh20,	

plxna4,	 nrp1,	 itga3,	 and	 tspan9	 were	 not	 detected	 in	 DRG	 neurons	 (Figure	 2.4B).	

Among	 transcription	 factors	 and	 transcriptional	 regulators	 (Figure	 2.4C),	 meis2,	

pou4f3,	 smyd1,	 tcerg1l,	 and	 prmt8	 were	 expressed	 by	 a	 subset	 of	 DRG	 neurons,	

whereas	zfhx3	was	expressed	by	all	neurons	in	lumbar	ganglia	and	nkx1-2	was	not	

expressed	 in	 DRG.	 Many	 candidate	 genes	 related	 to	 neurotransmission	 were	

expressed	 in	 sensory	 subsets	 (Figure	 2.4D):	 htr2c,	 chrna4,	 cacng5,	 scn10a,	 kcnk9,	

syt17,	 doc2b,	 sorcs1,	 rph3a,	 6330403a02rik,	 tnni1,	 and	 s100a6;	 kcnip4	 and	 stc1	

appear	to	be	expressed	throughout	the	ganglion.		Among	genes	involved	in	signaling	

pathways	 (Figure	 2.4E),	 rspo2,	 wls,	 vgf,	 gfra2,	 ret,	 ptger3,	 ptgir,	 rgs4,	 fam19a1,	

c1qtnf1,	 and	scg2	were	expressed	 in	a	subset	of	DRG	neurons,	while	expression	of	

gucy1a3,	 camk1d	 and	 bc018242	 was	 not	 detected	 in	 lumbar	 DRG.	 Of	 genes	 with	

known	roles	in	metabolic	pathways	(Figure	2.4F),	steap3	and	spp1	were	expressed	

in	DRG	subsets,	whereas	expression	of	ndufs4,	atp2b4,	 and	mme	was	not	detected.	

Additional	 genes	 assessed	 by	 in	 situ	 (Figure	 2.4G)	 include	 pcp41l	 (expressed	 in	 a	

subset	of	DRG	neurons);	crisp1	and	st6galnac5	(not	expressed	in	lumbar	DRG);	and	

pfn1	 and	 tuba8	 (expressed	 throughout	 the	 DRG).	 Thus,	 a	 majority	 of	 the	 genes	

identified	 in	our	 screen	are	 expressed	 in	 subsets	of	DRG	neurons,	 consistent	with	

their	predicted	expression	by	proprioceptor	subsets.	
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Figure	2.4	Candidate	gene	expression	in	lumbar	DRG		
	
(A-G)	Candidate	 gene	 expression	was	assessed	 in	 P0-P2	 lumbar	DRG	by	 in	situ	
hybridization.	All	images	are	representative	and	show	DRG	L4	unless	otherwise	
indicated.	(A)	Expression	of	the	proprioceptor	marker	pv.	(B)	Guidance,	adhesion	
and	 transmembrane	 proteins.	 (C)	 Transcription	 factors	 and	 transcriptional	
regulators.	 (D)	 Neurotransmission.	 (E)	 Morphogen,	 growth	 factor,	 and	
intracellular	signaling.	(F)	Cellular	metabolism.	(G)	Other.	
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2.2.2	 Muscle-type	 proprioceptors	 are	 defined	 by	 cdh13,	 vstm2b,	 sema5a,	 or	

crtac1	expression	

	

	 Profiling	 candidate	 gene	 expression	 by	 chromogenic	 in	 situ	 hybridization	

indicates	 whether	 transcript	 is	 present	 in	 a	 subset	 of	 DRG	 neurons,	 but	 it	 can	

neither	 confirm	 that	 these	 cells	 are	 proprioceptors	 nor	 characterize	 their	muscle-

type	 selectivity.	 We	 therefore	 chose	 to	 analyze	 the	 expression	 of	 four	

guidance/adhesion	molecules	expressed	by	subsets	of	DRG	neurons:	cdh13,	vstm2b,	

sema5a,	 and	 crtac1	 (Figure	 2.5).	 We	 first	 estimated	 their	 incidence	 in	 lumbar	

proprioceptors	using	double	fluorescent	in	situ	hybridization	(FISH).	We	found	that	

cdh13	is	expressed	by	48%	of	L2-L6	pvon	DRG	neurons,	vstm2b	by	42%,	sema5a	by	

22%,	and	crtac1	by	38%	(Figures	2.5A,	B,	E,	F,	I,	J,	M,	and	N).	Thus,	all	four	genes	are	

expressed	by	subsets	of	proprioceptors.	Notably,	cdh13,	sema5a,	and	crtac1	are	also	

expressed	 by	 subsets	 of	 trkAon	 and	 trkBon	 DRG	 neurons,	 markers	 of	 several	

cutaneous	 sensory	 lineages	 (Figure	 2.6A-C;	 Lallemend	 and	 Ernfors,	 2012).	 In	

contrast,	 vstm2b	 expression	 is	 confined	 to	 pvon	 neurons	 (Figure	 2.5E),	 suggesting	

that	among	DRG	neurons,	it	is	expressed	exclusively	by	a	subset	of	proprioceptors.	

	

	 We	 next	 examined	whether	 cdh13,	 vstm2b,	 sema5a,	 and	 crtac1	 exhibit	 the	

muscle-type	selectivity	predicted	 in	our	RNA-Seq	screen	 (refer	 to	Figure	2.3A	and	

Table	 2.1)	 by	 first	 assessing	 their	 expression	 in	 TA	 and	 GS	 proprioceptors.	 To	

evaluate	the	expression	of	these	genes	according	to	muscle	innervation,	we	injected	

ctb555	into	TA	or	GS	muscles	at	P0	and	assessed	the	expression	status	of	these	genes		
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Figure	 2.5	 Candidate	 gene	 expression	 in	 muscle-type	 proprioceptor	
subpopulations	
	
(A,	B,	E,	F,	I,	J,	M,	and	N)	cdh13on	(A	and	B),	vstm2bon	(E	and	F),	sema5aon	(I	and	J),	
and	crtacon	(M	and	N)	proprioceptors	at	P0	in	lumbar	DRG	(L,	lumbar	level;	n	=	6;	
>300	neurons/level).	Data	are	represented	as	the	mean	±	SD.	(C,	D,	G,	H,	K,	L,	O,	
and	 P)	 cdh13,	 vstm2b,	 sema5a,	 and	 crtac1	 status	 in	 proprioceptors	 by	 muscle.	
ctb555-labeled	TA,	GS,	Q,	and	H/Ad	or	GL	proprioceptors	(cdh13,	TA:	n=5;	GS:	n=6;	
Q:	n=3,	H/Ad:	n=6;	vstm2b,	sema5a,	and	crtac1,	TA:	n=3;	GS:	n=3;	Q:	n=3;	GL	or	
H/Ad:	n=3).	Data	are	represented	as	the	mean	±	SD.	Scale	bar,	20	μm.	
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Figure	 2.6	 Expression	 of	 proprioceptor	 muscle-type	 genes	 in	 cutaneous	 DRG	
neurons	
	
Cdh13,	sema5a,	and	crtac1	are	co-expressed	with	the	cutaneous	sensory	markers	
trkA	 and	 trkB.	 Note	 that	 the	 expression	 of	 vstm2b	 is	 restricted	 to	 pvon	 DRG	
neurons	(Figure	2.5E).	
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in	retrogradely	labeled	proprioceptors	at	P1.	We	found	that	96%,	100%,	and	95%,	

respectively,	 of	 pvon,	 ctb555-labeled	 TA	 neurons	 expressed	 cdh13,	 vstm2b,	 and	

sema5a,	whereas	GS	neurons	were	devoid	of	cdh13,	vstm2b,	and	sema5a	transcript	

expression.	 Conversely,	 65%	 of	 GS	 neurons	 expressed	 crtac1,	 and	 TA	 neurons	

lacked	crtac1	expression	(Figures	2.5C,	D,	G,	H,	K,	L,	O,	and	P).	

	

	 When	 we	 expanded	 our	 characterization	 proximally,	 we	 found	 that	 64%,	

72%,	 2%,	 and	 1%	 of	 proprioceptors	 supplying	 the	 dorsal	 quadriceps	 (Q)	 group	

expressed	cdh13,	vstm2b,	sema5a,	and	crtac1,	respectively	(Figure	2.5C,	D,	G,	H,	K,	L,	

O,	 and	 P).	 Proprioceptors	 supplying	 the	 ventrally	 positioned	 hamstring/adductor	

(H/Ad;	 comprised	 of	 gracilis,	 semitendinosus,	 semimembranosus,	 and	 adductors	

muscles)	group	lacked	cdh13	or	crtac1	expression,	although	42%	and	25%	of	these	

neurons	 expressed	vstm2b	 and	 sema5a,	 respectively	 (Figure	 2.5C,	D,	 G,	H,	 K,	 L,	O,	

and	P).	For	the	most	proximal	gluteal	(GL)	muscle	group,	we	observed	that	nearly	all	

(89%)	 backfilled	 proprioceptors	 expressed	 vstm2b,	 while	 none	 expressed	 cdh13,	

sema5a,	and	crtac1	(Figure	2.5C,	D,	G,	H,	K,	L,	O,	and	P).	

	

	 The	small	size	of	foot	muscles	prevented	us	from	targeting	dorsal	or	ventral	

domains	 with	 absolute	 precision.	 Nevertheless,	 dorsally	 directed	 ctb555	 injections	

revealed	 that	 91%,	 25%,	 40%,	 and	 14%	 of	 retrogradely	 labeled	 proprioceptors	

expressed	cdh13,	vstm2b,	sema5a,	and	crtac1,	whereas	24%,	0%,	10%	and	89%	of	

proprioceptors	 expressed	 cdh13,	 vstm2b,	 sema5a,	 and	 crtac1,	 respectively,	 after	

ventrally	directed	foot	injections	(Figure	2.5C,	D,	G,	H,	K,	L,	O,	and	P).	
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	 These	findings	confirm	the	selectivity	predicted	by	our	RNA-Seq	screen	and	

support	 the	 notion	 that	 proprioceptor	 gene	 expression	 is	 positionally	 restricted	

with	 respect	 to	 limb	 domain.	 Whereas	 dorsal-distal	 muscles	 are	 supplied	

preferentially	 by	 proprioceptors	 that	 express	 cdh13,	 crtac1	 is	 expressed	 by	

proprioceptors	that	 innervate	ventral-distal	musculature,	and	sema5a	 is	expressed	

in	proprioceptors	that	supply	dorsal	or	ventral	domains	at	particular	proximodistal	

positions.	In	contrast,	vstm2b	lacks	proximodistal	restriction,	but	is	largely	confined	

to	 proprioceptors	 innervating	 dorsal	 musculature.	 Thus,	 there	 is	 a	 clear	 link	

between	proprioceptor	expression	of	cdh13,	vstm2b,	sema5a,	and	crtac1	and	muscle	

position	along	the	dorsoventral	and	proximodistal	axes	of	the	limb.	

	

2.2.3	Fine-grained	analysis	of	cdh13	expression	using	a	genetic	reporter	

	

	 To	provide	a	more	detailed	evaluation	of	the	identity	and	position	of	muscles	

innervated	by	cdh13on	proprioceptors,	we	used	a	genetic	 strategy	 to	mark	 the	cell	

bodies	and	peripheral	and	central	axons	of	cdh13on	neurons.	We	utilized	a	knock-in	

mouse	 line	 in	 which	 a	 tamoxifen-inducible	 Cre	 recombinase/Estrogen	 Receptor	

fusion	construct	(CreERT2)	is	expressed	under	regulatory	control	of	the	TA-enriched	

gene	 cdh13	 (Cdh13::CreERT2).	 We	 crossed	 Cdh13::CreERT2	 mice	 with	 a	 Tau::lox-

STOP-lox::mGFP	line	to	generate	Cdh13::GFP	tracer	mice	(Figure	2.7A;	Hippenmeyer	

et	al.,	2005).	Tamoxifen	delivery	to	pregnant	females	at	embryonic	day	16.5	(e16.5)		
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Figure	 2.7	 cdh13	 expression	 is	 restricted	 to	 proprioceptors	 supplying	 the	
dorsodistal	hindlimb		
	
(A)	Cdh13::CreERT2	and	Tau::lox-STOP-lox::mGFP	mice	were	crossed	to	generate	
Cdh13::GFP	 tracer	 mice.	 Tamoxifen	 was	 injected	 into	 pregnant	 females	 at	 day	
e16.5	 of	 gestation	 to	 induce	 Cre	 activity.	 (B)	 GFP	 expression	 in	 P2	 DRG	 of	
Cdh13::GFP	 mice.	 Long	 arrows:	 Pvon,	 GFP+	 neurons.	 Short	 arrows:	 Pvoff,	 GFP+	
neurons.	 Scale	 bar,	 50	 μm.	 (C)	 GFP	 expression	 in	 TA	 proprioceptors	 in	
Cdh13::GFP	 mice.	 TA	 or	 GS	 proprioceptors	 in	 P0	 Cdh13::GFP	 mice	 were	
retrogradely	labeled	by	ctb555	muscle	injection.	At	P1,	DRG	were	removed	and	the	
expression	of	Pv	and	GFP	was	assessed	by	 immunostaining.	Arrows:	Pvon,	GFP+,	
ctb555+	 TA	 proprioceptors.	 Scale	 bar,	 10	 μm.	 (D)	 TA	 but	 not	 GS	motor	 neurons	
receive	cdh13on	 input	 from	TA	synergist	afferents.	 Immunostaining	 for	GFP	and	
vGluT1	demarcates	GFP+	proprioceptive	boutons	on	TA	(left)	but	not	GS	(right)	
motor	 neurons.	 Scale	 bar,	 20	 μm.	 (E)	 TA	 and	 GS	 retrogradely	 labeled	 motor	
neurons	receiving	GFP+,	vGlut1+	input	(left),	and	GFP+	proprioceptive	inputs	to		
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TA	and	GS	motor	neurons	(n	=	3	mice;	TA:	n	=	36	MNs,	836	boutons;	GS:	n	=	61	
MNs,	 1287	 boutons).	 Data	 is	 represented	 as	 the	mean	 ±	 SD.	 (F)	 GFP	 labels	 TA	
muscle	 spindle	 (Ia	 and	 II)	 and	 GTO	 (Ib)	 terminals	 in	 Cdh13::GFP	 mice.	 P7	 TA	
muscles	immunostained	for	vGluT1	and	GFP.	(G)	Cdh13on	proprioceptors	supply	
dorsal-distal	 hindlimb	 muscles.	 Hindlimb	 muscles	 along	 the	 rostrocaudal	 and	
proximodistal	axes	of	the	limb	in	Cdh13::GFP	mice	(tamoxifen	induction	at	e14.5-
16.5)	were	assessed	for	GFP	expression	at	spindle	terminals	by	immunostaining	
at	 P7	 (n	 ≥	 3	 mice;	 additional	 muscles	 innervated	 by	 cdh13off	 proprioceptors	
include:	pectineus,	flexor	digitorum	longus,	tibialis	posterior,	semimembranosus,	
semitendinosus,	quadratus	femoris,	biceps	femoris,	and	body	wall).	Scale	bar,	50	
μm.	
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resulted	in	GFP	expression	in	Pvon	lumbar	DRG	neurons	(Figure	2.7B).	The	fraction	

of	GFPon	proprioceptors	 in	DRG	L3-5	was	~8%,	whereas	~45%	of	proprioceptors	

express	 cdh13	 at	 these	 levels	 (see	 Figures	 2.4A	 and	 B),	 indicating	 a	 tamoxifen	

induction	 efficiency	 of	 ~18%	 (Figure	 2.7B).	 The	 low	 induction	 efficiency	 likely	

reflects	a	high	level	of	Hsp-90	expression	in	DRG	neurons,	which	retains	the	CreERT2	

fusion	protein	in	the	cytoplasm	(Zhao	et	al.,	2006).	

	

	 We	 determined	 the	 fidelity	 of	 GFP	 expression	 in	 Cdh13::GFP	 mice	 by	

analyzing	 TA	 and	 GS	 proprioceptors.	 At	 P1,	 15%	 of	 ctb555-labeled	 TA	

proprioceptors,	 but	no	GS	proprioceptors,	 expressed	GFP	 (Figure	2.7C),	mirroring	

endogenous	 cdh13	 expression.	 The	 central	 connectivity	 of	 cdh13on	 proprioceptors	

(TA/EDL/PER)	 was	 assessed	 by	 monitoring	 GFP	 expression	 in	 vGlut1+	

proprioceptor	 terminals	 in	 the	ventral	 spinal	 cord	of	Cdh13::GFP	mice.	92%	of	TA	

motor	neurons	received	 inputs	 from	GFP-labeled	vGluT1+	proprioceptor	 terminals	

and,	 inversely,	 14%	 of	 all	 vGluT1+	 proprioceptor	 terminals	 on	 TA	 motor	 neuron	

somata	 and	 the	proximal	 100	μm	of	 the	 dendritic	 tree	 co-expressed	GFP	 (Figures	

2.7D-F).	 This	 low	 fraction	 presumably	 reflects	mosaicism	 in	 GFP	 expression	 after	

tamoxifen	induction.	In	contrast,	none	of	the	vGluT1+	terminals	on	the	somata	and	

proximal	dendrites	of	GS	motor	neurons	expressed	GFP	(Figures	2.7E	and	F).	Thus,	

the	pattern	of	sensory-motor	contacts	in	Cdh13::GFP	mice	conforms	to	the	agonist-

antagonist	rules	of	synaptic	patterning.	
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	 We	next	 assessed	 the	peripheral	 terminations	of	 cdh13on	 proprioceptors	 in	

Cdh13::GFP	 mice.	 After	 retrograde	 tracer	 injection,	 we	 detected	 cdh13	 transcript	

expression	 in	 most	 TA	 proprioceptors,	 suggesting	 that	 all	 three	 classes	 of	

proprioceptors	 –	 group	 Ia,	 group	 II,	 and	 group	 Ib	 afferents	 –	 express	 cdh13.	 In	

support	of	this	view,	analysis	of	TA	muscle	revealed	annulospiral	GFP+,	vGluT1+	type	

Ia	and	type	II	sensory	endings	in	muscle	spindles,	as	well	as	more	broadly	arborized	

type	 Ib	 endings	 associated	 with	 GTOs	 (Figures	 2.7F	 and	 G).	 In	 contrast,	 GFP	

expression	 was	 not	 observed	 in	 sensory	 endings	 in	 GS	 muscle	 (Figure	 2.7G),	

consistent	with	the	TA	group	specificity	of	Cdh13::GFP	expression.	

	

	 To	 further	 investigate	 the	 relationship	between	proprioceptor	cdh13	status	

and	the	limb	position	of	muscle	targets,	we	assayed	the	status	of	GFP	expression	in	

individual	 hip,	 thigh,	 shank,	 and	 foot	 muscle	 spindles	 of	 P7	 Cdh13::GFP	 mice	

exposed	 to	 tamoxifen	 in	 utero	 at	~e15.5.	 At	 the	 dorsal	 shank	 level,	 GFP+	 endings	

were	 observed	 in	 the	 TA,	 EDL,	 and	 PL	muscles	 (Figures	 2.7G	 and	H).	 In	 contrast,	

none	of	the	spindles	of	the	ventrally	derived	GS,	SOL,	PL,	tibialis	posterior	(TP),	or	

flexor	 digitorius	 longus	 (FDL)	 shank	 muscles	 were	 innervated	 by	 GFP+	

proprioceptors	(Figures	2.7G	and	H).	

	

At	more	proximal	levels,	none	of	the	spindles	of	dorsally	or	ventrally	derived	

hip	muscles	 –	GL,	 iliacus	 (IL),	 psoas	 (PS),	 obterator	 externus/internus	 (Oe/i),	 and	

caudoemoralis	 (CF)	–	 contained	GFP+	 sensory	 terminals	 (Figures	2.7G	and	H).	For	

dorsally	 derived	 thigh	 muscles,	 the	 RF,	 but	 not	 the	 V	 group	 (Vl,	 Vi,	 and	 Vm)	 or	
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pectineus	 (Pec)	muscles,	 contained	GFP+	proprioceptors,	providing	an	explanation	

for	 the	mosaic	cdh13	 status	of	RF/V	proprioceptors	detected	 in	retrograde	tracing	

experiments.	The	ventrally	derived	muscles	AD/GR/ST/SM	and	biceps	femoris	(BF)	

did	not	contain	any	GFP+	sensory	terminals.	Finally,	we	observed	that	spindles	in	the	

most	 dorsally	 located	 intrinsic	 foot	 muscles,	 but	 not	 the	 ventral	 foor	 muscles,	

contained	 GFP+	 terminals	 (Figures	 2.7G	 and	 H).	 This	 muscle-by-muscle	 analysis	

consolidates	 the	 view	 that	 cdh13on	 proprioceptors	 supply	 dorsally	 derived	 limb	

muscles	with	a	distal	positional	bias.	

	

2.3	Discussion	

	

	 Using	 high-throughput	 RNA-sequencing,	 I	 identified	 140	 genes	 exhibiting	

differential	expression	–	in	many	cases	binary	–	between	muscle-type	proprioceptor	

subsets.	 I	 then	 validated	 these	 results	 and	 expanded	 our	 characterization	 to	

additional	muscle	groups	using	a	combination	of	 fluorescence	 in	situ	hybridization	

and	intramuscular	backfill	with	the	retrograde	tracer	ctb555.	Using	a	genetic	reporter	

line,	we	were	able	to	characterize	the	status	of	cdh13	expression	in	proprioceptors	

at	the	resolution	of	individual	muscles	by	assaying	for	GFP	expression	at	the	muscle	

spindle,	providing	insight	into	the	organization	of	proprioceptor	subtype	identity.	

	

2.3.1	Screening	muscle-type	proprioceptors:	general	considerations	
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Given	 recent	 advances	 in	 single-cell	 sequencing,	 why	 did	 we	 assay	 pooled	

samples	 rather	 than	 individual	 neurons?	 Isolating	 neurons	 by	 virtue	 of	 pv	

expression	 status	 likely	 resulted	 in	 the	 inclusion	 of	 a	 small	 number	 of	 non-

proprioceptive	 low	 threshold	mechanoreceptors	 –	 a	 second	 class	of	pv-expressing	

DRG	 neurons	 -	 in	 our	 samples.	 Moreover,	 each	 muscle	 receives	 innervation	 by	

Group	 Ia,	 II	 and	 Ib	proprioceptors,	which	 are	presumed	 to	differ	 at	 the	molecular	

level	 (de	Nooij	 et	 al.,	 2013).	We	surmised	 that	pooling	neurons	would	allow	us	 to	

detect	 genetic	 distinctions	 in	 proprioceptors	 that	 are	 primarily	 associated	 with	

muscle	innervation	by	neutralizing	any	differences	corresponding	to	pvon	LTMRs	or	

proprioceptor	functional	subclass.	

	

We	chose	to	focus	our	characterization	of	candidate	gene	expression	patterns	

on	 transmembrane	 proteins	 due	 to	 their	 potential	 involvement	 in	 establishing	

selective	monosynaptic	 connectivity	with	 spinal	motor	neurons.	Of	 the	~40	genes	

encoding	transmembrane	proteins	identified	by	our	screen,	we	were	able	to	provide	

a	 thorough	 characterization	 of	 the	 muscle-type	 expression	 pattern	 of	 four.	 Our	

ability	 to	 examine	 the	 expression	 patterns	 of	 the	 remaining	 genes	was	 limited	 by	

expression	levels	below	the	threshold	for	detection	by	double	FISH	or	by	the	lack	of	

available	antibody	or	transgenic	reagents	to	facilitate	characterization.		

	

While	 we	 primarily	 aimed	 to	 detect	 binary	 on-off	 differences	 in	 gene	

expression	between	muscle-type	proprioceptors,	we	identified	several	examples	of	

graded	 expression	 between	 muscle-type	 proprioceptor	 subsets.	 Most	 notably,	
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vstm2b	 is	 predicted	 to	 be	 expressed	 in	 a	 proximallow	 to	 distalhigh	 gradient	 among	

dorsally-innervating	 proprioceptors	 (see	 Figure	 2.3A).	 Indeed,	 our	 FISH	 results	

appear	 to	 validate	 this	 prediction;	 proximal	 GL-innervating	 proprioceptors	

consistently	 express	 lower	 levels	 of	 vstm2b	 than	 do	more	 distally	 innervating	 TA	

proprioceptors	 (see	 Figure	2.5G).	Graded	 expression	 of	 recognition	molecules	 has	

been	 shown	 to	 underlie	 differential	 responses	 to	 axon	 guidance	 cues	 in	 motor	

neurons	 (Bonanomi	 and	 Pfaff,	 2010).	 Thus,	 when	 examining	 functional	 roles	 for	

genes	 exhibiting	muscle-type	 selectivity,	 it	may	be	 important	 to	 consider	not	only	

binary	distinctions	but	also	differences	in	relative	levels	of	gene	expression.	

	

2.3.2	The	grain	of	proprioceptor	muscle-type	identity		

	

	 Our	assessment	of	cdh13,	vstm2b,	 sema5a,	 and	crtac1	 by	 fluorescent	 in	situ	

hybridization	combined	with	ctb	injection	revealed	that	expression	of	these	genes	is	

confined	to	proprioceptors	supplying	muscles	located	in	distinct	domains	along	the	

dorsoventral	 and	 proximodistal	 limb	 axes.	 However,	 this	 approach	was	 unable	 to	

address	several	emergent	questions	regarding	muscle-type	identity:	1)	What	is	the	

most	 basic	 meaningful	 unit	 of	 proprioceptor	 muscle-type	 identity?	 and	 2)	 Do	 all	

proprioceptors	innervating	a	given	muscle	share	a	common	gene	expression	profile?	

	

	 The	 availability	 of	 a	 Cdh13::CreERT2	 line	 enabled	 us	 to	 address	 these	

questions	through	the	examination	of	cdh13	expression	at	higher	resolution	than	is	

achievable	 using	 FISH	 combined	 with	 backfill.	 Our	 analysis	 of	 Cdh13::GFP	
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expression	 at	 proprioceptor	 terminals	 in	 individual	 muscles	 revealed	 a	 shared	

cdh13on	 identity	 for	 proprioceptors	 innervating	 TA	 muscle	 and	 its	 synergists	

extensor	 digitorum	 longus	 (EDL)	 and	 peroneus	 longus	 (PL),	 as	 well	 as	 for	 all	

proprioceptors	innervating	dorsal	intrinsic	foot	muscles.	This	finding	demonstrates	

that	 synergy	 group	 is	 a	 relevant	 unit	 of	 proprioceptor	 identity;	 because	

proprioceptors	 innervating	 synergist	muscles	 generally	 target	 the	 same	 cohort	 of	

motor	neuron,	this	unit	of	identity	could	conceivably	facilitate	afferent	targeting	of	

these	motor	neurons	during	late	embryonic	development.	The	expression	of	cdh13	

by	proprioceptors	 innervating	 the	RF	head	of	 the	quadriceps	but	not	 its	 synergist	

vastii	muscles	 indicates	 that	proprioceptors	also	possess	subtype	 identities	on	 the	

level	 of	 individual	 muscles.	 Subtle	 differences	 in	 heteronymous	 connectivity	

patterns	between	the	RF	and	vastii	muscles	could	necessitate	this	distinction.		

	

Intriguingly,	we	 found	 that	all	proprioceptors	 innervating	 the	TA,	 including	

Group	 Ia,	 II	 and	 Ib	 proprioceptors,	 express	 cdh13.	 Because	 Group	 Ia,	 II	 and	 Ib	

proprioceptors	 innervating	 a	 given	 muscle	 project	 to	 distinct	 dorsoventral	

termination	zones	and	 therefore	have	distinct	 sets	of	postsynaptic	partners	 in	 the	

spinal	 cord,	 it	 is	 difficult	 to	 envision	 how	 cdh13	 could	 play	 a	 role	 in	 establishing	

synaptic	 specificity	 for	 each	 of	 these	 subpopulations.	 As	 a	 consequence,	 we	

speculate	 that	 the	 shared	 cdh13	 expression	 profile	 of	 Group	 Ia,	 II	 and	 Ib	 TA	

proprioceptors	is	likely	a	reflection	of	the	mode	of	peripheral	induction	of	this	gene.	
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The	 chimeric	 profiles	 obtained	 for	 vstm2b	 expression	 in	 Q,	 H/Add,	 and	 IF	

proprioceptors;	 sema5a	 in	 H/Add	 and	 IF	 proprioceptors;	 and	 crtac1	 in	 GS	

proprioceptors	(Figures	2.5H,	L	and	P)	might	be	explained	by	binary	distinctions	in	

expression	among	muscles	of	the	synergy	groups	receiving	innervation	by	afferents	

expressing	these	genes,	as	we	observed	for	the	dorsal	thigh	muscles	of	Cdh13::GFP	

mice.	 Alternatively,	 these	 phenotypes	 might	 be	 explained	 by	 differences	 in	

expression	 status	 among	 Group	 Ia,	 II	 and	 Ib	 proprioceptors	 in	 all	 muscles	 of	 the	

synergy	 group.	 Resolving	 this	 issue	 requires	 peripheral	 representation	 of	 vstm2b,	

sema5a	and	crtac1	expression	status	at	muscle	spindle	and	GTO	sensory	terminals	

using	tools	analogous	to	the	Cdh13::GFP	tracer	line;	unfortunately,	no	such	reporter	

lines	for	these	genes	exist	at	this	time.	

	

2.3.3	Proprioceptor	muscle-type	identity	conforms	to	limb	organization	

	

Our	 screen	 results	 and	 in	 vivo	 characterization	 of	 several	 differentially	

expressed	 genes	 have	 revealed	 a	 positional	 logic	 for	 hindlimb-innervating	

proprioceptors.	 Many	 of	 the	 genes	 differentially	 expressed	 among	 muscle-type	

proprioceptors	 are	 predicted	 to	 exhibit	 a	 bias	 along	 the	 proximodistal	 or	

dorsoventral	 limb	axis,	 or	both	 (see	Figure	2.3).	This	patterning	 is	 exemplified	by	

the	genes	cdh13,	vstm2b,	sema5a,	and	crtac1,	whose	expression	along	these	axes	we	

characterized	 in	 vivo.	 Cdh13	 and	 vstm2b	 exhibit	 a	 marked	 dorsal	 bias	 in	 their	

expression,	 whereas	 crtac1	 expression	 is	 confined	 to	 proprioceptors	 innervating	

ventral	 limb	 musculature.	 Furthermore,	 whereas	 cdh13,	 sema5a,	 and	 crtac1	
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expression	is	restricted	to	proprioceptors	innervating	distal	musculature,	vstm2b	is	

expressed	by	proprioceptors	innervating	the	extent	of	the	proximodistal	axis.		

	

The	 expression	pattern	of	 sema5a	 diverges	 from	 those	observed	 for	cdh13,	

vstm2b	and	crtac1	 in	an	interesting	way	Whereas	expression	of	cdh13,	vstm2b	and	

crtac1	was	confined	to	proprioceptors	innervating	either	dorsal	or	ventral	territory,	

sema5a	 is	expressed	by	proprioceptors	supplying	both	dorsal	and	ventral	domains	

at	 distinct	 proximodistal	 positions.	 Interestingly,	 all	 of	 the	 muscles	 receiving	

sema5aon	innervation	are	joint	flexors,	suggesting	that	this	gene	may	be	involved	in	

differential	targeting	of	flexor	versus	extensor	synergy	groups.	There	is	precedence	

for	 this	 biomechanically-restricted	 pattern	 of	 connectivity:	 vestibular	 input	

preferentially	 targets	extensor	over	 flexor	motor	neurons	(Basaldella	et	al.,	2015),	

implying	 a	 mechanism	 by	 which	 flexor	 and	 extensor	 motor	 neurons	 could	 be	

differentially	targeted.	

	

How	might	positionally	restricted	patterns	of	proprioceptor	gene	expression	

arise?	 Molecular	 processes	 governing	 limb	 morphogenesis	 rely	 heavily	 on	

proximodistally	 and	 dorsoventrally	 restricted	 patterning	 cues.	 The	 morphogens	

retinoic	 acid	 (RA)	 and	 FGF	 are	 distributed	 in	 opposing	 gradients	 along	 the	

proximodistal	 limb	 axis	 and	 confer	 proximal	 and	 distal	 limb	 morphology,	

respectively	 (Mariani	 et	 al.,	 2008;	 Mercader	 et	 al.,	 2005;	 Yashiro	 et	 al.,	 2004).	

Expression	of	the	morphogen	Wnt7a	in	dorsal	limb	ectoderm	induces	expression	of	
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the	transcription	factor	Lmx1b	in	dorsal	but	not	ventral	limb	anlagen,	which	in	turn	

specifies	many	features	of	limb	dorsoventral	identity	(Chen	and	Johnson,	2002).		

	

The	 restriction	 of	 a	 cohort	 of	 proprioceptor	 genes	 with	 respect	 to	 the	

dorsoventral	 limb	 axis	 is	 particularly	 intriguing	 in	 light	 of	 the	 finding	 that	 limb	

dorsoventral	 identity	 influences	 synaptic	 specificity	 between	 proprioceptors	 and	

motor	neurons	 in	chick	 (Wenner	and	Frank,	1995),	which	 implies	 that	 the	 limb	 is	

capable	 of	 inducing	molecular	 distinctions	 in	 proprioceptors	 that	 are	 reflective	 of	

peripheral	 termination.	 In	 Chapters	 3-5,	 I	 describe	 experiments	 designed	 to	

establish	a	role	for	the	periphery	in	assigning	proprioceptor	muscle-type	identity	in	

mouse	and	to	assess	the	impact	of	three	dorsoventrally	distinct	peripheral	tissues	–	

motor	 axon,	 limb	mesenchyme,	 and	muscle	 -	 on	 proprioceptor	 expression	 of	 the	

dorsoventrally	restricted	genes	cdh13,	vstm2b,	sema5a,	and	crtac1.	
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3	 Motor	 axon	 is	 dispensable	 for	 proprioceptor	 cdh13	

expression	

3.1	Introduction	

	

To	 explore	 the	 involvement	 of	 limb	 inductive	 signaling	 in	 specifying	

proprioceptor	 muscle-type	 identity,	 we	 employed	 genetic	 strategies	 designed	 to	

disrupt	 putative	 tissue	 sources	 of	 patterning	 information.	 We	 considered	 the	

involvement	of	three	tissues	that	are	encountered	by	sensory	axons	as	they	project	

into	the	limb:	the	motor	axons	that	fasciculate	with	sensory	axons	during	invasion	of	

the	 embryonic	 limb,	 the	 muscle	 targets	 innervated	 by	 sensory	 afferents,	 and	 the	

limb	mesenchymal	tissues	traversed	by	axons	during	limb	innervation	(Figure	3.1).	

	

In	 this	 chapter,	 I	 examine	 whether	 the	 motor	 axon	 plays	 a	 role	 -	 either	

instructive	or	permissive	-	in	inducing	expression	of	the	proprioceptor	muscle-type	

marker	 cdh13.	 I	 first	 demonstrate	 that	 patterned	 expression	 of	 the	 proprioceptor	

muscle-type	genes	cdh13	and	vstm2b	begins	after	hindlimb	innervation,	consistent	

with	 specification	 by	 a	 peripheral	 cue.	 I	 proceed	 to	 examine	 the	 induction	 of	

proprioceptor	 cdh13	 expression	 in	 mice	 genetically	 manipulated	 to	 lack	 motor	

neuron	subtype	character	or	to	lack	motor	neurons	altogether.	I	find	that	neither	of	

these	 manipulations	 affects	 proprioceptor	 expression	 of	 cdh13,	 indicating	 that	

motor	 axon	 plays	 neither	 an	 instructive	 nor	 permissive	 role	 in	 specifying	

proprioceptor	cdh13	subtype	character.	
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Figure	3.1	Putative	sources	of	proprioceptor	muscle-type	inductive	cues	
	
Three	tissues	contacted	by	sensory	axons	during	limb	innervation	–	motor	axon	
(1),	 limb	 mesenchyme	 (2),	 and	 muscle	 (3)	 –	 were	 examined	 for	 a	 role	 in	
patterning	proprioceptor	muscle-type	gene	expression.	
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3.1.1	Interactions	between	peripheral	sensory	and	motor	axons	

	

As	motor	and	sensory	axons	project	into	the	limb	bud	mesenchyme,	they	are	

bundled	 together	within	 peripheral	 nerves.	Motor	 axons	 emanating	 from	 a	 single	

lumbosacral	 spinal	 segment	and	sensory	axons	 from	the	corresponding	DRG	meet	

and	intermix	as	they	project	toward	the	lumbar	plexus,	where	several	spinal	nerves	

converge	 and	 then	 diverge	 into	 the	 peripheral	 nerve	 branches	 that	 grow	 toward	

muscle	targets.	Axonal	tracing	experiments	have	revealed	that	proprioceptor	axons	

innervating	the	chick	hindlimb	are	situated	adjacent	to	motor	axons	innervating	the	

same	muscle	 for	much	 of	 their	 course	 through	 the	 limb	 (Honig	 et	 al.,	 1998).	 This	

intranerve	 fasciculation	provides	a	physical	basis	 for	axon-axon	signaling	between	

sensory	and	motor	subtypes	beginning	early	in	their	projection	into	the	periphery.	

	

Indeed,	 molecular	 axon-axon	 interactions	 have	 been	 found	 to	 drive	 the	

selective	fasciculation	of	sensory	and	motor	axons	within	peripheral	nerves.	Mouse	

molecular	 genetic	 studies	 have	 demonstrated	 that	 the	 segregation	 of	 motor	 and	

sensory	 axons	 within	 nerves	 projecting	 to	 axial	 muscle	 requires	 repulsive	

transaxonal	signaling	between	the	receptor	 tyrosine	kinases	EphA3	and	EphA4	on	

motor	 axon	 growth	 cones	 and	 their	 cognate	 ephrin-A	 ligands	 on	 sensory	 axons	

(Gallarda	 et	 al.,	 2008),	 revealing	 an	 influence	 of	 sensory	 axon-derived	 signals	 on	

motor	axons.	The	converse	influence	of	motor	axon	on	sensory	axon	is	also	rooted	

in	molecular	interactions;	at	thoracic	levels,	removal	of	EphA3	and	EphA4	from	axial	
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motor	 axons	 prompts	 sensory	 axons	 to	 project	 exclusively	 to	 hypaxial	 muscle	

(Wang	 et	 al.,	 2011),	 revealing	 that	 motor	 axon-derived	 signals	 are	 required	 for	

establishing	 normally	 patterned	 peripheral	 sensory	 projections.	 These	 studies	

provide	 precedent	 for	 molecular	 signaling	 between	 sensory	 and	 motor	 axons,	

supporting	the	hypothesis	that	axon-axon	interactions	might	specify	proprioceptor	

subtype	identity.	

	

3.1.2	Motor	neuron	projection	patterns	are	intrinsically	specified	

	

Developing	 motor	 axons	 possess	 a	 high	 degree	 of	 autonomous	 targeting	

specificity,	 allowing	 them	 to	 actively	 seek	 and	 innervate	 discrete	 muscle	 targets	

from	 the	 outset	 (Landmesser,	 2001).	 This	 ability	 is	 intrinsically	 programmed	 by	

transcriptional	 networks	 that	 specify	 molecular	 and	 organizational	 features	 of	

motor	neuron	subsets	(Dasen,	2009).	Among	limb-innervating	motor	neurons,	three	

levels	of	organization	have	been	defined	based	on	settling	position	and	termination	

within	 the	 limb,	 with	 each	 successive	 level	 governing	 a	 distinct	 aspect	 of	 motor	

axonal	projection	pattern	(Figure	3.2).	Motor	neurons	at	limb	levels	acquire	lateral	

motor	 columnar	 (LMC)	 identities	 that	 direct	 their	 axons	 toward	 the	 limb.	 Once	

motor	 axons	 reach	 the	 base	 of	 the	 limb,	 the	 specification	 of	 divisional	 identities	

within	the	LMC	sets	motor	axons	on	a	dorsal	or	ventral	trajectory	upon	entering	the	

limb	mesenchyme.	 Finally,	 the	 specification	 of	motor	 pool	 identity	 enables	motor	

neurons	 to	 project	 toward	 and	 form	 precise	 connections	 with	 individual	 muscle	

targets	(Landmesser,	1978b,	2001).	
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Figure	3.2	Transcriptional	control	of	motor	neuron	projection	pattern	
	
Sequential	 steps	 in	 the	 transcriptional	 control	 of	 limb	 innervation	 patterns.	
Molecular	 determinants	 of	 motor	 nerve	 branching	 are	 noted	 with	 respect	 to	
hierarchical	motor	neuron	subtype	identity.	Adapted	from	Dasen,	2009.	
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Figure	3.3	Motor	neuron	transcriptional	identity	directs	dorsoventral	projection	
	
(A)	 Left:	 Isl1-positive	 LMCM	 axons	 (purple)	 expressing	 Npn2	 and	 EphB1	 are	
repelled	 by	 Sema3F	 and	 EphrinB	 in	 the	 dorsal	 limb	mesenchyme	 and	 select	 a	
ventral	trajectory.	Right:	A	combination	of	repulsive	and	attractive	signals	direct	
Lim1-positive	 LMCL	 axons	 (green)	 to	 dorsal	 limb	 muscles.	 Ephrin-As	 in	 the	
ventral	mesenchyme	trigger	“forward”	repulsive	signaling	through	axonal	EphA4,	
whereas	 EphAs	 localized	 in	 the	 dorsal	 limb	 may	 elicit	 attractive	 “reverse”	
signaling	 through	 axonal	 ephrin-As.	 GDNF	 localized	 at	 the	 base	 of	 the	 limb	
controls	the	dorsal	trajectory	of	LMCL	axons	expressing	c-Ret.	Additional	studies	
have	identified	a	role	for	Netrin	signaling	in	dorsoventral	choice	by	motor	axons	
(not	shown).	(B)	Left:	Disruption	of	Sema3F:Npn2	or	ephrin-B:EphB1	signaling		
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leads	to	dorsal	projection	of	ventrally	fated	LMCM	axons.	Right:	Ablation	of	EphA4	
or	interference	with	GDNF:c-Ret	signaling	causes	dorsally	projecting	LMCL	axons	
to	 select	 a	 ventral	 trajectory.	 (C)	 Dorsal	 view	 of	 hindlimb	 innervating	 motor	
axons	 visualized	 with	 the	 Hb9::GFP	 transgene	 in	 e12.5	 mouse	 embryos.	 The	
dorsal	 (peroneal)	 nerve	 becomes	 thinner	 in	 EphA4	 mutants	 because	 of	 the	
misprojection	of	LMCL	axons	into	the	ventral	limb	(the	ventral	nerve	is	out	of	the	
plane	of	focus).	Adapted	from	Bonanomi	and	Pfaff,	2010.	
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Each	 of	 these	 sequential	 phases	 of	 limb	 innervation	 is	 linked	 to	 a	 genetic	

program	defined	 by	 transcriptional	 networks	 involving	members	 of	 the	Hox	 gene	

family	 (Figure	 3.2).	 Expression	 of	 the	 transcription	 factor	 FoxP1	 specifies	 limb	

innervating	 motor	 neurons,	 and	 Hox10	 expression	 distinguishes	 hindlimb-	 from	

forelimb-innervating	motor	neurons	 (Dasen	 et	 al.,	 2003).	 The	dorsoventral	 choice	

made	 by	 hindlimb	 motor	 axons	 at	 the	 base	 of	 the	 limb	 is	 a	 consequence	 of	 the	

pattern	of	LIM	homeodomain	transcription	factor	expression	specified	downstream	

of	this	Hox/FoxP1	network:	dorsally-projecting	motor	neurons	in	the	lateral	portion	

of	 the	LMC	(LMCL)	are	characterized	by	selective	expression	of	 the	LIM	homeobox	

transcription	 factor	 Lhx1,	 whereas	 ventrally	 projecting	 motor	 neurons	 situated	

medially	(LMCM)	express	Isl1	(Kania	and	Jessell,	2003;	Tsuchida	et	al.,	1994).		

	

Downstream	of	Lhx1	and	Isl1,	a	cohort	of	guidance	receptors	enables	LMCL	

and	 LMCM	 axons	 to	 follow	 mesenchymal	 cues	 into	 the	 dorsal	 and	 ventral	

compartments	 of	 the	 limb,	 respectively	 (Figure	 3.3).	 Expression	 of	 ephrinA	 in	

ventral	mesenchyme	 repels	EphA4-expressing	LMCL	 axons	 away	 from	ventral	 and	

into	dorsal	limb	(Eberhart	et	al.,	2002;	Helmbacher	et	al.,	2000),	while	expression	of	

c-Ret	and	GFRα1	by	LMCL	axons	allows	them	to	follow	GDNF	at	the	base	of	the	limb	

bud	 into	 dorsal	 limb	mesenchyme	 (Bonanomi	 et	 al.,	 2012;	Dudanova	 et	 al.,	 2010;	

Kramer	 et	 al.,	 2006).	 Conversely,	 in	 LMCM	 axons,	 expression	 of	 EphB2	 and	Unc5c	

mediates	 a	 repellent	 response	 to	 ephrinB	 and	 Netrin1	 in	 dorsal	 mesenchyme,	

preventing	 these	axons	 from	entering	dorsal	 limb	 (Luria	et	 al.,	 2008;	Poliak	et	 al.,	
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2015).	LMCM	axons	also	express	Npn2,	which	repels	them	from	Sema3F-expressing	

dorsal	mesenchyme	(Huber	et	al.,	2005).	

	

Finally,	the	guidance	of	motor	axons	to	specific	muscles	is	directed	by	a	Hox	

network	operating	 in	 the	presence	of	 high	 levels	 of	 the	 accessory	 factor	 FoxP1	 to	

establish	 the	 transcriptional	 identities	 of	 motor	 pools	 (Dasen	 et	 al.,	 2005).	 The	

Hox/FoxP1	 network	 appears	 to	 direct	motor	 innervation	 patterns	 by	 activating	 a	

diverse	array	of	downstream	transcription	factors	and	cell	surface	receptors.	In	one	

notable	 example,	 Hox/FoxP1	 programs	 direct	 the	 expression	 of	 Nkx6.1,	 a	

homeodomain	 transcription	 factor,	 in	 select	 motor	 pools.	 At	 hindlimb	 levels,	 the	

motor	nerve	branch	supplying	TA	muscle	is	derived	from	Nkx6.1-expressing	motor	

neurons.	 In	 Nkx6.1	 mutants,	 axons	 that	 normally	 project	 to	 TA	 are	 rerouted	 to	

different	muscle	targets	(de	Marco	Garcia	and	Jessell,	2008),	implicating	Nkx6.1	and	

by	extension	the	Hox/FoxP1	program	in	establishing	motor	axonal	trajectory.	

	

FoxP1	 gates	 the	 entirety	 of	 the	 output	 of	 the	 Hox	 program	 in	 LMC	motor	

neurons	(Dasen	et	al.,	2008).	Genetic	inactivation	of	the	Foxp1	gene	erases	all	Hox-

dependent	steps	of	LMC	motor	neuron	differentiation,	resulting	in	the	loss	of	motor	

neuron	 topography	 and	 all	 known	 identifying	 molecular	 features	 of	 motor	 pools	

(Dasen	et	al.,	2008).	Remarkably,	the	overall	pattern	of	axonal	projections	into	the	

limb	is	preserved	in	these	mutants	(Dasen	et	al.,	2008;	Rousso	et	al.,	2008),	although	

motor	 neurons	 appear	 to	 select	 projection	 pathways	 in	 the	 limb	 in	 a	 stochastic	

manner.	 These	 findings	 are	 consistent	 with	 the	 view	 that	 the	 overall	 pattern	 of	
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motor	nerve	branching	within	the	limb	is	determined	by	preestablished	permissive	

or	 inhibitory	domains	within	 the	 limb	mesenchyme;	 the	FoxP1/Hox	program	thus	

provides	 LMC	 neurons	with	 identities	 that	 enable	 axons	 to	 respond	 to	 local	 cues,	

which	promote	the	selection	of	one	of	many	available	paths.		

	

3.1.3	Extrinsically	specified	facets	of	motor	neuron	subtype	identity	

	

	 While	many	aspects	of	motor	pool	identity	are	programmed	through	the	cell-

intrinsic	activities	of	the	Hox	transcriptional	network,	evidence	has	emerged	for	the	

peripheral	 specification	 of	 certain	 features	 of	 subtype	 identity.	 Expression	 of	 the	

ETS	 transcription	 factor	 Pea3	 in	 motor	 pools	 is	 dependent	 on	 muscle-	 and	

mesenchyme-derived	GDNF	(Haase	et	al.,	2002;	Lin	et	al.,	1998),	which	provides	a	

permissive	 environment	 for	Pea3	 specification	 in	 competent	motor	neurons.	Pea3	

has	been	shown	 to	 instruct	muscle-specific	patterns	of	 axonal	 arborization,	motor	

pool	 settling	position,	 and	pool-specific	 dendritic	 arborization	 (Haase	 et	 al.,	 2002;	

Livet	 et	 al.,	 2002;	Vrieseling	 and	Arber,	 2006).	 Peripherally-specified	programs	of	

gene	 expression	 therefore	 provide	 an	 additional	 layer	 of	 motor	 neuron	 subtype	

diversity	that	might	contribute	to	proprioceptor	subtype	specification.		

	

3.2	Results	

3.2.1	cdh13	and	vstm2b	expression	initiate	after	hindlimb	innervation	
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		 Certain	features	of	proprioceptor	subtype	identity	appear	to	be	acquired	in	a	

neuron-autonomous	 manner,	 whereas	 others	 are	 dependent	 on	 limb	 signaling	

(Chen	et	al.,	2002).	If	cell-autonomous	signals	instruct	the	expression	of	cdh13	and	

vstm2b,	 then	 these	 genes	 might	 be	 expressed	 in	 proprioceptors	 prior	 to	 limb	

innervation.	Thus,	prior	to	assessing	the	effect	of	limb	tissues	on	proprioceptor	gene	

expression,	we	sought	to	establish	when	these	genes	are	first	expressed.		

	

	 To	determine	the	onset	of	cdh13	expression,	we	assessed	lumbar	DRG	for	the	

expression	 of	 cdh13	 in	 proprioceptors	 at	 embryonic	 timepoints	 before	 and	 after	

limb	 innervation.	 Expression	 of	 the	 proprioceptor	marker	 gene	pv	does	 not	 begin	

until	 e14.5	 (Arber	 et	 al.,	 2000;	Hippenmeyer	 et	 al.,	 2005),	 several	 days	 after	 limb	

innervation.	We	 therefore	 assessed	 the	 coexpression	 of	 cdh13	with	 trkC,	which	 is	

expressed	by	proprioceptors	beginning	at	e10.5.	We	detected	no	cdh13	transcript	in	

lumbar	 DRG	 at	 e10.5	 or	 e11.5	 (Figure	 3.4A),	 times	 at	 which	 sensory	 axons	 have	

arrived	 at	 the	 lumbar	 plexus	 (e10.5)	 and	 established	 dorsal	 and	 ventral	 nerve	

branches	within	the	limb	mesenchyme	(e11.5).	By	e12.5,	however,	~25%	of	trkCon	

neurons	 had	 initiated	 cdh13	 expression	 (Figure	 3.4A).	 Thus,	 the	 onset	 of	 cdh13	

expression	 in	 proprioceptors	 occurs	 after	 sensory	 axonal	 innervation	 of	 the	

hindlimb.	

	

We	also	examined	the	GFP	status	of	dorsal	and	ventral	shank	muscle	spindles	

in	Cdh13::mGFP	mice	 following	 tamoxifen	 injection	of	pregnant	 females	at	 several	

gestational	 timepoints.	 Injections	 at	 e10.5	 did	 not	 result	 in	 proprioceptor	 GFP	
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expression	 (data	 not	 shown),	 consistent	 with	 a	 ~24	 h	 delay	 between	 tamoxifen	

injection	and	recombination	(Hayashi	and	McMahon,	2002).	At	every	developmental	

time	 point	 examined,	 dorsal	 (TA,	 EDL)	 but	 not	 ventral	 (GS,	 SOL)	 shank	 muscles	

received	 GFP+	 proprioceptor	 innervation	 (Figure	 3.4B).	 Thus,	 the	 restriction	 of	

cdh13	 expression	 to	 dorsodistal	 muscles	 is	 established	 early	 and	 maintained	

throughout	development.	

	

	 It	 is	 possible	 that	 cdh13	 expression	 in	 limb-innervating	 proprioceptors	 is	

initially	more	widespread	and	that	its	restricted	pattern	is	established	through	the	

death	of	cdh13on	proprioceptors	innervating	other	limb	territories.	To	rule	out	this	

possibility,	we	examined	the	expression	of	cdh13	in	retrogradely	labeled	TA	and	GS	

proprioceptors	 of	 bax1-/-	 mice,	 in	 which	 neurons	 are	 blocked	 from	 undergoing	

programmed	 cell	 death	 (White	 et	 al.,	 1998).	 As	 in	wild-type	mice,	 TA	 but	 not	 GS	

proprioceptors	expressed	cdh13	in	bax1-/-	animals	(Figure	3.4C),	indicating	that	the	

dorsodistal	 selectivity	 of	 cdh13	 expression	 arises	 independently	 of	 programmed	

sensory	neuron	death.	

	

To	 determine	 the	 onset	 of	 vstm2b	 expression,	 we	 performed	 in	 situ	

hybridization	 at	 several	 embryonic	 time	points.	While	we	did	not	 observe	vstm2b	

expression	 in	 lumbar	 DRG	 at	 e12.5,	 by	 e13.5,	 a	 subset	 of	 lumbar	 DRG	 neurons	

expressed	 the	 gene	 (Figure	 3.5A).	 We	 also	 examined	 the	 subtype	 specificity	 of	

vstm2b	expression	at	the	time	of	its	induction.	Although	we	were	unable	to	examine	

the	muscle	specificity	of	vstm2b	expression	at	its	onset,	double	FISH	for	vstm2b	and		
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Figure	3.4	Early	specificity	of	cdh13	expression	
	
(A)	Double	FISH	 for	 trkC	and	cdh13	 at	 e11.5	and	e12.5	 in	L5	DRG.	Arrowheads	
demarcate	double-labeled	trkCon,	cdh13on	neurons	at	e12.5.	(B)	The	GFP	status	of	
dorsal	 and	 ventral	 shank	 muscle	 spindles	 was	 assessed	 following	 tamoxifen	
injection	 of	 pregnant	Cdh13::GFP	 females	 at	 the	 indicated	 gestational	 times.	 At	
every	 time	 point	 examined,	 dorsal	 (TA,	 EDL)	 but	 not	 ventral	 (GS,	 Sol)	 shank	
muscles	received	GFP+	proprioceptor	innervation.	(C)	TA	and	GS	proprioceptors	
of	Bax1-/-	mice	were	retrogradely	 labeled	by	ctb555	 injection	at	P0	and	assessed	
by	FISH	 for	pv	 and	 cdh13	 expression.	 Similar	 to	wild-type	mice,	 TA	 but	 not	 GS	
proprioceptors	expressed	cdh13.	
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Figure	3.5	Proprioceptor	vstm2b	expression	initiates	after	limb	innervation	
	
(A)	 In	 situ	 hybridization	 for	 vstm2b	 reveals	 that	 its	 expression	 in	 lumbar	 DRG	
begins	around	e13.5.	(B)	Double	FISH	for	trkC	and	vstm2b	in	lumbar	DRG	of	e13.5	
wild-type	mice	 reveals	 that	 a	 subset	 of	 trkCon	 neurons	 express	 vstm2b,	 and	 all	
vstm2b-expressing	 neurons	 express	 trkC,	 consistent	 with	 the	 restriction	 of	
vstm2b	to	a	subset	of	proprioceptors	from	its	onset.	
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trkC	at	e13.5	revealed	that	a	subset	of	trkCon	DRG	neurons	coexpressed	vstm2b	and	

all	vstm2bon	neurons	coexpressed	 trkC	(Figure	3.5B),	 consistent	with	restriction	of	

vstm2b	 to	 a	 subset	 of	 proprioceptors	 from	 its	 induction.	Together,	 these	 findings	

indicate	that	restricted	vstm2b	expression	is	initiated	following	limb	innervation.		

	

It	 is	worth	noting	that	 the	onset	of	vstm2b	expression	 lags	that	of	cdh13	by	

~1	day.	This	may	be	reflective	of	differing	modes	of	induction	for	the	proprioceptor	

expression	of	these	genes	–	a	possibility	that	we	explore	in	Chapters	4	and	5.	

	

3.2.2	 Motor	 neuron	 subtype	 identity	 does	 not	 instruct	 proprioceptor	 cdh13	

expression	

	

	 We	set	out	to	determine	whether	the	subtype	identities	of	 limb-innervating	

motor	 axons	 might	 impose	 proprioceptor	 subtype	 identities.	 To	 this	 end,	 we	

inactivated	FoxP1,	 a	Hox	cofactor	 required	 for	 the	emergence	of	pool	 identities	 in	

limb-innervating	motor	 neurons	 (Dasen	 et	 al.,	 2008).	 Combinatorial	 expression	 of	

Hox	 transcription	 factors	 in	 motor	 neurons	 directs	 the	 differential	 expression	 of	

surface	 labels	such	as	 type	 II	cadherins.	 In	 the	absence	of	FoxP1,	 limb-innervating	

motor	neurons	appear	to	select	their	muscle	targets	at	random,	indicating	that	they	

are	unable	to	follow	instructive	mesenchymal	cues	to	the	muscle	targets	encoded	by	

their	Hox	transcriptional	identities.	We	selectively	abolished	FoxP1	activity	in	motor	

neurons	by	crossing	an	Olig2::Cre	driver	line	with	mice	carrying	a	floxed	foxP1	allele	

to	 generate	 FoxP1MNΔ	 mice	 (Figure	 3.6A;	 Feng	 et	 al.,	 2010).	 We	 first	 examined	
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generic	 proprioceptor	 development	 in	 FoxP1MNΔ	 mice.	 We	 found	 that	 at	 P1,	 the	

density	of	pvon	neurons	expressing	cdh13	was	unchanged	 in	L2	and	L5	DRG	when	

compared	to	wild-type	littermates	(Figures	3.6B	and	C).		

	

We	 examined	 the	 effect	 of	 abolishing	 motor	 neuron	 subtype	 character	 on	

proprioceptor	 cdh13	 expression.	 If	 motor	 neuron	 pool	 identity	 instructs	

proprioceptor	 subtype	 character,	 we	 would	 expect	 to	 see	 a	 reduction	 in	 the	

percentage	 of	 proprioceptors	 expressing	 cdh13.	 Instead,	 we	 found	 that	 at	 P1,	 the	

percentage	 of	 cdh13on	 proprioceptors	 was	 unchanged	 between	 wt	 and	 FoxP1MNΔ	

mice	(Figure	3.6C).	Furthermore,	the	postnatal	viability	of	FoxP1MNΔ	mice	permitted	

us	 to	 examine	 the	muscle	 specificity	 of	 cdh13	 expression	 in	 the	 absence	 of	motor	

pool	 surface	 markers.	 We	 found	 that	 100%	 of	 ctb555-labeled	 TA	 proprioceptors	

expressed	cdh13	in	FoxP1MNΔ	mice,	mimicking	the	endogenous	pattern	observed	in	

wild-type	 mice	 (Figures	 3.6C	 and	 D).	 Conversely,	 <4%	 of	 backfilled	 GS	

proprioceptors	expressed	cdh13,	as	observed	in	wild-type	animals	(Figures	3.6C	and	

D).	Thus,	motor	neuron	identity	is	not	involved	in	establishing	the	restricted	pattern	

of	proprioceptor	cdh13	expression.	

	

3.2.3	Motor	axon	does	not	provide	a	permissive	environment	for	the	induction	

of	proprioceptor	cdh13	expression	

	

	 We	 next	 considered	 whether	 a	 generic	 signal	 provided	 by	 motor	 neurons	

might	 act	 with	 other	 inductive	 signals	 to	 direct	 the	 selectivity	 of	 proprioceptor	
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cdh13	 expression.	To	assess	 this	 issue,	we	used	a	genetic	 strategy	 to	ablate	motor	

neurons	by	crossing	an	Olig2::Cre	driver	line	with	Rosa::DTA	mice	(Wu	et	al.,	2006)	

to	 generate	 MNDTA	 mice	 (Figure	 3.7A).	 More	 than	 95%	 of	 lateral	 motor	 column	

(LMC)	 motor	 neurons	 in	 MNDTA	 mice	 were	 ablated	 by	 e11.5,	 as	 assessed	 by	 the	

expression	of	the	transcription	factors	FoxP1	and	Isl1	(Figure	3.7B).	Limb	muscles	

in	 MNDTA	 mice	 exhibited	 atrophy	 at	 e18.5	 (data	 not	 shown).	 Nevertheless,	

proprioceptor	 endings	 were	 present	 in	 limb	 muscle	 in	 association	 with	 muscle	

spindles	 (Figure	 3.7C),	 and	 the	 density	 of	pvon	 neurons	 in	 e18.5	 lumbar	DRG	was	

similar	in	wild-type	and	MNDTA	mice	(Figure	3.7D).	

	

Because	MNDTA	mice	die	 shortly	 after	birth,	we	were	unable	 to	 identify	 the	

muscle	target	of	proprioceptors	by	retrograde	labeling.	Nevertheless,	we	were	able	

to	 quantify	 the	 fraction	 of	 neurons	 at	 rostrocaudal	 levels	 containing	 cdh13on	

proprioceptors.	 We	 found	 that	 the	 proportion	 of	 cdh13on	 proprioceptors	 was	

unchanged	 in	 MNDTA	 mice	 compared	 with	 wild-type	 littermates;	 as	 assessed	 by	

fluorescence	 in	situ	hybridization,	cdh13	was	expressed	 in	~70%	of	wild-type	and	

~69%	of	MNDTA	proprioceptors	in	L2	DRG	and	in	~32%	of	wild-type	and	~34%	of	

MNDTA	 proprioceptors	 in	 L5	DRG	 (Figures	 3.8A	 and	B).	 Thus,	motor	 axons	 do	 not	

create	 a	 permissive	 environment	 for	 the	 specification	 of	 proprioceptor	 cdh13	

expression.	
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Figure	 3.6	 Cdh13	 expression	 is	 unaffected	 in	 the	 absence	 of	 motor	 neuron	
subtype	character	
	
(A)	 Erosion	 of	motor	neuron	 identity	was	achieved	 by	 crossing	Olig2::Cre	with	
floxed	FoxP1	mice	(FoxP1MNΔ).	 (B)	The	density	of	proprioceptors	in	DRG	L2	and	
L5	was	unchanged	 in	FoxP1MNΔ	mice,	as	assessed	by	FISH	 (see	3.6C).	 (C)	Cdh13	
and	 pv	 expression	 in	 P0	 FoxP1MNΔ	 L4	 DRG.	 The	 percentage	 of	 proprioceptors	
expressing	 cdh13	 does	 not	 differ	 between	 	 FoxP1MNΔ	 and	 wild-type	 (wt)	mice.	
Scale	bar,	30	μm.	(D)	TA	or	GS	propricoeptors	in	wt	and	FoxP1MNΔ	mice	identified		
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by	 ctb555	 and	 examined	 for	 cdh13	 expression	 by	 double	 FISH.	 Arrowheads	
indicate	 pvon,	 ctb555+,	 cdh13on	 or	pvon,	 ctb555+,	 cdh13off	 TA	 or	 GS	 proprioceptors,	
respectively.	Scale	bar,	10	μm.	(E)	The	cdh13	of	TA	and	GS	proprioceptors	does	
not	differ	between	wt	and	FoxP1MNΔ	mice	(TA:	n	=	3	mice;	GS:	n	=	3	mice).	Data	
are	represented	as	the	mean	±	SD	(D	and	E).	
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Figure	3.7	Cellular	phenotypes	of	MNDTA	mice	
	
(A)	 Post-mitotic	 motor	 neurons	 were	 killed	 by	 crossing	 Olig2::Cre	 with	
Rosa26::lox-stop-lox:DTA	 mice	 (MNDTA).	 (B)	 LMC	 neurons	 are	 killed	 in	 MNDTA	
mice,	 as	 shown	 by	 immunostaining	 for	 FoxP1	 and	 Isl1	 in	 e11.5	 wt	 and	 MNDTA	
lumbar	spinal	cords.	Note	the	lack	of	FoxP1on	neurons	in	the	ventrolateral	spinal	
cord	in	MNDTA	mice.	Quantification	reveals	that	more	than	95%	of	ventrolaterally	
located	FoxP1on	motor	 neurons	 are	 ablated	 in	MNDTA	mice.	 (C)	Muscle	 spindles	
develop	 in	 MNDTA	 mice.	 Right:	 Representative	 TA	 and	 GL	 muscle	 spindles	 in	
MNDTA	mice	are	visualized	by	Pv	and	vGluT1	immunostaining.	Left:	Quantification	
of	shank	muscle	 spindles	 in	wild-type	and	MNDTA	mice.	The	number	of	spindles	
formed	 in	MNDTA	mice	 is	 reduced	by	~80%	compared	to	the	wild-type.	 (D)	The	
density	 of	 proprioceptors	 in	DRG	L2	 and	 L5	was	 unchanged	 in	MNDTA	mice,	 as	
assessed	by	FISH.	
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Figure	3.8	Loss	of	motor	neurons	does	not	affect	cdh13	induction	
	
(A	and	B)	The	percentage	of	proprioceptors	expressing	cdh13	is	similar	in	wt	and	
MNDTA	mice.	 (A)	 Images	 show	 double	 FISH	 for	 pv	 and	 cdh13	 in	 e18.5	 L4	 DRG.	
Scale	bar,	30	μm.	(B)	Quantification	of	proprioceptors	expressing	cdh13	in	wt	and	
MNDTA	L2	and	L5	DRG	at	e18.5	(n	=	3	mice).	Data	are	represented	as	the	mean	±	
SD.	
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3.3	Discussion	

	

While	there	is	ample	evidence	for	the	involvement	of	axo-axonal	interactions	

in	 fasciculation	 and	pathfinding	 (Wang	 and	Marquardt,	 2013),	 the	 specification	of	

neuronal	 subtype	 character	 via	 signaling	 between	 axons	 has	 not	 been	 described.	

Nevertheless,	 the	 abundance	 of	 molecular	 distinctions	 between	 motor	 neuron	

subpopulations	 combined	 with	 the	 close	 association	 between	 motor	 and	

proprioceptor	axons	during	limb	innervation	led	us	to	consider	the	motor	axon	as	a	

source	of	patterning	information.		

	

Our	 results	 corroborate	 previous	 findings	 arguing	 against	 a	 role	 for	motor	

axon	 in	 the	 specification	 of	 proprioceptor	 muscle-type	 identity.	 In	 chick	 double-

dorsal	 limb	preparations,	 sensory-motor	 connectivity	was	 shown	 to	be	 influenced	

by	 an	 ectopic	 peripheral	 element	 (Wenner	 and	 Frank,	 1995).	 Motor	 axons	 were	

dismissed	as	a	source	of	sensory	patterning	information	because	they	were	argued	

to	be	unaffected	by	surgical	manipulation	(Wenner	and	Frank,	1995),	which	we	can	

attribute	in	retrospect	to	the	preservation	of	dorsoventral	guidance	cues	located	in	

the	 retained	proximal	 portion	of	 limb	bud.	 In	 FoxP1MNΔ	mice,	 afferents	 have	been	

shown	 to	 target	 appropriate	 domains	 of	 the	 LMC	 in	 the	 absence	 of	 motor	 axon	

subtype	character	(Sürmeli	et	al.,	2011),	providing	additional	evidence	against	a	role	

for	motor	axon	in	proprioceptor	subtype	specification.	
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	However,	concluding	that	motor	axon	subtype	does	not	specify	any	facet	of	

proprioceptor	identity	based	on	these	studies	and	our	findings	is	erroneous	for	two	

reasons:	(1)	it	assumes	that	the	only	function	of	proprioceptor	muscle-type	identity	

is	to	establish	patterned	monosynaptic	connectivity	with	motor	neurons;	and	(2)	it	

dismisses	a	role	for	peripherally	specified	features	of	motor	neuron	subtype	identity	

in	 assigning	 proprioceptor	 subtype.	 Because	 we	 performed	 our	 proprioceptor	

muscle-type	screen	at	P1,	the	differential	expression	of	some	of	these	genes	could	be	

specified	by	 late-onset	 features	of	motor	neuron	subtype	 identity.	Thus,	while	our	

experiments	indicate	that	motor	axon	is	not	the	tissue	substrate	of	cdh13	induction,	

it	 remains	 possible	 that	 expression	 of	 one	 or	more	 of	 the	 genes	 identified	 in	 our	

screen	is	assigned	by	motor	axon.	
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4	Limb	mesenchyme	influences	proprioceptor	muscle-type	

identity	

	

4.1	Introduction	

	

The	 limb	 mesenchyme	 plays	 a	 critical	 role	 in	 diverse	 aspects	 of	 limb	

development	 ranging	 from	 motor	 axon	 guidance	 to	 muscle	 cleavage	 patterning	

(Kardon	 et	 al.,	 2003;	 Stifani,	 2014).	 Despite	 the	 known	 roles	 of	 mesenchyme	 in	

shaping	elements	of	spinal	motor	circuitry,	direct	assessment	of	its	contribution	to	

patterning	 proprioceptor	 subtype	 identity	 has	 been	 prevented	 by	 the	 lack	 of	

proprioceptor	 genetic	 markers.	 In	 this	 chapter,	 I	 assess	 the	 involvement	 of	 the	

mesenchyme	 in	 specifying	 proprioceptor	 muscle-type	 identity	 by	 assaying	

proprioceptor	 gene	 expression	 in	 mice	 in	 which	 the	 dorsoventral	 identity	 of	 the	

mesenchyme	has	been	genetically	altered	to	a	double-ventral	or	double-dorsal	fate.	

	

To	achieve	these	phenotypes,	we	manipulated	expression	of	the	transcription	

factor	Lmx1b,	which	 is	expressed	by	dorsal	mesenchyme	and	patterns	dorsal	 limb	

morphology	(Figure	4.1A).	I	first	demonstrate	that	the	dorsoventral	morphology	of	

the	 shank	 in	 Lmx1b	 loss-	 or	 gain-of-function	 mutants	 is	 converted	 to	 a	 double-

ventral	 or	 double-dorsal	 phenotype.	 I	 next	 show	 that	 generic	 features	 of	

proprioceptor	development	are	maintained	in	these	genetic	backgrounds.	Finally,	I	

demonstrate	 that	 the	 proprioceptor	 expression	 of	 several	muscle-type	markers	 is	
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altered	in	these	mutant	backgrounds	in	accord	with	the	nature	of	the	dorsoventral	

conversion,	 indicating	 that	proprioceptor	 identity	 is	 imposed	by	spatially	confined	

signals	from	the	limb	mesenchyme.	

	

4.1.1	Mesenchymal	signals	pattern	dorsoventral	limb	morphology	

	

	 The	developing	 limb	is	often	viewed	as	a	Cartesian	coordinate	system,	with	

patterning	cues	distributed	along	the	orthogonal	anterior-posterior,	proximodistal,	

and	dorsoventral	axes	(Wolpert,	1969).	The	final	form	of	the	limb	is	a	consequence	

of	 inductive	events	occurring	along	 these	axes	and	 the	 interactions	between	 them	

(Capdevila	 and	 Izpisua	 Belmonte,	 2001;	 Johnson	 and	 Tabin,	 1997).	 The	 limb	

mesenchyme	supplies	much	of	the	positional	information	that	instructs	mature	limb	

morphology	along	the	cardinal	limb	axes	(Bénazet	and	Zeller,	2009).		

	

When	considering	the	role	of	 limb	mesenchyme	in	specifying	proprioceptor	

muscle-type	 gene	 expression,	 two	 findings	 led	 us	 to	 narrow	 our	 focus	 to	 the	

dorsoventral	 axis,	 which	 delineates	 the	 flexor	 and	 extensor	 compartments	 of	 the	

mature	limb	typified	by	the	TA	(dorsal	ankle	flexor)	and	GS	(ventral	ankle	extensor)	

synergist	groups.	First,	dorsoventral	 limb	character	patterned	by	the	mesenchyme	

has	 been	 reported	 to	 influence	 proprioceptor	 connectivity	 with	 motor	 neurons	

(Wenner	and	Frank,	1995).	 Second,	many	of	 the	 candidate	genes	 identified	 in	our	

screen	 of	 muscle-type	 proprioceptors	 segregate	 with	 respect	 to	 proprioceptor	

innervation	along	the	dorsoventral	axis:	cdh13,	vstm2b,	sema5a,	and	crtac1	exhibit		
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Figure	4.1	Specification	of	the	dorsoventral	limb	axis	
	
(A)	The	expression	patterns	of	genes	that	regulate	dorsoventral	patterning	of	the	
limb	mesenchyme.	This	 schematic	depicts	 a	 transverse	 section	of	 the	 limb	bud,	
with	 proximal	 to	 the	 left	 and	 distal	 to	 the	 right	 ending	 in	 the	 AER	 (apical	
ectodermal	 ridge).	 Dorsal	 is	 at	 top	 and	 ventral	 is	 at	 bottom.	 (B)	Model	 for	 the	
genetic	 pathway	 regulating	 dorsoventral	 patterning	 of	 the	 hindlimb.	 Bmpr	
signaling	 in	 the	 limb	ectoderm	 is	 required	 for	En1	expression	 (red	 in	A)	 in	 the	
ventral	 ectoderm.	 En1	 suppresses	 the	 expression	 of	Wnt7a	 (yellow)	 in	 ventral	
ectoderm,	thereby	restricting	its	expression	to	dorsal	ectoderm.	Wnt7a	has	been	
shown	 to	 induce	 the	 expression	 of	 Lmx1b	 (blue),	 which	 is	 necessary	 and	
sufficient	 for	 limb	 dorsalization,	 in	 the	 mesenchyme	 underlying	 the	 dorsal	
ectoderm.	Adapted	from	Ahn	et	al.,	2001.	
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Figure	4.2	Ventralization	of	dorsal	limb	in	Lmx1b-/-	mice	
	
(A)	 Scanning	 electron	 micrographs	 of	 wild-type	 (a-c)	 and	 mutant	 (d-f)	 e16.5	
forelimbs.	 Dorsal	 (a,	 d),	 ventral	 (b,	 e)	 and	 posterior	 (c,	 f)	 views	 are	 shown.	
External	dorsal	 features	 (hair	 follicles)	 are	 lost	 in	mutants	and	are	 replaced	by	
ventral	 features	 (foot	pads,	 fp).	 In	addition,	 the	characteristic	ventral	 flexure	of	
digits	is	absent	in	mutants	(compare	panels	c	and	f).	(B)	Limb	histology	of	Lmx1b	
homozygous	 mutants	 stained	 with	 Mallory’s	 trichrome.	 Transverse	 sections	 of	
wild-type	 (upper)	 and	 mutant	 (lower)	 newborn	 hindlimbs	 at	 the	 level	 of	 the	
metatarsals	 (mt),	 with	 dorsal	 limb	 toward	 the	 top	 of	 the	 figure.	 Note	 the	
duplication	of	ventral	musculature	(mu)	 in	mutant	animals.	Adapted	from	Chen	
et	al.,	1998.	
	



Chapter	4:	Limb	mesenchyme	contributes	to	proprioceptor	subtype	specification	

	 101	

all-or-none	 distinctions	 between	 proprioceptors	 innervating	 the	 dorsal	 TA	 group	

versus	 ventral	 GS	 group.	 We	 therefore	 sought	 a	 genetic	 method	 by	 which	 to	

manipulate	the	dorsoventral	identity	of	the	limb	mesenchyme.		

	

The	 dorsoventral	 limb	 axis	 is	 specified	 through	 a	 series	 of	 epithelial-

mesenchymal	 interactions.	 A	 simplified	 model	 holds	 that	 the	 morphogen	 Wnt7a,	

expressed	 in	 dorsal	 ectoderm,	 induces	 expression	 of	 the	 LIM-homeodomain	

transcription	factor	Lmx1b	in	dorsal	limb	mesenchyme	(Figures	4.1A	and	B;	Riddle	

et	al.,	1995;	Vogel	et	al.,	1995).	In	ventral	ectoderm,	the	transcription	factor	En1	is	

induced	 by	 BMP	 signaling	 to	 repress	 expression	 of	Wnt7a	 and	 Lmx1b	 in	 ventral	

ectoderm	and	mesenchyme,	respectively	(Figures	4.1A	and	B;	Ahn	et	al.,	2001;	Davis	

et	al.,	1991;	Gardner	and	Barald,	1992;	Loomis	et	al.,	1996).		

	

In	reality,	the	situation	in	the	embryo	is	far	more	complex.	In	wnt7a	mutants,	

lmx1b	expression	 is	only	 lost	 from	the	distal	anterior	mesenchyme,	 indicating	 that	

additional	 signals	 must	 act	 to	 regulate	 its	 dorsoventral	 expression	 (Cygan	 et	 al.,	

1997;	 Loomis	 et	 al.,	 1998).	 Likewise,	 in	 en1	mutants,	 lmx1b	 is	 expressed	 only	 in	

proximal	 ventral	 mesenchyme,	 despite	 the	 disinhibition	 of	 wnt7a	 expression	

throughout	 the	 ventral	 ectoderm	 (Loomis	 et	 al.,	 1998).	 Nevertheless,	 epistasis	

analyses	of	double	mutants	indicate	that	Lmx1b	is	the	only	relevant	target	of	Wnt7a	

and	 En1	 with	 respect	 to	 dorsoventral	 patterning	 (Chen	 and	 Johnson,	 2002).	

Furthermore,	Lmx1b	 loss-	and	gain-of-function	studies	have	demonstrated	 that	 its	
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expression	by	 the	mesenchyme	 is	 both	necessary	 and	 sufficient	 to	 instruct	 dorsal	

fate	during	limb	development	(Riddle	et	al.,	1995;	Vogel	et	al.,	1995).		

	

In	 Lmx1b-/-	 mice,	 dorsal	 mesenchyme	 acquires	 a	 ventral	 mesenchymal	

identity.	 As	 a	 result,	 characteristic	 features	 of	 dorsoventral	 polarity,	 including	 the	

shape	of	the	phalanges,	tendon	morphology,	and	muscle	arrangement,	are	lost	at	the	

level	 of	 the	 digits,	 which	 acquire	 a	 mirror-symmetric	 ventral-ventral	 appearance	

(Figures	 4.2A	 and	 B;	 Chen	 et	 al.,	 1998).	 Lineage	 tracing	 studies	 have	 shown	 that	

lmx1b-expressing	 mesenchymal	 cells	 contribute	 to	 dorsal	 bone,	 tendon,	 cartilage,	

and	muscle	connective	 tissue	 (Li	et	al.,	2010).	However,	 lmx1b	 is	not	expressed	 in	

muscle	 progenitors,	 indicating	 that	 its	 role	 in	 muscle	 patterning	 is	 non-cell	

autonomous	(Li	et	al.,	2010).	Thus,	Lmx1b	expression	by	the	mesenchyme	patterns	

the	dorsoventral	axis	of	the	developing	limb	through	both	cell-autonomous	and	non-

cell	autonomous	mechanisms.	

	

4.2	Results	

4.2.1	Generation	of	Vstm2b::LacZ	mice	

	

	 To	facilitate	our	analysis	of	vstm2b	expression,	we	generated	a	LacZ	reporter	

allele	from	targeted	embryonic	stem	cells	acquired	from	the	International	Knockout	

Mouse	Consortium	(Ringwald	et	al.,	2011).	Homologous	recombination	was	used	to	

generate	 ES	 cells	 carrying	 a	 transgenic	 allele	 with	 reporter,	 constitutive	 null	 and	

conditional	null	potential	(Skarnes	et	al.,	2011)	at	the	vstm2b	locus	(Figure	4.3A).	A		
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Figure	4.3	Generation	of	transgenic	vstm2b	reporter	and	knockout	mouse	lines	
	
(A)	 Exons	 2-4	of	 the	 vstm2b	 locus	were	 replaced	with	 a	 cassette	 containing	 an	
IRES-LacZ	 reporter	 and	 neomycin	 selection	 element	 flanked	 by	 FRT	 sites	 for	
downstream	excision	with	Flp	recombinase,	as	well	as	exons	2-4	flanked	by	loxP	
sites	 for	 downstream	 excision	 with	 Cre	 recombinase.	 Vstm2b::LacZ	 mice	 were	
generated	by	crossing	the	targeted	allele	 to	a	Protamine::Cre	deleter	 line,	which	
initiates	 recombination	 in	 the	 male	 germline	 (1).	 A	 floxed	 Vstm2b	 allele	 was	
generated	 by	 crossing	 the	 targeted	 allele	 to	Rosa26::FlpO	 deleter	mice	 (2).	 (B)	
Vstm2b::LacZ	is	a	null	allele.	Expression	of	vstm2b	was	examined	in	L4	DRG	of	P0	
mice	heterozygous	or	homozygous	 (Vstm2bhet::LacZ	or	Vstm2bhom::LacZ)	 for	 the	
Vstm2b::LacZ	 allele	 using	 in	 situ	 hybridization	with	 a	 probe	 specific	 to	 deleted	
exons	 2-4.	 (C-D)	 β-gal	 expression	 was	 assessed	 by	 antibody	 staining	 of	 DRG	
neurons	 co-expressing	 Pv	 and	 Runx3	 in	 P1	 Vstm2bhet::LacZ	 mice.	 (C)	
Vstm2b::LacZ	 expression	 is	 restricted	 to	 proprioceptors.	 	 The	 punctate	
appearance	of	β-gal	antibody	staining	is	indicative	of	vesicular	packaging	and	has	
been	 observed	 in	 proprioceptors	 of	 other	 LacZ	 driver	 lines	 (Joriene	 De	 Nooij,	
personal	 communication).	 (D)	 β-gal	 expression	 in	 L2-L6	 proprioceptors	 was	
observed	in	proportions	similar	to	those	of	endogenous	vstm2b	expression.	(E-F)	
Vstm2b::LacZ	 is	 expressed	 in	 TA	 but	 not	 GS	 proprioceptors.	 (E)	 TA	 or	 GS	
proprioceptors	of	Vstm2bhet::LacZ	mice	were	retrogradely	labeled	with	ctb555	and	
assessed	at	P1	for	expression	of	β-gal	protein.	(F)	Muscle-type	specificity	of	β-gal	
expression	in	Vstm2bhet::LacZ	mice	mimics	that	of	vstm2b	in	wild-type	mice.	
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Protamine::Cre	 deleter	 line	 (O’Gorman	 et	 al.,	 1997)	 was	 used	 to	 excise	 the	 Neo	

selection	 cassette	 as	 well	 as	 vstm2b	 exons	 2-4	 in	 the	 male	 germline	 to	 yield	 a	

Vstm2b::LacZ	reporter	allele	with	constitutive	null	potential	(Figure	4.3A1).	We	also	

utilized	 the	Rosa26::FlpO	 deleter	 line	 (Raymond	 and	 Soriano,	 2007)	 to	 produce	 a	

floxed	Vstm2b	allele	for	the	generation	of	conditional	mutants	(Figure	4.3A2).	

	

We	first	sought	to	establish	that	Vstm2b::LacZ	is	a	null	allele.	To	this	end,	we	

examined	vstm2b	RNA	expression	in	homozygous	Vstm2b::LacZ	mice	using	a	probe	

complementary	to	deleted	exons	2-4.	We	observed	no	vstm2b	signal	in	Vstm2b::LacZ	

homozygotes,	in	contrast	to	the	population	of	large-diameter	DRG	neurons	strongly	

expressing	 vstm2b	 in	 heterozygotes	 (Figure	 4.3B).	 We	 also	 noted	 the	 absence	 of	

vstm2b	 expression	 in	 spinal	 motor	 neurons	 and	 interneurons	 of	 Vstm2b::LacZ	

homozygotes	(data	not	shown).	We	were	therefore	satisfied	that	Vstm2b::LacZ	is	a	

null	allele.		

	

We	 next	 assessed	 the	 expression	 pattern	 of	 the	 Vstm2b::LacZ	 allele	 in	

heterozygous	 mice.	 Notably,	 we	 observed	 that	 Vstm2b::LacZ	 reporter	 expression	

was	 confined	 to	 DRG	 neurons	 expressing	 both	 Pv	 and	 Runx3	 (Figure	 4.3C),	 the	

coincidence	 of	 which	 defines	 the	 proprioceptive	 sensory	 lineage	 (de	 Nooij	 et	 al.,	

2013).	Vstm2b	 is	 therefore	 the	 first	 gene	 identified	whose	 expression	among	DRG	

neurons	is	definitively	restricted	to	a	proprioceptor	subset.	The	proportion	of	LacZon	

proprioceptors	in	DRG	L2-L5	is	similar	to	the	proportion	of	vstm2bon/pvon	neurons	

observed	by	in	situ	hybridization	(Figure	4.3D;	refer	to	Figure	2.5F),	suggesting	that	
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the	Vstm2b::LacZ	allele	recapitulates	endogenous	vstm2b	expression.	To	confirm	the	

muscle-type	specificity	of	LacZ	reporter	expression,	we	injected	ctb555	into	TA	or	GS	

muscle	in	Vstm2b::LacZ	heterozygotes	and	immunostained	for	β-gal	and	Pv	protein	

(Figure	4.3E).	We	observed	that	100%	(23/23)	of	backfilled	TA	neurons	expressed	

β-gal,	whereas	~14%	(6/44)	of	backfilled	GS	neurons	expressed	the	protein	(Figure	

4.3F;	 β-galon	 GS	 proprioceptors	 are	 likely	 the	 result	 of	 ctb	 diffusion	 into	 apposing	

muscles	 receiving	 vstm2bon	 proprioceptor	 innervation).	 Thus,	 muscle-type	

specificity	of	vstm2b	expression	is	preserved	in	Vstm2b::LacZ	mice.	

	

β-gal	 protein	 does	 not	 readily	 diffuse	 into	 axons	 (Callahan	 and	 Thomas,	

1994)	and	is	not	present	at	the	muscle	spindle.	We	were	therefore	unable	to	use	the	

Vstm2b::LacZ	 allele	 assess	 the	 expression	 status	 of	 proprioceptors	 innervating	

individual	muscles	or	 to	examine	the	specificity	of	central	connections	with	motor	

neurons.	

	

4.2.2	Manipulation	of	mesenchymal	Lmx1b	expression	results	in	dorsoventral	

conversion	of	shank	tissues	

	

	 In	 order	 to	 examine	 the	 role	 of	 limb	 mesenchyme	 in	 establishing	

proprioceptor	 gene	 expression	 profiles,	 we	 analyzed	 cdh13,	 vstm2b,	 sema5a	 and	

crtac1	 expression	 in	mice	 in	which	 the	normal	dorsoventral	 character	of	 the	 limb	

mesenchyme	 was	 genetically	 manipulated	 to	 either	 a	 double-ventral	 or	 double-

dorsal	fate.		
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We	decided	 to	 focus	 this	 analysis	on	proprioceptors	 innervating	 the	 shank,	

where	all	muscle-type	proprioceptor	genes	exhibit	a	clear	all-or-none	distinction	in	

expression	along	the	dorsoventral	axis:	all	muscles	of	the	dorsally	derived	anterior	

crural	 group	 (TA,	 EDL,	 PL)	 are	 innervated	 by	 cdh13on,	 vstm2bon,	 sema5aon	 and	

crtac1off	 proprioceptors,	 whereas	 all	 muscles	 of	 the	 ventrally	 derived	 posterior	

crural	 group	 (GS,	 Sol,	 Plan)	 are	 innervated	 by	 cdh13off,	 vstm2boff,	 sema5aoff	 and	

crtac1on	proprioceptors.	This	clear	distinction	 is	 lost	at	 the	more	proximal	 level	of	

the	thigh:	vstm2b,	for	example,	is	expressed	primarily	by	proprioceptors	innervating	

the	 dorsal	 quadriceps	 group,	 but	 a	 cohort	 of	 ventral	 hamstring/adductor	

proprioceptors	also	expresses	the	gene	(refer	to	Figure	2.5H).		

	

	 To	 induce	 dorsoventral	 mesenchymal	 conversion,	 we	 manipulated	

expression	 of	 Lmx1b	 in	 the	 limb	mesenchyme.	We	 assessed	 the	 affect	 of	 double-

ventral	 limb	 mesenchyme	 (d/v	 à	 v’/v)	 on	 proprioceptor	 subtype	 identity	 by	

examining	 proprioceptor	 gene	 expression	 in	 an	Lmx1b-/-	 background	 (Chen	 et	 al.,	

1998).	To	generate	mice	with	double-dorsal	limb	mesenchyme	(d/v	à	d/d’),	lmx1b	

was	 expressed	 in	 ventral	 limb	 mesenchyme	 by	 crossing	 Rosa26::lsl.Lmx1b	 to	

Prx1::Cre	 mice,	 such	 that	 Cre	 expression	 is	 directed	 throughout	 the	 limb	

mesenchyme	 from	 ~e9.5	 (termed	 Prx1Lmx1b;	 Li	 et	 al.,	 2010),	 prior	 to	 hindlimb	

innervation	by	motor	and	sensory	axons.	
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Figure	4.4	Dorsoventral	conversion	of	the	shank	in	Lmx1b-/-	and	Prx1Lmx1b	mice	
	
(A,	 C,	 and	E)	 Illustrations	 depicting	 the	 dorsal	 or	 ventral	 status	 of	 the	 limbs	 of	
WT,	Lmx1b−/−	and	Prx1Lmx1b	mice	 (dorsal,	dark	gray;	 ventral,	 light	gray)	and	 the	
genetic	 strategies	 used	 to	 alter	 mesenchymal	 Lmx1b	 expression.	 Vertical	 lines	
indicate	the	proximodistal	locations	of	the	cross	sections	shown	in	B,	D,	and	F.	(B,	
D,	 and	 F)	 Anatomical	 changes	 in	 the	 shanks	 of	Prx1Lmx1b	 and	Lmx1b−/−	mice	 are	
illustrated	 by	 in	situ	 hybridization	 for	 myosin	 in	 cross	 sections	 of	 p0	 WT	 (B),	
Lmx1b−/−	(D)	 and	 Prx1Lmx1b	(F)	 hindlimbs.	 In	 WT	mice,	 yellow	 and	 pink	 dotted	
lines	demarcate	dorsal	TA	and	ventral	GS	muscle	synergist	groups,	respectively.	
Note	the	near	mirror	image	duplication	of	dorsal	muscles	in	Prx1Lmx1b	mice	(F)	or	
ventral	 muscles	 in	Lmx1b−/−	mice	 (D;	 t:	 tibia,	 f:	 fibula,	 d:	 dorsal,	 v:	 ventral,	 d’:	
duplicated	dorsal,	v’:	duplicated	ventral).	
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	 Manipulating	the	expression	of	Lmx1b	in	limb	mesenchyme	by	genetic	loss-	

or	 gain-of-function	 results	 in	 the	 transformation	 of	 muscle,	 bone,	 and	 connective	

tissue	 to	 double-ventral	 or	 double-dorsal	 character,	 respectively.	 While	 this	

transformation	has	been	characterized	for	the	digits	(Chen	and	Johnson,	2002;	Chen	

et	 al.,	 1998),	 it	 has	 been	 reported	 that	 limb	 ventralization	 in	 Lmx1b-/-	 mice	 is	

incomplete	 at	 proximal	 limb	 levels	 (Chen	 et	 al.,	 1998;	 Feenstra	 et	 al.,	 2012).	We	

therefore	examined	the	ventralization	and	dorsalization	of	shank	tissues	in	Lmx1b-/-	

and	Prx1Lmx1b	mice,	respectively,	by	generating	cross-sections	of	the	hindlimb	from	

ankle	to	knee	and	staining	for	myosin	to	delineate	muscle	morphology	(Figure	4.4A-

C).	 Whereas	 wild-type	 hindlimbs	 exhibit	 asymmetric	 morphology	 in	 which	 the	

antagonist	 TA	 and	GS	muscle	 groups	 are	 easily	 delineated	 (Figure	 4.4A),	Lmx1b-/-	

and	Prx1Lmx1b	mice	display	near	mirror-symmetric	morphology.	In	Lmx1b-/-	mice,	we	

observed	 a	 clear	duplication	of	 ventral	musculature	 (termed	v’),	 including	 the	GS,	

Sol,	 and	Plan,	 in	place	of	 the	dorsal	TA	synergist	group	(Figure	4.4B).	Likewise,	 in	

Prx1Lmx1b	mice,	we	 observed	 duplicated	 dorsal	musculature	 (termed	 d’),	 including	

the	 TA,	 EDL,	 and	 PL,	 in	 place	 of	 the	 ventral	 GS	 group	 (Figure	 4.4C).	 Thus,	 the	

dorsoventral	 conversion	of	 limb	mesenchyme	 is	 fully	penetrant	 at	 the	 level	of	 the	

shank.	

	

4.2.3	Proprioceptor	gene	expression	 following	 innervation	of	double-ventral	

shank	
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	 Prior	 to	 examining	 the	 impact	 of	 mesenchymal	 transformation	 on	

proprioceptor	 muscle-type	 gene	 expression,	 we	 sought	 to	 determine	 whether	

generic	 proprioceptor	 development	 is	 affected	 in	Lmx1b-/-	 and	Prx1Lmx1b	mice.	We	

found	that	the	incidence	of	pvon	neurons	in	L2	and	L5	DRG	did	not	differ	significantly	

between	 wild-type,	 Lmx1b-/-	 and	 Prx1Lmx1b	mice	 (Figure	 4.5A).	 Furthermore,	 the	

number	 of	 dorsal	 and	 ventral	 shank	 muscle	 spindles	 was	 unchanged	 in	 altered	

dorsoventral	 backgrounds	 (Figure	 4.5B).	 Thus,	 dorsoventral	 manipulation	 of	 the	

limb	 mesenchyme	 does	 not	 significantly	 alter	 generic	 aspects	 of	 hindlimb-

innervating	proprioceptor	development.	

	

	 We	 first	 examined	 the	 expression	 of	 proprioceptor	 genes	 in	Lmx1b-/-	mice.	

Lmx1b-/-	 mice	 die	 within	 24	 h	 of	 birth	 (Chen	 et	 al.,	 1998),	 precluding	 the	

identification	 of	 muscle-type	 proprioceptors	 by	 ctb555	 retrograde	 labeling.	 We	

therefore	compared	the	proportion	of	proprioceptors	expressing	cdh13	or	vstm2b	in	

wild	 type	 and	 Lmx1b-/-	mice	 at	 ~e18,	 just	 prior	 to	 birth.	 For	 cdh13,	 we	 observed	

statistically	 significant	 decreases	 of	 ~18%	 and	 ~14%	 in	 the	 number	 of	 cdh13on	

proprioceptors	 in	 L4	 and	 L5	 DRG,	 respectively	 (Figure	 4.6B;	 p<0.001)	 -	 ganglia	

which	contain	 the	bulk	of	proprioceptors	 innervating	 the	TA	group	muscles	of	 the	

dorsal	 shank	 in	 wild-type	 mice.	 For	 vstm2b,	 we	 observed	 a	 similar	 decrease	 of	

~15%	in	the	number	of	vstm2bon	proprioceptors	in	DRG	L4,	where	a	large	portion	of	

TA	group	proprioceptors	 are	 located	 (Figures	4.6A	and	C;	 p<0.001).	The	 lack	of	 a	

significant	 decrease	 in	 vstm2b-expressing	 proprioceptors	 across	 lumbar	 ganglia	

might	be	attributed	to	the	incomplete	ventralization	of	thigh	and	hip	musculature	in		
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Figure	 4.5	Generic	 features	 of	 proprioceptor	 development	 are	 unperturbed	 in	
Lmx1b−/−	and	Prx1Lmx1b	mice		
	
(A)	 The	 density	 of	 proprioceptors,	 assessed	 by	 pv	 labeling,	 was	 unchanged	 in	
DRG	 L2	 and	 L5	 of	 Lmx1b−/−	 and	 Prx1Lmx1b	 compared	 to	 wild-type	 mice.	 (B)	
Lmx1b−/−	 and	Prx1Lmx1b	mice	 possess	 a	 normal	 complement	 of	muscle	 spindles.	
Spindles	were	identified	by	Pv	immunostaining	of	25	μm	cryosections	of	dorsally	
or	ventrally	located	shank	muscles	in	P0	wild-type,	Prx1Lmx1b	and	Lmx1b−/−	mice.	
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Figure	4.6	Proprioceptor	gene	expression	in	Lmx1b−/−	mice	
	
(A-C)	 vstm2b	 and	 cdh13	 expression	 in	 lumbar	 DRG	 of	 e18	 Lmx1b−/−	 mice.	 (A)	
Gene	 expression	 in	 proprioceptors	was	 examined	 by	 double	 FISH	 for	 cdh13	or	
vstm2b	 and	 pv.	 Shown	 here	 is	 the	 expression	 of	 vstm2b	 in	 DRG	 L4.	 (B)	 The	
proportion	of	cdh13on	proprioceptors	decreased	in	each	lumbar	DRG	of	Lmx1b−/−	
mice	 compared	 to	 the	 respective	 ganglion	 in	 wild-type	 mice,	 with	 significant	
differences	observed	for	DRG	L4	and	L5	(n=3;	*p	<	0.001,	Student’s	t	test).	Data	
are	 represented	 as	 the	 mean	 ±	 SEM.	 (C)	 The	 proportion	 of	 vstm2bon	
proprioceptors	decreased	in	each	lumbar	DRG	of	Lmx1b−/−	mice	compared	to	the	
respective	ganglion	in	wild-type	mice,	with	a	significant	difference	observed	for	
DRG	L4	 (n=5;	 p	 <	 0.001,	 Student’s	 t	 test).	 Data	 are	 represented	 as	 the	mean	 ±	
SEM.	(D-G)	Proprioceptors	supplying	duplicated	ventral	shank	in	Lmx1b−/−	mice	
lack	 cdh13	 expression.	 Shank	 muscles	 of	 wild-type	 Cdh13::GFP	 (D	 and	 E)	 and	
Lmx1b−/−,	Cdh13::GFP	(F	and	G)	mice	analyzed	for	GFP+	spindle	afferents.	(E	and	
G)	 Percentage	 of	 GFP+	 muscle	 spindles	 in	 dorsally	 or	 ventrally	 innervating	
proprioceptors	in	Cdh13::GFP	(E)	and	Lmx1b−/−,	Cdh13::GFP	(G)	mice	(*p	<	0.001,	
Student’s	 t	 test,	when	comparing	 dorsally	 located	muscles	 in	Lmx1b−/−	 to	wild-
type	 dorsal	 muscles;	 n=3	 mice/genotype).	 (D	 and	 F)	 GFP	 status	 of	 vGluT1+	
endings	in	muscle	spindles	supplying	dorsally	located	muscles	in	Cdh13::GFP	(D)	
and	Lmx1b−/−,	Cdh13::GFP	(F)	mice.	Data	are	represented	as	the	mean	±	SD.	Scale	
bars,	50	μm.	
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Lmx1b-/-	 mice.	 Alternatively,	 this	 phenotype	 might	 be	 explained	 by	 the	 wild-type	

cohort	 of	 vstm2bon	 proprioceptors	 innervating	 ventral	 thigh	 musculature;	 these	

neurons	would	be	unaffected	by	 the	d	à	 v’	 conversion	of	 limb	 tissues	 in	Lmx1b-/-	

hindlimbs.	 	Nevertheless,	these	results	imply	that	dorsal	mesenchymal	character	is	

required	to	induce	cdh13	and	vstm2b	expression	in	TA	group	proprioceptors.	

	

Our	 inability	 to	 examine	 vstm2b	 status	 at	 the	muscle	 spindle	 precluded	 an	

analysis	of	 its	expression	 in	proprioceptors	supplying	v’	muscles	of	Lmx1b-/-	mice.	

However,	 we	 used	 our	 ability	 to	 genetically	 label	 cdh13on	 proprioceptors	 at	 the	

muscle	 spindle	 to	assess	cdh13	 expression	 in	 the	muscles	of	 v’	 shank.	We	crossed	

Lmx1b-/-	 mice	 to	 Cdh13::GFP	 homozygotes	 and	 assayed	 muscle	 spindles	 for	 the	

presence	 of	 GFP+	 afferents	 at	 e18,	 following	 tamoxifen	 activation	 of	 Cre	

recombinase	at	e14.5	(Figures	4.6D-G).	We	dissected	v	and	v’	 shank	muscles	 from	

Lmx1b-/-,	 Cdh13::GFP	 mice	 as	 well	 as	 v	 and	 d	 shank	 muscles	 from	 Lmx1bWT,	

Cdh13::GFP	 littermates	 and	 examined	 the	GFP	 status	 of	 spindles	 in	 these	muscles	

(Figures	 4.5D-G).	 In	 the	 dorsal	 limb	 of	 wild-type	 mice,	 we	 found	 that	 ~28%	 of	

muscle	spindles	received	GFP+	afferent	innervation,	consistent	with	the	efficiency	of	

tamoxifen-mediated	Cre	induction.	In	contrast,	in	Lmx1b-/-	mutants,	only	~2%	of	v’	

muscle	spindles	were	associated	with	GFP+	sensory	axon	terminals	(Figures	4.6D-G;	

p<0.001).	 In	 both	wild-type	 and	Lmx1b-/-	mutant	mice,	 spindles	 supplying	 ventral	

shank	muscles	lacked	GFP+	proprioceptor	terminals	(Figures	4.6D-G).	These	results	

indicate	that	cdh13	expression	in	proprioceptors	is	influenced	by	limb	mesenchyme.	

	



Chapter	4:	Limb	mesenchyme	contributes	to	proprioceptor	subtype	specification	

	 113	

4.2.4	 Proprioceptor	 gene	 expression	 following	 innervation	 of	 double-dorsal	

shank	

	

We	next	examined	 the	expression	of	proprioceptor	genes	 in	Prx1Lmx1b	mice.	

The	postnatal	viability	of	this	line	allowed	us	to	examine	gene	expression	in	muscle-

type	 proprioceptors	 identified	 by	 retrograde	 labeling.	 The	 expression	 of	

proprioceptor	 genes	 was	 assessed	 at	 P1	 after	 injection	 of	 ctb555	 into	 d’	 shank	

muscles	at	P0	(Figures	4.6A-P).	We	found	that	~66%	of	pvon	neurons	innervating	d’	

muscles	in	Prx1Lmx1b	mice	exhibited	cdh13	expression,	in	contrast	to	wild-type	mice,	

where	 none	 of	 the	 proprioceptors	 innervating	 ventral	 shank	 muscles	 expressed	

cdh13	 (Figures	 4.7A-D).	 All	 proprioceptors	 innervating	 dorsal	 shank	 muscles	 in	

Prx1Lmx1b	mice	 expressed	 cdh13,	 indicating	 no	 deviation	 from	 the	 normal	 cdh13	

profile	(Figures	4.7B	and	D).	

	

To	 assess	 the	 expression	 of	 vstm2b	 in	 shank-innervating	 proprioceptors	 of	

Prx1Lmx1b	mice,	 we	 crossed	 Prx1Lmx1b	animals	 to	 Vstm2b::LacZ	mice	 and	 examined	

retrogradely	 labeled	shank	proprioceptors	for	β-gal	expression	at	P1	(Figure	4.7E-

H).	We	found	that	~96%	of	Pvon	neurons	supplying	ventrally	 located	d’	muscles	in	

Prx1Lmx1b	mice	expressed	β-gal,	whereas	only	~5%	of	ventral	shank	muscles	in	wild-

type	mice	expressed	β-gal.	As	expected,	all	proprioceptors	 supplying	dorsal	 shank	

muscles	 in	Prx1Lmx1b	 mice	 expressed	 β-gal,	 in	 line	with	 the	 endogenous	 profile	 of	

vstm2b	expression	(Figures	4.7	F	and	H).	
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Figure	4.7	Proprioceptor	gene	expression	in	Prx1Lmx1b	mice	
	
(A-P)	Proprioceptors	supplying	duplicated	dorsal	shank	in	Prx1Lmx1b	mice	express	
cdh13,	 vstm2b,	 and	 sema5a,	 but	 not	 crtac1.	 Shank	 proprioceptors	 of	 wild-type	
and	Prx1Lmx1b	mice	were	identified	by	ctb555,	and	their	cdh13	(A-D),	sema5a	(I-L),	
and	crtac1	(M-P)	expression	was	assessed	by	double	FISH	with	pv.	Vstm2b::LacZ	
expression	 (E-H)	 was	 assessed	 by	 immunostaining	 for	 β-gal	 and	 Pv.	 (A-P)	
Retrogradely	labeled	proprioceptors	supplying	ventrally	located	muscles	in	wild-
type	and	Prx1Lmx1b	mice.	Scale	bar,	10	μm.	Dorsally	or	ventrally	innervating	shank	
proprioceptors	 expressing	 cdh13	 (B,	 D),	 Vstm2b::LacZ	 (F,	 H),	 sema5a	 (J,	 L),	 or	
crtac1	 (N,	 P)	 in	wild-type	 and	 Prx1Lmx1b	mice	 (*p<0.001,	 Student’s	 t	 test,	 when	
comparing	 ventrally	 located	 shank	 muscles	 in	 Prx1Lmx1b	 to	 wild-type	 ventral	
muscles;	n=3	mice/genotype/gene).	
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We	 also	 examined	 the	 expression	 of	 proprioceptor	 muscle-type	 genes	

sema5a	and	crtac1	 in	Prx1Lmx1b	mice	 in	proprioceptors	supplying	d’	shank	muscles	

after	 retrograde	 labeling.	 We	 found	 that	 ~72%	 of	 pvon	 neurons	 innervating	 d’	

muscles	 in	 Prx1Lmx1b	mice	 exhibited	 sema5a	 expression,	 in	 contrast	 to	 wild-type	

mice,	 where	 none	 of	 the	 proprioceptors	 innervating	 ventral	 shank	 muscles	

expressed	sema5a	(Figures	4.6I-L;	p<0.001).	Conversely,	the	expression	of	crtac1	in	

pvon	neurons	was	reduced	from	~67%	in	wild-type	mice	to	~2%	in	Prx1Lmx1b	mice	

(Figures	 4.7M-P).	 No	 deviation	 from	 the	 normal	 sema5a	 and	 crtac1	 expression	

profile	was	observed	 in	proprioceptors	 innervating	dorsal	 shank	 in	Prx1Lmx1b	mice	

(Figure	4.7K,	L,	O	and	P).	

	

Thus,	we	 conclude	 that	 expression	 of	 the	muscle-type	 proprioceptor	 genes	

cdh13,	vstm2b,	sema5a,	and	crtac1	is	influenced	by	the	dorsoventral	character	of	the	

limb	mesenchyme.	

	

4.3	Discussion	

	

Genetic	manipulation	of	 the	dorsoventral	 identity	of	 limb	mesenchyme	to	a	

double-dorsal	 or	 double-ventral	 character	 allowed	 me	 to	 assess	 the	 role	 of	

mesenchymal	 character	 in	 patterning	 the	 expression	 of	 dorsally	 or	 ventrally	

restricted	proprioceptor	genes.	Before	assessing	proprioceptor	gene	expression	 in	

these	mutants,	 I	 confirmed	 that	double-dorsal	and	double-ventral	 transformations	

were	fully	penetrant	at	the	shank	level	of	the	hindlimb	and	established	that	generic	
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features	 of	 proprioceptor	 development	 were	 unperturbed.	 I	 found	 that	

proprioceptor	 muscle-type	 gene	 expression	 is	 respecified	 when	 confronted	 with	

ectopic	limb	morphology,	demonstrating	that	the	dorsoventral	character	of	the	limb	

mesenchyme	is	involved	in	patterning	proprioceptor	gene	expression.		

	

4.3.1	 Regionally	 restricted	 limb	 mesenchymal	 signals	 induce	 proprioceptor	

gene	expression	

	

	 The	 dorsoventral	 restriction	 of	 cdh13,	 vtsm2b,	 sema5a,	 and	 crtac1	

proprioceptor	 expression	 could	 have	 its	 basis	 in	 inductive	 and/or	 repressive	

mesenchymal	 signals.	 The	 simplest	 scheme	holds	 that	 inductive	 signals	 expressed	

selectively	 by	 dorsal	 and	 distal	 limb	 mesenchyme	 induce	 cdh13	 expression	 in	

proprioceptors	 that	 innervate	 this	 mesenchymal	 domain,	 whereas	 a	 dorsal	

inductive	 signal	 unrestricted	 along	 the	 proximodistal	 axis	 may	 induce	 vstm2b	

expression.	 Conversely,	 an	 inductive	 signal	 expressed	 selectively	 by	 ventral-distal	

limb	mesenchyme	may	induce	crtac1	proprioceptor	expression	(Figure	4.8).	Under	

this	model,	 in	 Lmx1b-/-	 mice	with	 ventralized	 limbs,	 dorsal	 cues	 specifying	 cdh13	

and	 vstm2b	 expression	 are	 absent,	 resulting	 in	 the	 loss	 or	 reduction	 of	

proprioceptors	expressing	these	genes	(refer	to	Figure	4.6).	Similarly,	loss	of	ventral	

inductive	signals	in	the	dorsalized	limbs	of	Prx1Lmx1b	mice	would	result	in	the	loss	of	

crtac1-expressing	 proprioceptors.	 In	 contrast,	 dorsalization	 results	 in	 the	 ectopic	

expression	of	dorsal	inductive	cues,	leading	to	the	expression	of	cdh13,	vstm2b,	and	

sema5a	in	proprioceptors	innervating	ventrally	situated	musculature	(Figure	4.7).		
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Figure	4.8	A	model	 for	the	 induction	of	proprioceptor	gene	expression	by	 limb	
mesenchyme	
	
Patterning	mechanisms	for	proprioceptor	gene	expression	include	cdh13,	vstm2b,	
or	 crtac1	 inductive	 signals	 in	 dorsodistal,	 dorsal,	 or	 ventrodistal	 hindlimb,	
respectively.	 Inhibitory	 and	 inductive	 signals	 may	 pattern	 proprioceptor	 gene	
expression	along	these	limb	axes.	Note	that	the	cdh13on	population	is	a	subset	of	
the	vstm2bon	population.	
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More	 complex	 scenarios	 are	 also	 possible.	 In	 the	 case	 of	 cdh13,	 the	

intersection	 of	 repressive	 and	 inductive	 signals	 could	 form	 a	 grid-like	 system	 of	

positional	information	such	that	cdh13	expression	is	shaped	by	the	presence	of	both	

an	 inductive	 signal	 along	 the	 entire	 proximodistal	 axis	 of	 the	 dorsal	 limb	

mesenchyme	and	an	independent	proximal	repressive	signal.	

	

4.3.2	Proprioceptor	gene	expression	along	the	proximodistal	limb	axis	

	

Our	experiments	 in	Lmx1b-/-	 and	Prx1Lmx1b	mice	have	produced	 insight	 into	

the	induction	of	proprioceptor	genes	along	the	dorsoventral	limb	axis.	However,	the	

expression	 of	 cdh13,	 sema5a,	 and	 crtac1	 is	 similarly	 restricted	 along	 the	

proximodistal	 limb	 axis,	 indicating	 that	 the	 inductive	 or	 repressive	 signals	

patterning	their	expression	must	mimic	this	compartmentalization.	How	might	the	

proximodistal	restriction	of	proprioceptor	patterning	cues	be	achieved?	

	

The	 limb	 proximodistal	 axis	 is	 specified	 by	 opposing	 gradients	 of	 the	

morphogens	retinoic	acid	(RA)	and	fibroblast	growth	factor	(FGF)	(Mercader	et	al.,	

2005).	Together,	these	gradients	result	in	the	definition	of	mesenchymal	domains	of	

Hox	gene	expression	that	correspond	to	the	thigh,	shank	and	foot	of	the	mature	limb	

(Bénazet	 and	 Zeller,	 2009).	 These	 molecular	 programs	 likely	 with	 dorsoventral	

patterning	 information	 interact	 to	 give	 rise	 to	 the	 restricted	 patterns	 of	

proprioceptor	 cdh13,	 sema5a,	 and	 crtac1	 expression	 observed	 in	 wild-type	 mice.	
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Experimental	strategies	 for	assessing	 the	role	of	RA	and	FGF	signaling	 in	 inducing	

proprioceptor	gene	expression	are	discussed	in	Chapter	7.	

	

We	had	hoped	 that	 the	 expanded	 expression	profile	 of	 vstm2b	would	 yield	

insight	 into	 the	 role	 of	 dorsoventral	 mesenchyme	 at	 more	 proximal	 limb	 levels.	

However,	 due	 to	 the	 incomplete	 dorsalization	 and	 ventralization	 of	 the	 limbs	 of	

Prx1Lmx1	and	Lmx1b	mice	at	levels	proximal	to	the	shank	(Sebastian	Poliak,	personal	

communication),	 we	 could	 not	 assess	 the	 role	 of	 thigh	 or	 hip	 dorsoventral	

mesenchymal	character	on	inducing	vstm2b	expression.	The	incomplete	penetrance	

of	 limb	 ventralization	 and	 dorsalization	 in	 Lmx1b	 and	 Prx1Lmx1b	 animals	 at	 levels	

proximal	to	the	shank	is	likely	the	result	of	interaction	between	proximodistal	and	

dorsoventral	patterning	systems,	emphasizing	the	spatial	and	temporal	complexity	

of	limb	development.	

	

Notably,	 the	 proprioceptor	 genes	 examined	 in	 this	 chapter,	 with	 the	

exception	of	vstm2b,	exhibit	a	distal	bias	in	expression.	It	is	interesting	to	consider	

how	a	proximal	bias	in	proprioceptor	gene	expression	might	be	achieved	in	light	of	

the	 fact	 that	 all	 limb-innervating	 neurons	 must	 pass	 through	 the	 proximal	 limb	

mesenchyme.	Two	putative	mechanisms	involving	temporal	regulation	of	inductive	

cues	might	resolve	this	phenomenon.	The	first	is	to	delay	the	expression	of	proximal	

mesenchyme-derived	patterning	cues	until	after	most	sensory	axons	have	projected	

through	the	proximal	limb	and	into	more	distal	domains.	Segregation	of	axons	at	the	

lumbar	plexus	occurs	at	e10.5	and	the	proximal	portion	of	the	limb	is	traversed	by	
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axons	by	e11.5	(Luria	et	al.,	2008);	if	molecular	correlates	of	proprioceptor	muscle-

type	 identity	 function	 to	 establish	 selective	 connectivity,	 the	 expression	 of	 a	

proximal	cue	by	e12.5	would	provide	ample	time	for	the	induction	of	proprioceptor	

subtypes	 prior	 to	 the	 formation	 of	 sensory-motor	 synapses	 at	 ~e16.5.	 A	 second	

possible	mechanism	involves	muscle-derived	inductive	cues.	Myoblasts	migrate	into	

the	 limb	 and	 differentiate	 concomitant	 with	 innervation,	 and	 might	 therefore	

represent	a	temporally	delayed	source	of	inductive	cues	compared	to	mesenchyme.		

	

4.3.3	Possible	involvement	of	muscle	in	proprioceptor	gene	induction	

	

Based	 on	 our	 experiments	 in	 Lmx1b-/-	 mice,	 we	 proposed	 a	 model	 for	

proprioceptor	 gene	 induction	 in	 which	 positionally	 restricted	 mesenchymal	 cues	

induce	 the	 expression	 of	 cdh13,	 vstm2b,	 sema5a,	 and	 crtac1	 in	 proprioceptor	

subsets.	However,	in	addition	to	its	ability	to	pattern	proprioceptor	gene	expression,	

the	dorsoventral	identity	of	the	mesenchyme	has	a	marked	effect	on	the	pattern	of	

muscle	cleavage	(see	Figures	4.2	and	4.5).	It	is	therefore	possible	that	mesenchyme	

does	 not	 alter	 proprioceptor	 gene	 expression	 directly	 but	 rather	 acts	 through	

muscle	 to	 specify	 neuronal	 subtype	 identity.	 In	 Chapter	 5,	 I	 examine	whether	 the	

restriction	of	vstm2b	 to	proprioceptors	 is	 the	 consequence	of	direct	patterning	by	

the	mesenchyme	or	whether	it	arises	indirectly	due	to	the	influence	of	mesenchyme	

on	muscle	patterning.	
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5	 Limb	 muscle	 contributes	 to	 proprioceptor	 subtype	

specification	

5.1	Introduction	

	

In	 Chapter	 4,	 I	 provide	 evidence	 that	 the	 limb	mesenchyme	 contains	 cues	

that	 pattern	 proprioceptor	 gene	 expression.	However,	 it	 is	 unclear	whether	 these	

cues	 affect	 proprioceptors	 directly	 or	 indirectly	 through	 the	 non-cell	 autonomous	

influence	 of	 lmx1b-expressing	mesenchyme	 on	muscle	 patterning.	 This	 led	me	 to	

examine	 the	 possibility	 that	 muscle	 is	 involved	 in	 patterning	 cdh13	 and	 vstm2b	

expression,	the	latter	of	which	is	restricted	among	DRG	neurons	to	proprioceptors.	

In	 this	 chapter,	 I	 examine	 the	 role	 of	 myogenic	 precursors	 in	 patterning	

proprioceptor	 muscle-type	 identity	 by	 assaying	 proprioceptor	 cdh13	 and	 vstm2b	

expression	in	mutant	mice	devoid	of	limb	muscle.	

	

5.1.1	Sequential	phases	of	limb	muscle	formation	

	

During	 embryogenesis,	 skeletal	 muscle	 forms	 in	 the	 vertebrate	 limb	 from	

somites:	 round,	 epithelial	 structures	 derived	 from	paraxial	mesoderm	 (Christ	 and	

Ordahl,	1995).	Muscle	precursor	cells,	or	myoblasts,	delaminate	from	the	dorsal	part	

of	the	somite,	called	the	dermomyotome,	and	migrate	into	the	periphery,	where	they	

proliferate	 and	 differentiate	 into	 skeletal	 muscle	 (Figure	 5.1).	 Migrating	 muscle	

precursors	are	generated	at	the	occipital,	cervical,	and	fore-	and	hindlimb	levels	of		
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Figure	5.1	Factors	involved	in	the	formation	of	limb	skeletal	muscle	
	
Schematic	representation	of	skeletal	muscle	formation	in	the	limb	illustrating	the	
different	 stages	 and	 genes	 involved	 at	 each	 stage.	 N.C.,	 notochord;	 N.T.,	 neural	
tube;	S.E.,	surface	ectoderm.	Adapted	from	Buckingham	et	al.,	2003.	
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the	 rostrocaudal	 body	 axis,	 where	 they	 give	 rise	 to	 skeletal	 muscles	 of	 the	

hypoglossal	 cord,	 diaphragm,	 and	 limbs,	 respectively.	 Myoblasts	 contributing	 to	

limb	muscle	migrate	to	the	limb	bud,	where	they	segregate	into	separate	dorsal	and	

ventral	streams	of	cells	that	aggregate	to	form	the	dorsal	and	ventral	muscle	masses	

(Schramm	 and	 Solursh,	 1990).	 These	 masses	 subsequently	 subdivide	 into	 dorsal	

and	ventral	 thigh,	shank	and	foot	muscle	masses,	which	 in	turn	cleave	to	 form	the	

individual	 muscles	 characteristic	 of	 the	 adult	 limb	 (Kardon,	 1998;	 Lance-Jones,	

1979).		

	

The	 delamination	 of	muscle	 progenitors	 from	 the	 dermomyotome	 requires	

an	 epithelial-mesenchymal	 transition	 involving	 the	 expression	 of	 several	 factors.	

Both	 delamination	 and	 migration	 are	 dependent	 on	 the	 expression	 of	 c-Met,	 a	

tyrosine	kinase	 receptor,	 in	muscle	progenitors.	The	 c-Met	 ligand	HGF,	 also	 called	

scatter	 factor	 (SF),	 is	 expressed	 by	 the	 limb	mesenchymal	 cells	 that	 delineate	 the	

migratory	 route	 traversed	by	myoblasts	 (Dietrich	et	 al.,	 1999),	 thereby	 restricting	

the	activation	of	c-Met	and	consequent	delamination	and	migration	of	myoblasts	to	

appropriate	axial	 levels.	Mutant	mouse	embryos	 lacking	 functional	c-Met	 (Bladt	et	

al.,	 1995)	 or	HGF	 (Schmidt	 et	 al.,	 1995)	 are	 characterized	 by	 the	 absence	 of	 limb	

skeletal	muscle.	Transcription	of	the	c-met	gene	depends	on	the	expression	of	Pax3,	

a	 paired-	 and	homeobox	 transcription	 factor,	 in	muscle	precursors	 (Epstein	 et	 al.,	

1996).	Similar	to	mice	deficient	in	c-Met	or	HGF,	Pax3	mutant	mice	lack	limb	muscle	

(Tajbakhsh	 et	 al.,	 1997);	 visualization	 of	 cells	 of	 the	pax3	 lineage	 in	pax3	mutant	

mice	 has	 revealed	 that	 they	 do	 not	 delaminate	 from	 the	 hypaxial	 dermomyotome	
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(Buckingham	 et	 al.,	 2003)	 and	 are	 therefore	 unable	 to	 migrate	 away	 from	 their	

somite	of	origin.	

	

The	migration	of	delaminated	muscle	precursors	into	the	limb	bud	requires	

expression	 of	 the	 homeodomain	 transcription	 factor	 Lbx1	 (Figure	 5.2),	 which	 is	

specified	 by	 Pax3	 (Mennerich	 et	 al.,	 1998).	 Lbx1	 expression	 is	 restricted	 to	

migratory	 precursors	 (Jagla	 et	 al.,	 1995;	 Figure	 5.2A)	 and	 is	 induced	 before	

delamination,	 maintained	 during	 migration,	 and	 downregulated	 upon	

differentiation	(Dietrich	et	al.,	1998,	1999;	Mennerich	et	al.,	1998),	coincident	with	

its	role	in	myoblast	migration.	In	mice	lacking	Lbx1,	myoblasts	delaminate	from	the	

dermomyotome	 but	 fail	 to	 migrate	 laterally	 into	 the	 limb	 bud,	 resulting	 in	 limbs	

largely	 devoid	 of	muscle	 (Figures	 5.2B	 and	C;	Brohmann	 et	 al.,	 2000;	Gross	 et	 al.,	

2000).	Lbx1-deficient	myoblasts	retain	the	ability	to	migrate	ventrally	to	give	rise	to	

tongue	and	diaphragm	muscles,	demonstrating	that	Lbx1	is	necessary	for	the	lateral,	

but	not	ventral,	migration	of	hypaxial	muscle	precursors	and	suggesting	that	Lbx1	

regulates	 responsiveness	 to	 a	 lateral	 migration	 signal	 emanating	 from	 the	

developing	limb	(Gross	et	al.,	2000).		

	

Migrating	 myoblasts	 retain	 proliferative	 capacity,	 allowing	 for	 the	

amplification	 of	 the	 precursor	 population	 at	 locations	 far	 from	 the	 somite.	 In	

vertebrates,	 the	 transcription	 factor	 Six1	 is	 expressed	during	myogenesis	 and	has	

been	 found	 to	 regulate	 myoblast	 proliferation.	 Mice	 deficient	 in	 six1	 exhibit	

appendicular	and	body	wall	muscles	that	are	severely	reduced	in	size,	a	phenotype		
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Figure	5.2	Lbx1	is	required	for	muscle	precursor	migration	
	
(A)	 Lbx1	 expression	 is	 restricted	 to	 the	 hypaxial	 migrating	 myoblast	 lineage.	
Here,	 lbx1	 expression	 is	 demarcated	 by	 whole-mount	 in	 situ	 hybridization	 of	
muscle	 precursor	 cells	 in	 e10.5	 mouse	 embryo	 with	 a	 probe	 specific	 to	 Lbx1.	
Arrows,	 counterclockwise	 from	 top,	 point	 toward	 muscle	 precursor	 cells	
migrating	 along	 the	 hypoglossal	 cord	 and	 into	 the	 fore-	 and	 hindlimbs.	 An	
additional	 stream	of	 cells	moves	 towards	 the	diaphragm	(not	 shown).	Bar:	500	
microns.	Adapted	from	Vasyutina	and	Birchmeier,	2006.	(B)	Loss	of	Lbx1	results	
in	 the	 failure	of	muscle	precursors	 to	migrate	 into	 the	 limb	bud,	 leading	 to	 the	
development	of	muscleless	limbs.	Arrows	point	 to	 the	shanks	of	wild-type	(left)	
and	 Lbx1-/-	 (right)	mice.	 (C)	 Longitudinal	 sections	 through	 the	 shanks	 of	 e13.5	
wild-type	and	Lbx1-/-	embryos	stained	with	an	antibody	against	MyoD	(red).	Left:	
Section	through	the	tibia	(t)	and	fibula	(f)	showing	muscles	in	the	lower	hindlimb	
of	a	wild-type	embryo.	Right:	Same,	but	for	an	Lbx1-/-	embryo.	Note	the	complete	
absence	of	MyoD-expressing	cells.	(B	and	C)	are	adapted	from	Gross	et	al.,	2000.	
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resulting	 not	 from	 a	 deficit	 in	 migration	 but	 rather	 in	 the	 proliferation	 and/or	

differentiation	of	muscle	precursors	(Laclef	et	al.,	2003;	Li	et	al.,	2003).		

	

The	 commitment	 and	 differentiation	 of	 myoblasts	 to	 a	 muscle	 cell	 fate,	 a	

process	 known	 as	myogenesis,	 is	 initiated	 by	 the	 upregulation	 of	 several	muscle-

specific	 factors.	 Two	 basic	 helix-loop-helix	 transcription	 factors,	 Myf5	 and	 MyoD,	

cooperate	 in	 the	 determination	 of	 muscle	 precursors,	 whereas	 Myogenin,	 which	

accumulates	 during	 muscle	 development,	 is	 essential	 for	 muscle	 differentiation	

(Arnold	and	Braun,	2000;	Olson,	1993).	These	genes	are	necessary	and	sufficient	for	

commitment	 to	 a	myogenic	 fate;	 in	 their	 absence,	 cells	 that	would	 normally	 form	

muscle	adopt	other	fates	(Kablar	et	al.,	1999).	Conversely,	when	overexpressed,	they	

convert	 non-muscle	 to	 muscle	 cells	 and	 transactivate	 many	 genes	 expressed	 in	

skeletal	 muscle.	 Migrating	 precursors	 do	 not	 express	 myogenic	 determination	

genes;	 it	 is	 only	 after	 reaching	 the	 limb	 bud	 that	 MyoD,	 Myf5	 and	 Myogenin	

expression	is	initiated	(Tajbakhsh	and	Buckingham,	1994).	In	the	absence	of	MyoD,	

the	 onset	 of	 myogenesis	 is	 delayed,	 suggesting	 that	 Myf5	 alone	 is	 initially	

insufficient	 to	 drive	 the	 formation	 of	 skeletal	 muscle	 (Kablar	 et	 al.,	 1997).	 Myf5	

expression	 in	 limb	 myoblasts	 is	 directly	 activated	 by	 Pax3	 (Bajard	 et	 al.,	 2006),	

whereas	 the	 initiation	of	MyoD	expression	 in	 limb	skeletal	muscles	 is	directly	and	

positively	regulated	by	the	transcription	factor	Pitx2	in	a	Myf5-independent	manner	

(L’Honore	et	al.,	2010).		
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Finally,	 the	 terminal	 differentiation	 of	 myoblasts	 involves	 the	 synthesis	 of	

muscle-specific	proteins	such	as	myosin	heavy	chain	and	 the	 fusion	of	postmitotic	

myocytes	into	multinucleate	myotubes	(Buckingham,	2001).		

	

5.1.2	Limb	muscle	patterning	

	

Experiments	 in	avian	embryos	have	demonstrated	 that	early	stages	of	 limb	

muscle	differentiation	are	cell	autonomous	and	occur	independent	of	the	influence	

of	 limb	 tissue	 (Buckingham,	 2001).	 In	 contrast,	 the	 overall	 pattern	 of	 limb	

musculature	 is	 specified	 by	 the	 limb	 environment.	 Somites	 from	 any	 axial	 level	

possess	 the	 ability	 to	 give	 rise	 to	 normal	 limb	muscle,	 indicating	 that	 early-stage	

myoblasts	are	undetermined	with	respect	 to	 the	pattern	of	muscles	 to	which	 they	

will	contribute	(Chevallier	et	al.,	1977;	Christ	et	al.,	1977).	Furthermore,	single-cell	

lineage	analysis	of	muscle	precursors	has	revealed	that	individual	myogenic	cells	in	

the	somites	or	within	 the	proximal	 limb	are	not	predetermined	 to	 form	particular	

muscles	 or	 muscles	 situated	 at	 particular	 proximodistal	 or	 dorsoventral	 limb	

coordinates	 (Kardon	 et	 al.,	 2002).	 These	 studies	 suggest	 that	 myoblasts	 are	

patterned	 by	 extrinsic	 signals	 after	 the	 cells	 have	migrated	 through	 the	 proximal	

limb.	

	

As	myoblasts	differentiate,	they	are	immediately	oriented	in	a	highly	ordered	

array	that	prefigures	 the	pattern	of	 the	mature	adult	musculature	(Kardon,	1998).	

Remarkably,	the	pattern	of	muscle	cleavage	holds	even	in	the	absence	of	myoblasts,	
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indicating	 that	 the	 limb	 contains	 cues	 that	 direct	 subdivision	 of	 the	 dorsal	 and	

ventral	 muscles	 masses	 (Grim	 and	 Wachtler,	 1991).	 On	 a	 tissue	 level,	 previous	

studies	have	found	that	the	limb	ectoderm	and	tendons	negatively	regulate	muscle	

differentiation,	 thereby	 defining	 regions	 in	 the	 limb	where	muscle	 does	 not	 form	

(Amthor	 et	 al.,	 1998;	 Kardon,	 1998;	 Robson	 and	 Hughes,	 1996).	 On	 a	 molecular	

level,	 SHH,	 BMP,	 FGF	 and	 Notch	 signaling	 have	 been	 found	 to	 regulate	 muscle	

differentiation	 in	 the	 limb	 (Christ	 and	Brand-Saberi,	 2002;	Duprez,	 2002;	 Francis-

West	et	al.,	 2003).	However,	 the	generalized	expression	of	 these	molecules	within	

the	 limb	 suggests	 that	 they	 cannot	 straightforwardly	 determine	 the	 pattern	 of	

individual	limb	muscles;	generalized	patterning	information	must	be	integrated	and	

refined	by	myoblasts	to	specify	muscle	pattern.	

	

Descriptions	 of	 the	 precise	 molecular	 mechanisms	 regulating	 muscle	

cleavage	 patterning	 are	 scarce.	 Expression	 of	 the	 homeobox	 transcription	 factor	

Mox2	is	known	to	be	required	for	the	normal	morphogenesis	of	 limb	musculature.	

Mox2	mutant	 mice	 exhibit	 an	 overall	 reduction	 in	 forelimb	 and	 hindlimb	 muscle	

mass	that	is	associated	with	the	absence	of	specific	forelimb	muscles	(Mankoo	et	al.,	

1999).	These	defects	are	prefigured	by	defects	in	muscle	patterning	in	the	embryo:	

at	e13.5,	when	 the	 identification	of	 individual	muscles	 is	 feasible,	 several	 forelimb	

muscles	were	found	to	be	absent,	and	abnormal	cleavage	of	the	hindlimb	extensor	

digitorum	 longus	 (EDL)	 muscle	 –	 a	 TA	 synergist	 -	 was	 observed	 (Mankoo	 et	 al.,	

1999).	However,	Mox2	 is	expressed	 in	both	muscle	precursor	cells	and	distal	 limb	

mesenchyme	 (Mankoo	 et	 al.,	 1999);	 a	 conditional	 Mox2	 allele	 for	 tissue-specific	
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deletion	of	the	gene	is	lacking,	so	whether	Mox2	plays	a	cell	autonomous	or	non-cell	

autonomous	role	in	muscle	patterning	remains	unclear.	

	

5.1.3	Influence	of	the	mesenchyme	on	muscle	patterning	

	

	 Several	 lines	 of	 evidence	 implicate	 the	 limb	 mesenchyme	 in	 positively	

regulating	 the	 pattern	 of	 muscle	 cleavage.	 First,	 muscle	 connective	 tissue	 forms	

normally	 in	 the	 absence	 of	 muscle	 (Grim	 and	 Wachtler,	 1991;	 Jacob	 and	 Christ,	

1980),	 indicating	 that	 it	 does	 not	 depend	 on	muscle	 for	 its	 patterning	 and	 hence	

could	 be	 a	 source	 of	 muscle-patterning	 information.	 Second,	 muscle	 connective	

tissue	can	organize	even	nonmuscle	cells	to	form	muscle-like	structures	(Grim	and	

Wachtler,	 1991).	 Finally,	 manipulating	 the	 pattern	 of	 mesenchyme-derived	 cues	

alters	 the	pattern	of	musculature	 formed	 in	 the	 limb.	For	example,	 the	deletion	or	

overexpression	 of	 Lmx1b	 has	 been	 shown	 to	 alter	 the	 dorsoventral	 polarity	 of	

hindlimb	musculature	at	the	level	of	the	foot	(Chen	et	al.,	1998;	Li	et	al.,	2010)	and	

shank	(Chapter	4).		

	

	 In	 both	 mouse	 and	 chick,	 a	 subpopulation	 of	 limb	 mesenchymal	 cells	

expressing	the	transcription	factor	tcf4	has	been	shown	to	establish	a	prepattern	for	

muscle	cleavage	(Kardon	et	al.,	2003).	These	mesenchymal	cells	establish	patterned	

expression	 of	 tcf4	 in	 the	 absence	 of	muscle	 tissue,	 and	 altering	mesenchymal	 tcf4	

expression	changes	the	resultant	pattern	of	muscle	cleavage	(Kardon	et	al.,	2003).	In	

chick,	tcf4-expressing	mesenchymal	cells	remain	adjacent	 to	muscle	and	appear	to	
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express	 collagen	 I,	 an	 early	 marker	 of	 muscle	 connective	 tissue,	 suggesting	 that	

these	 cells	 give	 rise	 to	 the	 connective	 tissue	 surrounding	 select	 limb	 muscles	

(Kardon	 et	 al.,	 2003).	 From	 this	 study,	 a	 model	 of	 muscle	 patterning	 in	 the	

vertebrate	limb	has	emerged:	patterning	signals	that	define	the	cardinal	axes	of	the	

limb	are	integrated	to	induce	the	expression	of	transcriptional	determinants	such	as	

Tcf4	 in	 select	 mesenchymal	 cells,	 which	 signal	 locally	 to	 instruct	 patterned	

myogenesis.	Each	local	region	of	myogenesis	then	serves	as	the	nucleus	for	a	future	

anatomical	muscle.		

	

The	 influence	 of	 the	mesenchyme	 on	muscle	 patterning	 led	 us	 to	 question	

whether	 two	 of	 the	 proprioceptor	 genes	 impacted	 by	 our	 manipulations	 of	

mesenchymal	identity	–	cdh13	and	vstm2b	–	are	in	fact	patterned	by	muscle.	To	this	

end,	we	 examined	 the	 expression	 of	 cdh13	 and	 vstm2b	 by	 proprioceptors	 in	mice	

deficient	in	lbx1,	one	of	the	factors	required	for	muscle	precursor	migration	into	the	

limb.	

	

5.2	Results	

5.2.1	Muscleless	hindlimbs	of	Lbx1-/-	mice	receive	proprioceptor	innervation	

	 	

	 We	 set	 out	 to	 determine	 the	 influence	 of	 limb	 muscle	 in	 patterning	

proprioceptor	 muscle-type	 gene	 expression	 (Figure	 5.3A)	 by	 examining	

proprioceptor	cdh13	 and	vstm2b	 expression	 following	 innervation	of	 limbs	devoid	

of	muscle.	Staining	for	myosin,	a	marker	of	muscle	tissue,	in	wild-type	and	Lbx1-/-		



Chapter	5.	Limb	muscle	contributes	to	proprioceptor	subtype	specification	

	 132	

	 	

Figure	5.3	Lbx1-/-	hindlimbs	receive	proprioceptor	innervation	
	
(A)	 Motor	 neuron	 and	 proprioceptive	 sensory	 neuron	 innervating	 a	 hindlimb	
muscle.	 The	 boxed	 area	 highlights	 putative	 signaling	 from	 muscle	 to	
proprioceptive	 sensory	 axons.	 (B)	 Developing	 muscles	 are	 absent	 from	 Lbx1-/-	
hindlimbs,	 as	 indicated	 by	 in	 situ	 hybridization	 for	 the	 muscle	marker	myosin.	
Prox-dis:	 proximodistal.	 (C)	 In	 situ	hybridization	 for	myosin	 and	 neurofilament	
reveals	 that	 the	 major	 branches	 of	 the	 nerve	 innervating	 the	 hindlimb	 form	
correctly	in	Lbx1-/-	mice.	(D)	trkCon	sensory	neurons	innervate	the	limb	in	Lbx1-/-	
mice.	 Images	show	two	representative	trkCon	DRG	neurons	retrogradely	 labeled	
by	hindlimb	injection	of	dextran-tetramethylrhodamine	in	e13.5	Lbx1-/-	embryos.	
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mice	revealed	the	near	absence	of	differentiated	hindlimb	muscle	in	mutant	animals	

(Figure	5.3B).	In	some	Lbx1-/-	embryos,	we	observed	residual	gluteus	muscle	in	the	

proximal	compartment	of	the	limb	(data	not	shown),	a	finding	reported	previously	

for	 Lbx1	 mutants	 (Gross	 et	 al.,	 2000).	 This	 is	 presumably	 due	 to	 the	 ability	 of	

delaminated	muscle	precursors	to	passively	invade	the	most	proximal	portion	of	the	

limb	bud,	where	they	differentiate	under	the	influence	of	proximal	positional	cues.	

	

Whole	mount	 in	situ	 hybridization	 labeling	 for	 neurofilament	 revealed	 that	

the	major	peripheral	nerve	trajectories	in	Lbx1-/-	mice	are	grossly	similar	to	those	in	

wild-type	 limbs	 (Figure	 5.3C;	 see	 also	 Phelan	 and	 Hollyday,	 1990).	 To	 determine	

whether	 these	 nerves	 supply	 the	 developing	 limb	 with	 proprioceptive	 sensory	

innervation,	 we	 injected	 the	 tracer	 dextran-tetramethylrhodamine	 into	 the	

hindlimbs	of	e13.5	Lbx1-/-	embryos	and	examined	retrogradely	labeled	DRG	neurons	

for	expression	of	 the	generic	proprioceptor	marker	 trkC	(Figure	5.3D).	 Indeed,	we	

observed	dextranTMR-labeled	DRG	neurons	 that	 expressed	 trkC,	 indicating	 that	 the	

limbs	of	Lbx1-/-	embryos	receive	proprioceptor	innervation.	We	therefore	proceeded	

to	 examine	 the	 status	 of	 cdh13	 and	 vstm2b	 expression	 in	 hindlimb-innervating	

proprioceptors	of	Lbx1-/-	mice.	

	

5.2.2	Proprioceptor	cdh13	expression	is	unaffected	by	loss	of	muscle	

	

	 We	 first	 examined	 whether	 limb	 muscles	 might	 be	 the	 source	 of	 a	 cdh13	

inductive	signal	for	proprioceptors.	In	the	absence	of	limb	muscle,	we	were	unable	
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to	 identify	 proprioceptor	 subpopulations	 by	 peripheral	 target	 innervation.	

Nevertheless,	 we	 reasoned	 that	 quantifying	 the	 proportion	 of	 cdh13-expressing	

proprioceptors	 in	 lumbar	 DRG	 of	 wild-type	 and	 Lbx1-/-	 mice	 would	 allow	 us	 to	

assess	whether	the	absence	of	hindlimb	muscle	impacts	expression	of	the	gene.		

	 	

	 We	 chose	 to	 assess	 the	 expression	 of	 proprioceptor	 muscle-type	 genes	 in	

Lbx1-/-	mice	and	wild-type	littermates	at	e15.5,	a	timepoint	after	the	onset	of	wild-

type	proprioceptor	cdh13	and	vstm2b	expression,	but	before	proprioceptor	survival	

is	affected	by	the	absence	of	muscle-derived	NT3.	Indeed,	in	Lbx1-/-	mice	examined	

at	 e15.5,	 the	 density	 of	 pvon	 neurons	 in	 L2	 and	 L5	 DRG	 was	 unchanged	 when	

compared	 to	 wild-type	 DRG	 (203	 pvon	 neurons/1	mm2	 in	 wild-type	 versus	 ~198	

pvon	neurons/1	mm2	in	Lbx1-/-	mice	at	L2,	p	=	0.68;	334	pvon	neurons/1	mm2	in	wild-

type	versus	320	pvon	neurons/1	mm2	in	Lbx1-/-	mice	at	L5,	p	=	0.12).	

	

We	 compared	 the	 proportion	 of	 proprioceptors	 expressing	 cdh13	 in	 e15.5	

wild-type	and	Lbx1-/-	mice	at	different	lumbar	rostrocaudal	levels.	If	muscle	supplies	

cdh13	 patterning	 information,	 we	 would	 expect	 the	 proportion	 of	 cdh13on	

proprioceptors	to	decrease	in	Lbx1-/-	mice,	in	which	hindlimbs	are	nearly	devoid	of	

muscle.	We	found	that	in	both	L2	and	L5	DRG,	proprioceptor	cdh13	expression	was	

similar	in	Lbx1-/-	and	wild-type	embryos	(~69%	in	wild-type	versus	~63%	in	Lbx1-/-	

at	L2,	p	=	0.18;	~34%	in	wild-type	versus	~35%	in	Lbx1-/-	 at	L5,	p	=	0.89).	These	

data	 argue	 against	 the	 idea	 that	 muscle	 is	 the	 source	 of	 signals	 required	 for	 the	

induction	of	proprioceptor	cdh13	expression.	
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Figure	 5.4	 Proprioceptor	 cdh13	 expression	 is	 unperturbed	 by	 the	 absence	 of	
muscle	
	
(A	and	B)	The	density	of	proprioceptors	 is	similar	 in	wild-type	 (wt)	and	Lbx1-/-	
DRG.	(A)	In	situ	hybridizations	for	pv	in	e15.5	L4	DRG	of	wt	and	Lbx1-/-	mice.	Scale	
bar,	20	μm.	(B)	Proprioceptor	density	in	L2	and	L5	DRG	of	wt	and	Lbx1-/-	mice.	(C	
and	D)	cdh13on	proprioceptors	are	conserved	in	Lbx1-/-	DRG.	(C)	Double	FISH	for	
pv	 and	 cdh13	 in	 e15.5	wt	 and	Lbx1-/-	DRG.	 Scale	 bar,	10	 μm.	 (D)	 Percentage	 of	
proprioceptors	expressing	cdh13	 in	L2	and	L5	DRG	of	e15.5	wt	and	Lbx1-/-	mice	
(n	=	3	mice/genotype).	
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Figure	 5.5	 Proprioceptor	 vstm2b	 expression	 is	 dependent	 on	 the	 presence	 of	
muscle	
	
(A)	Double	FISH	for	pv	and	vstm2b	in	e15.5	L4	DRG	reveals	a	marked	reduction	in	
the	density	of	vstm2bon	proprioceptors	in	Lbx1-/-	embryos.	Scale	bar,	50	μm.	(B)	
Quantification	of	 the	proportion	of	vstm2bon	proprioceptors	 in	DRG	L1-L6	of	wt	
and	 Lbx1-/-	 embryos	 (n	 =	 4	 mice/genotype;	 ***p<0.0001,	 **p<0.001,	 *p<0.01).	
Data	are	represented	as	the	mean	±	SEM.	
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5.2.3	Proprioceptor	vstm2b	expression	requires	the	presence	of	muscle	

	

	 We	next	examined	the	status	of	vstm2b	expression	 in	 the	proprioceptors	of	

e15.5	Lbx1-/-	embryos.	As	with	cdh13,	we	reasoned	that	if	the	expression	of	vstm2b	

in	 hindlimb-innervating	 proprioceptors	 is	 induced	 by	 muscle,	 we	 would	 see	 a	

decrease	 in	 the	proportion	of	vstm2bon	 proprioceptors	 in	 lumbar	 ganglia.	Because	

vstm2b	 is	 expressed	 by	 a	 larger	 proprioceptor	 subpopulation	 than	 cdh13,	 we	

examined	its	expression	in	DRG	L2-L6,	thereby	surveying	the	entire	complement	of	

hindlimb-innervating	proprioceptors.	We	also	 examined	expression	of	 the	 gene	 in	

DRG	 L1;	 proprioceptors	 in	 this	 ganglion	 innervate	 only	 axial	 and	 hypaxial	

musculature	(de	Nooij	et	al.,	2013),	the	development	of	which	is	unaffected	in	Lbx1-/-	

animals.	

	

	 Remarkably,	 fluorescent	 in	 situ	 hybridization	 revealed	 the	 near	 absence	 of	

vstm2b-expressing	 pvon	 neurons	 in	 lumbar	 DRG	 of	 Lbx1-/-	 embryos	 (Figure	 5.5A).	

Quantification	of	 the	number	of	vstm2bon	proprioceptors	 in	DRG	L2-L6	 indicated	a	

marked	decrease	in	the	proportion	of	cells	expressing	the	gene	in	Lbx1-/-	compared	

to	wild-type	mice	 (Figure	 5.5B).	While	 the	 proportion	 of	 vstm2bon	 proprioceptors	

decreased	 in	all	 lumbar	ganglia,	 this	difference	was	significant	 in	DRG	L3-L5,	with	

the	most	dramatic	differences	observed	 in	L3	and	L5	(Figure	5.5B;	~31%	in	wild-

type	versus	~21%	in	Lbx1-/-	at	L2,	p	=	0.08;	~39%	in	wild-type	versus	~4%	in	Lbx1-

/-	at	L3,	p	=	0.0002;	~47%	in	wild-type	versus	~23%	in	Lbx1-/-	at	L4,	p	=	0.00001;	

~35%	in	wild-type	versus	~6%	in	Lbx1-/-	at	L5,	p	=	0.002;	~13%	in	wild-type	versus	
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~10%	in	Lbx1-/-	at	L6,	p	=	0.39).	 	Thus,	we	conclude	that	proprioceptor	expression	

of	vstm2b	requires	the	presence	of	limb	muscle.	

	

5.3	Discussion	

	

Examining	the	expression	of	cdh13	and	vstm2b	in	Lbx1	mutant	mice	devoid	of	

limb	muscle	enabled	us	to	determine	that	while	cdh13	expression	in	proprioceptors	

is	 influenced	by	 limb	mesenchyme	alone,	 the	 induction	of	vstm2b	 is	dependent	on	

the	presence	of	limb	muscle.	Here	I	discuss	our	experimental	findings	and	propose	

an	updated	model	for	the	induction	of	vstm2b	expression	in	proprioceptors.	

	

5.3.1	Residual	vstm2b	expression	in	proprioceptors	of	Lbx1-/-	mice	

	

We	 observed	 a	 marked	 decrease	 in	 the	 number	 of	 lumbar	 proprioceptors	

expressing	vstm2b	in	Lbx1-/-	mice.	Nevertheless,	a	cohort	of	these	cells	continued	to	

express	the	gene	in	DRG	L3-L5,	despite	the	near	absence	of	limb	muscle.	What	might	

explain	the	persistence	of	vstm2bon	proprioceptors	in	these	animals?	

	

The	 most	 likely	 source	 of	 cues	 inducing	 vstm2b	 expression	 in	 the	 L3-L5	

proprioceptors	of	Lbx1-/-	mutants	is	the	gluteal	muscle	reported	to	persist	in	Lbx1-/-	

embryos	 (Gross	 et	 al.,	 2000),	 which	 in	 wild-type	 mice	 receives	 vstm2bon	

proprioceptor	 innervation.	 Backfill	 experiments	 indicate	 that	 proprioceptors	

innervating	the	gluteal	group	are	located	in	DRG	L3-L5,	with	the	bulk	of	this	cohort	
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located	 in	DRG	L4	 (data	not	 shown).	 Indeed,	most	 of	 the	vstm2bon	 proprioceptors	

observed	 in	 DRG	 L3-L5	 in	 Lbx1-/-	 mice	 are	 found	 at	 L4,	 consistent	 with	 the	

hypothesis	that	vstm2b	expression	is	induced	by	the	gluteus	in	these	animals.	

	

Another	possible	 source	 of	vstm2b	 inductive	 cues	 in	Lbx1-/-	 embryos	 is	 the	

axial	musculature	surrounding	the	spinal	column.	This	musculature	is	derived	from	

a	non-migratory	population	of	myoblasts	that	does	not	express	lbx1	and	is	therefore	

unaffected	in	Lbx1	mutants.	Axially	innervating	proprioceptors	are	found	in	DRG	at	

all	 rostrocaudal	 levels.	 At	 thoracic	 levels,	 DRG	 do	 not	 contain	 limb-innervating	

proprioceptors;	 rather,	 they	contain	proprioceptors	 innervating	axial	and	hypaxial	

(body	wall)	musculature.	We	 observed	 vstm2b	 expression	 in	 a	 subset	 of	 thoracic	

DRG	 neurons	 (data	 not	 shown),	 consistent	 with	 the	 notion	 that	 proprioceptors	

supplying	 axial	 muscles	 express	 vstm2b.	 Further,	 expression	 of	 vstm2b	 in	 L1	

proprioceptors,	 which	 innervate	 axial	 and	 hypaxial	 musculature,	 is	 unchanged	

between	wild-type	and	Lbx1-/-	mice	(Figure	5.5B;	~25%	in	wild-type	versus	~26%	

in	 Lbx1-/-,	 p	 =	 0.43).	 Nevertheless,	 the	 peripheral	 muscle	 targets	 of	 vstm2b-

expressing	proprioceptors	in	wild-type	thoracic	DRG	and	Lbx1-/-	 lumbar	DRG	must	

be	confirmed	by	retrograde	labeling	experiments.	

	

Similarly,	vstm2b	expression	by	axial	proprioceptors	could	explain	the	lack	of	

significant	 difference	 between	 Lbx1-/-	 and	 wild-type	 mice	 in	 the	 proportion	 of	

vstm2bon	cells	in	L2	and	L6	ganglia	(Figure	5.5).	DRG	L2	and	L6	each	contain	small	

cohorts	 of	 limb-innervating	 proprioceptors	 that	 normally	 express	 vstm2b	 in	wild-



Chapter	5.	Limb	muscle	contributes	to	proprioceptor	subtype	specification	

	 140	

type	mice	(some	quadriceps	proprioceptors	at	L2	and	intrinsic	foot	proprioceptors	

at	L6;	data	not	shown),	which	accounts	for	the	overall	decrease	in	the	proportion	of	

vstm2bon	 proprioceptors	 present	 in	 these	 ganglia	 in	 Lbx1-/-	 mice.	 However,	 the	

proprioceptors	 found	 in	 these	 ganglia	 are	 overwhelmingly	 those	 innervating	 axial	

and	hypaxial	musculature	 (de	Nooij	 et	 al.,	 2013),	whose	vstm2b	 expression	 status	

would	be	unchanged	in	Lbx1-/-	embryos.	

	

5.3.2	A	revised	model	for	proprioceptor	vstm2b	induction	

	

	 In	 wild-type	 animals,	 vstm2b	 is	 expressed	 in	 nearly	 all	 proprioceptors	

innervating	dorsal	musculature	and	 is	mostly	absent	 from	those	supplying	ventral	

muscles.	Furthermore,	the	expression	of	vstm2b	by	wild-type	proprioceptors	is	not	

restricted	with	 respect	 to	 the	proximodistal	 limb	 axis,	 as	 is	 the	 case	 for	 cdh13.	 In	

light	 of	 our	 finding	 that	muscle	 influences	 proprioceptor	 vstm2b	expression,	 how	

might	this	pattern	be	established	in	wild-type	embryos?	

	

The	 simplest	way	 to	 achieve	 this	 expression	pattern	would	 be	 through	 the	

presence	of	an	inductive	cue	restricted	to	the	dorsal	muscle	mass	or,	conversely,	a	

repressive	 cue	 restricted	 to	 the	 ventral	 muscle	 mass	 (Figure	 5.6A).	 Indeed,	

myoblasts	are	first	visible	in	the	hindlimb	in	the	form	of	dorsal	and	ventral	muscle	

masses	beginning	at	e12.5	 (Martin,	1990),	 just	prior	 to	 the	onset	of	proprioceptor	

vstm2b	 expression	 at	 e13.5.	 However,	 migratory	 muscle	 precursors	 are	 not	

prespecified	with	respect	to	dorsal	or	ventral	trajectory,	calling	into	question		
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Figure	5.6	Models	for	muscle-dependent	induction	of	vstm2b	
	
Two	models	 for	 the	 induction	 of	 proprioceptor	 vstm2b	 expression	 are	 equally	
plausible.	(A)	An	inductive	cue	supplied	by	dorsal	muscle	mass	(shown	here)	or	a	
repressive	cue	supplied	by	ventral	muscle	mass	acts	on	proprioceptors	to	specify	
dorsally	 restricted	 vstm2b	 expression	 in	 proprioceptors.	 (B)	 The	 presence	 of	
generic	muscle	is	required	to	 induce	expression	of	a	mesenchymal	cue	required	
for	 vstm2b	 expression	 in	 proprioceptors;	 dorsoventral	 restriction	 of	 this	
mesenchymal	 cue	 could	 be	 achieved	 via	 differential	 competence	 of	 dorsal	 and	
ventral	mesenchyme	to	respond	to	the	presence	of	muscle.	
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whether	 they	 possess	 distinct	 dorsoventral	 gene	 expression	 profiles	 this	 early	 in	

development.	 Distinctions	 among	 individual	 limb	 muscles	 in	 the	 level	 of	 NT3	

expression	 (de	 Nooij	 et	 al.,	 2013)	 and	 in	 binary	 expression	 of	 the	 transcription	

factor	Engrailed1	(Jay	Bikoff,	personal	communication)	indicate	that	individual	limb	

muscles	must	 at	 some	 point	 acquire	 distinct	molecular	 identities.	 However,	when	

and	how	this	occurs	is	unknown.	

	

In	 an	 alternative	 scenario,	 proprioceptor	 expression	 of	 vstm2b	 might	 be	

specified	 by	 a	 mesenchymal	 cue,	 the	 expression	 of	 which	 is	 dependent	 on	 the	

presence	 of,	 and	 feedback	 from,	 differentiating	 muscle	 (Figure	 5.6B).	 This	 model	

represents	 a	 permissive	 rather	 than	 instructive	 role	 for	 the	 muscle	 in	 specifying	

proprioceptor	 subtype	 identity	 and	 is	 equally	 consistent	 with	 the	 observed	

influence	of	both	mesenchyme	and	muscle	on	proprioceptor	vstm2b	expression.		

	

One	 point	 in	 favor	 of	 an	 instructive	 role	 for	 muscle	 is	 the	 unprecedented	

restriction	 of	 vstm2b	 expression	 to	 proprioceptors	within	 the	DRG.	 In	 contrast	 to	

vstm2b,	cdh13,	which	 is	 specified	 in	proprioceptors	by	a	mesenchymal	 cue,	 is	 also	

expressed	 by	 cutaneous	 sensory	 neurons.	 Proprioceptors	 and	 cutaneous	 sensory	

neurons	 fasciculate	 together	 in	 peripheral	 nerves	 and	 traverse	 the	 same	 route	

through	 the	mesenchyme	 on	 their	way	 to	 peripheral	 targets	 (Honig	 et	 al.,	 1998),	

resulting	 in	 the	exposure	of	both	subpopulations	 to	 the	same	regionally	 restricted	

mesenchymal	 cues.	 Although	 it	 is	 unknown	 whether	 cdh13-expressing	 cutaneous	

sensory	 neurons	 exhibit	 topographically	 restricted	 expression	 corresponding	 to	
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dorsodistal	 epidermis,	 it	 is	 possible	 that	 exposure	 to	 mesenchymal	 cues	 induces	

cdh13	in	both	proprioceptors	and	cutaneous	modalities.		

	

The	 easiest	 way	 to	 restrict	 vstm2b	 expression	 to	 proprioceptors,	 it	 seems,	

would	be	through	a	target-derived	signal	bound	to	the	muscle	cell	surface.	However,	

in	 the	model	 involving	a	permissive	role	 for	muscle,	generic	proprioceptors	might	

be	 competent	 to	 respond	 to	 a	 mesenchymal	 cue	 that	 generic	 neurons	 of	 various	

cutaneous	 sensory	 modalities	 lack	 the	 ability	 to	 respond	 to.	 Thus,	 an	 element	 of	

intrinsic	proprioceptor	identity	may	be	required	for	muscle-type	specification.	

	

Remarkably,	each	model	of	vstm2b	induction	results	in	novel	implications	for	

limb	development.	An	instructive	role	for	muscle	in	patterning	proprioceptor	gene	

expression	 would	 require	 molecular	 distinctions	 between	 the	 dorsal	 and	 ventral	

muscle	 masses	 early	 in	 development,	 which	 thus	 far	 have	 not	 been	 reported	

(Buckingham	et	al.,	2003).	Alternatively,	a	permissive	role	for	muscle	would	depend	

on	 reverse	 signaling	 from	 muscle	 to	 mesenchyme,	 a	 patterning	 mechanism	 not	

previously	described	in	the	literature.	Thus,	our	study	of	proprioceptor	specification	

has	 also	 yielded	 novel	 insight	 into	 the	 complex	 developmental	 process	 of	 limb	

patterning.	

	



144	

6	Involvement	of	muscle-type	genes	in	synaptic	specificity	

	

6.1	Introduction	

	

	 Thus	far,	we	have	used	our	insight	into	proprioceptor	muscle-type	identity	to	

examine	 the	 role	 of	 discrete	 peripheral	 elements	 in	 inducing	 the	 expression	 of	

proprioceptor	 subtype	 genes.	 	 I	 now	 turn	 to	 the	 question	 of	 whether	 two	 of	 the	

genes	 characterized	 as	 proprioceptor	muscle-type	markers	 –	 cdh13	 and	 vstm2b	 –	

might	 play	 a	 functional	 role	 in	 establishing	 selective	 monosynaptic	 connections	

between	proprioceptors	and	motor	neurons.	

	

The	 formation	 of	 connections	 between	 defined	 neuronal	 populations	 and	

their	 postsynaptic	 target	 cells	 is	 crucial	 for	 the	 generation	 of	 functional	 neuronal	

circuitry.	 A	 combination	 of	 molecular	 and	 activity-dependent	 mechanisms	 is	

generally	 employed	 by	 presynaptic	 neurons	 to	 locate	 appropriate	 postsynaptic	

partners	and	to	refine	synaptic	contacts.	Although	the	feedback	circuits	formed	by	Ia	

proprioceptive	 afferents	 and	 spinal	 motor	 neurons	 are	 some	 of	 the	 best	

characterized	 within	 the	 nervous	 system,	 the	 developmental	 mechanisms	

underlying	 selective	 connectivity	 within	 this	 system	 are	 poorly	 defined.	 The	

formation	of	specific	monosynaptic	connections	in	the	absence	of	patterned	activity	

(Mears	 and	 Frank,	 1997;	 Mendelson	 and	 Frank,	 1991)	 has	 implicated	 the	

involvement	 of	 molecular	 recognition	 between	 sensory	 and	 motor	 subsets.	 Until	

now,	 the	 lack	 of	 known	 distinctions	 between	 muscle-type	 proprioceptor	
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subpopulations	has	posed	a	major	obstacle	to	identifying	recognition	systems	with	

putative	roles	in	patterning	sensory-motor	connectivity.	

	

	The	 expression	 of	 cdh13	 and	 vstm2b	 by	 TA	 but	 not	 GS	 proprioceptors	

suggests	that	these	genes	might	be	capable	of	mediating	target	discrimination	by	Ia	

afferent	subpopulations.	TA	and	GS	muscles	are	functional	antagonists	and	as	such	

avoid	 supplying	 each	 other	 with	 sensory	 feedback.	 The	 requisite	 antagonist	

avoidance	and	homonymous	specificity	between	these	reflex	arcs	 likely	arise	 from	

distinctions	in	gene	expression	between	TA	and	GS	proprioceptive	afferents.	In	this	

chapter,	 I	 assess	 whether	 Cdh13	 and	 Vstm2b	 act	 as	 molecular	 determinants	 of	

monosynaptic	 specificity	 by	 examining	mutant	mice	 for	misprojections	within	 the	

TA	and	GS	reflex	arcs.	

	

6.1.1	Molecular	mechanisms	of	sensory-motor	circuit	assembly	

	

Prior	 to	 the	 work	 presented	 in	 Chapter	 2	 of	 this	 thesis,	 few	 molecular	

distinctions	 capable	 of	 mediating	 selective	 target	 recognition	 by	 muscle-type	

proprioceptors	 had	 been	 reported.	 Nevertheless,	 studies	 of	 motor	 neuron	

transcription	 factor	 expression	 and	 known	 molecular	 recognition	 systems	 have	

yielded	a	partial	mechanistic	understanding	of	how	sensory-motor	specificity	arises	

in	the	embryo.		
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In	 motor	 neurons,	 expression	 of	 the	 ETS	 transcription	 factor	 Pea3	

contributes	 to	 pool	 positioning	 and	 dendritic	 arborization	 (Livet	 et	 al.,	 2002;	

Vrieseling	 and	 Arber,	 2006),	 two	 features	 of	 postsynaptic	 populations	 known	 to	

impact	target	selectivity.	Pea3	is	expressed	by	forelimb-innervating	motor	neurons	

projecting	to	the	cutaneous	maximus	and	latissimus	dorsi	muscles.	In	Pea3	mutant	

mice,	 cutaneous	 maximus	 motor	 neurons	 receive	 errant	 sensory	 contacts	 from	

triceps	proprioceptors	(Vrieseling	and	Arber,	2006),	indicating	that	Pea3	is	required	

for	 sensory-motor	 specificity	 for	 several	 muscles	 of	 the	 forelimb.	 The	 precise	

mechanism	 by	 which	 Pea3	 restricts	 sensory-motor	 contacts	 is	 unclear	 due	 to	 its	

effect	 on	 both	motor	 pool	 positioning	 and	 arborization.	 However,	 Pea3	 has	 been	

shown	 to	 regulate	 the	 downstream	 expression	 of	 several	 surface	 recognition	

molecules,	including	Cadherin7,	Cadherin8,	and	Sema3E,	in	motor	neurons	(Livet	et	

al.,	2002).		

	

Mouse	 genetic	 studies	 of	 motor	 neuron	 Sema3E	 and	 its	 cognate	 receptor	

PlexinD1	 in	sensory	neurons	have	established	 their	 involvement	 in	sensory-motor	

circuit	 formation.	 In	 the	 forelimb,	 the	cutaneous	maximus	(Cm)	muscle	represents	

an	atypical	reflex	arc	in	that	 it	does	not	receive	homonymous	monosynaptic	 input.	

Expression	of	Sema3E	by	Cm	motor	neurons	and	PlxnD1	by	Cm	afferents	results	in	a	

repellant	interaction	that	prevents	monosynaptic	connections	from	forming	(Figure	

6.1A;	Pecho-Vrieseling	et	al.,	2009).	In	the	hindlimb,	Sema3e	is	expressed	by	gluteus	

but	not	hamstring	motor	neurons	while	PlxnD1	is	expressed	by	hamstring	but	not	

gluteus	proprioceptors,	suggesting	that	repulsive	signaling	may	mediate	antagonist		



Chapter	6:	Involvement	of	muscle-type	genes	in	synaptic	specificity	

	 147	

	 	

Figure	6.1	Molecular	recognition	in	sensory-motor	circuit	formation	
	
(A-B)	Sema3e-PlxnD1	repulsion	has	been	implicated	in	the	formation	of	specific	
sensory-motor	 connections.	 (A)	 Connectivity	 patterns	 in	 cutaneous	 maximus	
(Cm)	and	triceps	(Tri)	reflex	arcs	in	wild-type	mice	(top)	and	in	mice	with	altered	
Sema3E-PlxnD1	 signaling	 (bottom).	 Top:	 In	 wild-type	 mice,	 triceps	 but	 not	
cutaneous	maximus	motor	 neurons	 receive	 direct	 homonymous	 proprioceptive	
inputs.	 Bottom	 left:	Changing	 the	 profile	 of	 Sema3E-PlxnD1	 expression	 rewires	
homonymous	 connectivity.	 Loss	 of	 Sema3E-PlxnD1	 signaling	 results	 in	
monosynaptic	connections	between	Cm	afferents	and	Cm	motor	neurons;	ectopic	
Sema3E	expression	reduces	monosynaptic	connections	between	Tri	afferents	and	
Tri	 motor	 neurons.	 Bottom	 right:	 changing	 Sema3E-PlxnD1	 signaling	 does	 not	
erode	 pool	 specificity;	 no	 aberrant	 heteronymous	 connections	 were	 observed,	
suggesting	that	additional	recognition	systems,	likely	also	downstream	of	Pea3	in		
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motor	 neurons,	 are	 involved	 in	 the	 formation	 of	 monosynaptic	 connections.	
Adapted	from	Pecho-Vrieseling	et	al.,	2009.	(B)	Left:	At	lumbar	levels	of	the	spinal	
cord,	 Sema3E-PlxnD1	 signaling	 suppresses	 inappropriate	 synaptic	 connections	
between	 hamstring	 (Ham)	 and	 gluteus	 (Glu)	 motor	 neurons.	 Middle:	 Ectopic	
expression	 of	 Sema3E	 in	 Ham	 motor	 neurons	 reduces	 the	 strength	 of	
homonymous	 connections	 between	 Ham	 afferents	 and	 Ham	 motor	 neurons.	
Right:	In	the	absence	of	Sema3E-PlxnD1	signaling,	strong	aberrant	monosynaptic	
connections	 between	 Ham	 sensory	 afferents	 and	 Glu	 motor	 neurons	 were	
observed.	Adapted	from	Fukuhara	et	al.,	2013.	
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avoidance	 between	 these	 reflex	 arcs	 (Figure	 6.1B).	 Indeed,	 ectopic	 pan-motor	

neuronal	 expression	 of	 sema3e	 leads	 to	 a	 reduction	 in	monosynaptic	 connectivity	

between	 hamstring	 motor	 neurons	 and	 proprioceptors,	 and	 deletion	 of	 either	

sema3e	 or	 plxnd1	 results	 in	 aberrant	 contacts	 between	 hamstring	 proprioceptors	

and	gluteus	motor	neurons	(Fukuhara	et	al.,	2013).	Together,	these	studies	indicate	

that	Sema3E-PlxnD1	signaling	regulates	both	the	 formation	of	polysynaptic	versus	

monosynaptic	 contacts	 with	 motor	 neurons	 and	 the	 specificity	 of	 monosynaptic	

connections	within	a	small	subset	of	limb-innervating	reflex	arcs.		

	

Beyond	Sema-Plexin	signaling,	type	II	cadherins	have	been	suggested	to	play	

a	 role	 in	 sensory-motor	 selectivity.	 In	 chick,	 motor	 pools	 are	 defined	 by	

combinatorial	 expression	 of	 type	 II	 cadherins	 (Price	 et	 al.,	 2002).	 Retrogradely	

identified	muscle-type	proprioceptors	were	found	to	express	a	cohort	of	cadherins	

at	similar	cellular	proportions	to	their	cognate	motor	neuron	populations.	However,	

the	analysis	of	cadherin	expression	by	muscle-type	proprioceptors	conducted	in	this	

study	was	limited	to	two	genes,	and	no	role	was	established	for	these	cadherins	in	

the	formation	of	monosynaptic	sensory-motor	connections	(Price	et	al.,	2002).		

	

Thus,	our	understanding	of	the	molecular	mechanisms	underlying	formation	

of	the	complex	matrix	of	monosynaptic	connectivity	between	~50	subsets	of	 limb-

innervating	 proprioceptors	 and	 their	 cognate	motor	 neurons	 remains	 incomplete.	

Insight	 into	 the	 spatial	 organization	 of	 motor	 neurons	 and	 the	 function	 of	 this	
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topography	 in	 gating	 afferent	 input	 suggests	 that	 an	 overarching	 spatial	 and	

molecular	logic	may	underlie	the	construction	of	spinal	sensory-motor	circuitry.	

	

6.1.2	Motor	neuron	topography	mirrors	limb	organization	

	

Spinal	 motor	 neurons	 are	 topographically	 segregated	 into	 columns	 that	

innervate	 distinct	 peripheral	 domains.	 In	 tetrapods,	 limb-innervating	 motor	

neurons	 are	 found	 at	 rostrocaudal	 levels	 corresponding	 to	 limb	 position	 and	 are	

located	within	the	lateral	motor	column	(LMC)	in	the	ventral	horn	of	the	spinal	cord	

(Romanes,	1951).	Within	the	LMC,	motor	neurons	innervating	an	individual	muscle	

are	clustered	together	in	a	unit	referred	to	as	a	motor	pool	(Figure	6.2A;	Hollyday,	

1980;	 Romanes,	 1964),	 each	 of	which	 occupies	 a	 stereotyped	 position	within	 the	

LMC.	 Upon	 examination,	 a	 higher	 order	 of	 pool	 organization	 becomes	 apparent:	

pools	 that	 innervate	 synergist	 muscles	 are	 grouped	 together	 in	 clusters	 termed	

columels	(Figure	6.2A;	Romanes,	1951;	Sürmeli	et	al.,	2011).		

	

	Motor	 columels	 are	 spatially	 organized	 within	 the	 spinal	 cord	 in	 a	

topographic	map	 that	 reflects	 the	 anatomical	 arrangement	 of	muscles	 in	 the	 limb	

(Figure	6.2B-E;	Hollyday	and	 Jacobson,	1990;	Landmesser,	1978a;	McHanwell	 and	

Biscoe,	1981;	Romanes,	1964;	Vanderhorst	and	Holstege,	1997).	At	both	 fore-	and	

hindlimb	levels	of	the	spinal	cord,	motor	pools	–	and	by	extension,	columels	–	that	

are	 located	 more	 ventrally	 in	 the	 spinal	 cord	 innervate	 muscles	 located	 more	

proximally	within	the	limb,	whereas	those	located	more	dorsally	innervate	muscles		
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Figure	6.2	Motor	neuron	position	is	correlated	with	intralimb	termination	
	
(A)	Motor	neurons	 that	 innervate	a	 single	muscle	are	 clustered	 in	motor	pools.	
Motor	pools	innervating	synergist	muscles	are	arranged	in	higher	order	clusters	
termed	 columels.	 (B)	 The	 proximodistal	 and	 dorsoventral	 organization	 of	
muscles	of	 the	mammalian	hindlimb.	Abbreviations:	proximal	hip	 (PH;	 includes	
GL),	iliopsoas	(IP),	adductors	(A),	quadriceps	(Q),	hamstrings	(H),	anterior	crural	
(AC;	 includes	TA),	posterior	 crural	 (PC;	 includes	GS),	 intrinsic	 foot	 (F).	 (C)	 The	
dorsoventral	(μm)	positions	of	motor	pools	in	the	cat	lumbar	spinal	cord	and	the	
proximodistal	 (cm)	 positions	 of	 muscles	 in	 the	 cat	 hindlimb.	 (D)	 Columelar	
organization	 along	 the	 dorsoventral	 and	 mediolateral	 axes	 after	 rostrocaudal	
compression.	 Columels	 are	 assigned	 to	 dorsoventral	 tiers	 that	 correspond	 to	
muscles	 at	 individual	 joints	 and	 mediolateral	 divisions	 corresponding	 to	
dorsoventral	 position	within	 a	 joint.	 (E)	 Columelar	 positions	 from	 L3	 to	 L5	 in	
mouse.	Adapted	from	Sürmeli	et	al.,	2011.	
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located	more	 distally	 (McHanwell	 and	Biscoe,	 1981;	 Romanes,	 1964;	 Vanderhorst	

and	 Holstege,	 1997).	 Likewise,	 motor	 pools	 situated	 laterally	 within	 the	 LMC	

innervate	muscles	of	dorsal	origin,	whereas	motor	pools	situated	medially	innervate	

ventral	musculature	(Landmesser,	1978b;	Tosney	and	Landmesser,	1985).		

	

At	 hindlimb	 levels,	 the	 LMC	 is	 divided	 into	 four	 dorsoventral	 domains,	 or	

tiers,	that	contain	motor	neurons	projecting	to	the	foot,	shank,	thigh,	and	hip	(Figure	

6.2D;	Sürmeli	et	al.,	2011).	Each	of	these	tiers	can	in	turn	be	subdivided	according	to	

the	mediolateral,	or	divisional,	settling	position	of	the	motor	neurons	within	it.		The	

most	 dorsally	 positioned	 tier	 is	 occupied	 by	 motor	 neurons	 projecting	 to	 the	

intrinsic	foot	(IF)	muscles.	The	second	tier	is	occupied	by	motor	neurons	projecting	

to	the	crural	muscles	of	the	shank,	with	posterior	crural	muscles	(ankle	extensors;	

GS,	 Sol,	 Plan)	 located	 in	 the	 medial	 division	 and	 anterior	 crural	 muscles	 (ankle	

flexors;	TA,	EDL,	PL)	located	laterally.	The	third	tier	 is	occupied	by	motor	neurons	

projecting	 to	 the	 thigh,	 with	 the	 medial	 division	 containing	 motor	 neurons	

projecting	 to	 the	 adductor	 and	 hamstring	 muscles	 (knee	 flexors)	 and	 the	 lateral	

division	containing	those	projecting	to	the	quadriceps	(knee	extensors).	Finally,	the	

most	ventrally	positioned	tier	is	occupied	by	motor	neurons	projecting	to	proximal	

hip	muscles,	with	 the	 iliopsoas	hip	 flexor	muscles	 located	more	medially	 than	 the	

gluteal	extensor	muscles.	

	

Thus,	 the	 settling	 position	 of	 motor	 columels	 within	 the	 LMC	 is	 linked	 to	

intralimb	 termination	 along	 two	 spatial	 axes.	While	 the	 positional	 organization	 of	
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motor	neurons	has	long	been	appreciated,	an	understanding	of	why	this	topography	

exists	has	emerged	only	recently.	

	

6.1.3	Motor	neuron	columelar	organization	provides	a	connectivity	template	

	

One	 explanation	 proposed	 for	 the	 positional	 correlation	 between	 motor	

neuron	 and	muscle	 is	 that	 it	might	 facilitate	motor	 axon	 projection	 to	 prescribed	

muscle	 targets.	 Recent	 evidence	 from	molecular	 genetic	 studies,	 however,	 argues	

against	this	theory.	

	

Motor	neurons	can	be	stripped	of	the	cadherin	code	that	enables	them	to	sort	

and	settle	within	subdomains	of	the	LMC	by	deleting	the	genes	encoding	β-	and	γ-

catenin	 (Demireva	 et	 al.,	 2011),	 proteins	 that	 anchor	 cadherins	 within	 the	 cell	

membrane	and	mediate	intracellular	signaling.	In	these	mice,	motor	neuron	position	

is	scrambled	while	expression	of	upstream	transcriptional	programs,	 including	the	

motor	 pool	 markers	 Nkx6.1,	 Nkx6.2,	 and	 Er81,	 remains	 intact.	 Under	 these	

conditions,	motor	neurons	retain	the	ability	to	follow	limb	mesenchymal	cues	to	the	

limb	 muscle	 targets	 dictated	 by	 their	 transcriptional	 identities	 (Demireva	 et	 al.,	

2011;	Garcia	and	Jessell,	2008),	indicating	that	motor	neuron	topography	in	and	of	

itself	is	dispensable	for	the	fidelity	of	peripheral	motor	projection,	so	long	as	other	

aspects	of	motor	pool	molecular	identity	remain	in	tact.		
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Elimination	 of	 the	 Hox	 cofactor	 FoxP1	 in	motor	 neurons	 scrambles	motor	

neuron	 position	 within	 the	 LMC	 and	 strips	 motor	 pools	 of	 identifying	 surface	

markers	 (Dasen	 et	 al.,	 2008;	 Sürmeli	 et	 al.,	 2011).	 In	 this	 context,	 incoming	

proprioceptive	afferents	retain	the	ability	to	target	the	dorsoventral	tier	of	the	LMC	

in	which	their	motor	neuron	targets	would	typically	be	clustered	in	wild-type	mice	

(Sürmeli	et	al.,	2011).	Taken	together,	these	studies	suggest	that	the	topographical	

organization	 of	motor	 neurons	within	 the	 LMC	 exists	 to	 facilitate	 pathfinding	 and	

recognition	by	incoming	sensory	afferents.	

	

In	 light	 of	 this	 view,	 the	 compartmental	 molecular	 organization	 of	 limb-

innervating	 proprioceptors	 and	 the	 ability	 of	 the	 limb	 to	 impose	 proprioceptor	

positional	 identities	 possess	 an	 elegant	 logic.	 Expression	 of	 cdh13,	 for	 example,	 is	

shared	 among	 proprioceptors	 innervating	 the	 TA	 muscle	 and	 its	 synergists:	 a	

“columelar”	 group	 of	 proprioceptors.	 These	 proprioceptors	 in	 turn	 share	

postsynaptic	targets	in	the	motor	neurons	of	the	TA	columelar	group,	which	reside	

at	spinal	coordinates	topographically	aligned	with	the	limb	coordinates	innervated	

by	 this	 group	 of	 proprioceptors.	 The	 ability	 of	 limb	 mesenchyme	 and	 muscle	 to	

direct	 gene	 expression	 in	 proprioceptors	 in	 accord	 with	 intralimb	 termination	

therefore	 presents	 an	 attractive	 model	 for	 the	 coordination	 of	 peripheral	 and	

central	 targeting	 in	 these	neurons.	Under	 this	model,	proprioceptor	genes	 such	as	

cdh13,	with	columelar	expression	patterns	and	known	roles	in	cell-cell	recognition,	

are	 especially	 attractive	 candidates	 for	 mediating	 target	 selectivity	 between	 Ia	

proprioceptive	afferents	and	motor	neurons.			
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6.2	Results	

6.2.1	 Transient	 erosion	 of	 sensory-motor	 target	 specificity	 in	 cdh13	 mutant	

mice	

	

	 The	recognition	functions	proposed	for	many	type	II	cadherins	(Duan	et	al.,	

2014)	led	us	to	examine	whether	elimination	of	Cdh13	function	has	any	impact	on	

the	 selectivity	 of	 monosynaptic	 sensory-motor	 connections.	 TA	 and	 GS	 motor	

neurons	 are	 situated	 within	 the	 same	 dorsoventral	 tier	 of	 the	 LMC	 but	 differ	 in	

mediolateral	 settling	 position.	 Its	 expression	 by	 TA	 but	 not	 GS	 proprioceptors	

therefore	suggests	that	Cdh13	might	gate	the	mediolateral	trajectory	of	TA	afferents.	

	

We	analyzed	homozygous	Cdh13::CreERT2	mice	in	which	expression	of	cdh13	

is	eliminated,	henceforth	termed	Cdh13mut::GFP	mice.	In	Cdh13mut::GFP	animals,	the	

number	of	muscle	spindles	present	in	dorsal	and	ventral	shank	muscles	was	similar	

to	 the	 number	 observed	 in	 Cdh13het::GFP	 and	 wild-type	 mice	 (Figure	 6.3A).	 In	

addition,	TA	but	not	GS	proprioceptors	of	Cdh13mut::GFP	mice	express	GFP	(data	not	

shown),	arguing	against	a	role	for	cdh13	in	peripheral	sensory	targeting	and	muscle	

spindle	formation.		

	

To	assess	connectivity	in	Cdh13mut::GFP	mice,	we	utilized	our	ability	to	detect	

GFP	 expression	 at	 the	 proprioceptor	 central	 synapse	 (see	 Figure	 2.7D).	 GFP	

expression	was	induced	in	Cdh13mut::GFP	mice	and	Cdh13het::GFP	control	littermates	
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by	 tamoxifen	 injection	 at	 e16.5,	 and	 TA	 and	 GS	 motor	 neurons	 were	 labeled	

postnatally	 by	 intramuscular	 injection	 of	 ctb555.	 The	 incidence	 of	 GFP+	 sensory	

boutons	 on	TA	 and	GS	motor	 neurons	was	 then	 assessed	 at	 both	P7	 and	P18.	 	 In	

addition	 to	 their	 distinct	 mediolateral	 settling	 positions,	 TA	 and	 GS	 motor	 pools	

occupy	different	rostrocaudal	positions	within	the	LMC.	We	therefore	restricted	our	

analysis	 to	 the	 rostrocaudal	 extent	 of	 the	 LMC	 containing	 both	 TA	 and	 GS	motor	

pools	(L4-L5;	see	Figure	6.2E).	

	

Comparison	 of	 the	 fraction	 of	 GFP+	 TA/EDL/PER	 sensory	 terminals	 in	

contact	 with	 antagonist	 GS	 group	 motor	 neurons	 in	 Cdh13mut::GFP	 mice	 at	 P7	

revealed	 a	 ~5-fold	 increase	 in	 GFP+/vGluT1+	 proprioceptor	 terminals	 on	

retrogradely	 labeled	 GS/SOL/PL	 motor	 neurons	 compared	 with	 Cdh13het::GFP	

littermates	(Figures	6.3B	and	C;	p<0.001).	We	were	concerned	that	 this	difference	

might	 reflect	 the	 increased	 dosage	 of	 Cre	 protein	 in	 homozygous	 compared	 to	

heterozygous	Cdh13::GFP	mice.	We	therefore	adjusted	our	data	to	reflect	a	1.7-fold	

difference	in	active	Cre	protein	and	recombination	efficiency	between	homozygous	

and	heterozygous	mice.	Even	with	 this	 correction,	we	 found	a	~3-fold	 increase	 in	

the	 incidence	 of	 ectopic	 GFP+/vGluT1+	 boutons	 in	 Cdh13mut::GFP	 mice	 at	 P7	

(p<0.01).	

	

Interestingly,	by	P18,	the	mistargeting	of	GS	motor	neurons	by	TA	afferents	

in	Cdh13mut::GFP	mice	was	far	less	pronounced	(Figure	6.3C).	This	shift	in	phenotype	

is	indicative	of	a	restricted	developmental	period	during	which	ectopic	sensory		
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Figure	6.3	Deletion	of	cdh13	results	in	transient	ectopic	connectivity	between	TA	
afferents	and	GS	motor	neurons	
	
(A)	 Cdh13Mut::GFP	 mice	 possess	 a	 normal	 complement	 of	 muscle	 spindles.	
Spindles	were	 identified	by	Pv	 immunostaining	of	25	μm	cryosections	of	dorsal	
(d)	or	 ventral	 (v)	 shank	muscles	at	 P0.	 (B)	Transient	erosion	of	 sensory-motor	
specificity	 in	Cdh13Mut::GFP	mice	 is	 revealed	by	 the	 presence	 of	 GFP+	TA	group	
boutons	on	retrogradely	labeled	GS	motor	neurons.	Left:	Retrogradely	labeled	GS	
motor	 neurons	 in	 the	 Cdh13Het::GFP	 background	 lack	 GFP+	 sensory	 boutons.	
Middle	 and	 Right:	 GFP+	 inputs	 to	 GS	 motor	 neurons	 were	 observed	 in	
Cdh13Mut::GFP	mice.	Pregnant	Cdh13::GFP	females	were	 injected	with	 tamoxifen	
at	 e16.5	 of	 gestation.	 GFP+	 proprioceptor	 input,	 demarcated	 by	 vGluT1,	 to	 the	
soma	and	proximal	100	μm	dendrites	of	retrogradely	labeled	GS	motor	neurons	
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was	analyzed	in	progeny	at	P7	and	P18	in	Cdh13Het::GFP	and	Cdh13Mut::GFP	mice	
(n	 =	 3	mice/genotype;	 P7	Cdh13Het::GFP	mice:	 n	 =	 104	MNs,	 1868	 boutons;	 P7	
Cdh13Mut::GFP	mice:	n	=	114	MNs,	1758	boutons;	P18	Cdh13Het::GFP	mice:	n	=	75	
MNs,	 1572	 boutons;	 P18	 Cdh13Mut::GFP	 mice:	 n	 =	 45	 MNs,	 832	 boutons).	 (C)	
Percentage	 of	 vGluT1+	 inputs	 labeled	 by	 GFP	 on	 GS	 motor	 neurons	 of	
Cdh13Het::GFP	 and	Cdh13Mut::GFP	mice.	Cdh13Mut::GFP/c:	 value	 that	 corrects	 for	
the	 ~1.7-fold	 higher	 efficiency	 of	 tamoxifen-induced	 Cre	 recombination	 in	
Cdh13Mut::GFP	 mice	 versus	 Cdh13Het::GFP	 mice.	 Significant	 differences	 between	
Cdh13Mut::GFP	 and	 Cdh13Het::GFP	 mice	 were	 determined	 by	 Student’s	 t-test	
(**p<0.001;	 *p<0.01).	 (D)	 Percentage	 of	 GS	 motor	 neurons	 receiving	 vGlut1+,	
GFP+	input.	(E)	The	density	of	Pvon	neurons	in	P18	DRG	was	unchanged	between	
Cdh13Mut::GFP	and	Cdh13Het::GFP	mice.	
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Figure	6.4	Cdh13	expression	in	hindlimb	motor	pools	
	
Cdh13	 expression	was	 examined	 by	 fluorescence	 in	 situ	 hybridization	 at	 P1	 in	
backfilled	 motor	 neurons.	 Neither	 GS	 nor	 TA	motor	 neurons	 expressed	 cdh13,	
while	 GL	 and	 Add	 motor	 neurons	 expressed	 the	 gene.	 The	 cdh13	 status	 of	
proprioceptors	innervating	these	muscles	is	not	correlated.		
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boutons	 are	 present	 on	 antagonist	 motor	 pools.	 The	 density	 of	 pvon	 neurons	 in	

lumbar	 DRG	 did	 not	 differ	 significantly	 between	 Cdh13het::GFP	 and	 Cdh13mut::GFP	

mice	(Figure	6.3E),	arguing	against	cell	death	as	the	mechanism	underlying	the	late	

correction	of	misprojections.	

	

The	 formation	 of	 Cdh13	dimers	 in	 trans	has	 been	 shown	 to	 inhibit	 neurite	

outgrowth	in	vitro	(Ciatto	et	al.,	2010).	We	therefore	examined	the	cdh13	expression	

status	 of	 motor	 pools	 receiving	 cdh13on	 and	 cdh13off	 homonymous	 proprioceptor	

innervation	 and	 found	 that	 neither	 TA	 nor	 GS	 motor	 neurons	 express	 cdh13,	

indicating	that	Cdh13	likely	does	not	establish	synaptic	specificity	within	the	TA	and	

GS	 reflex	 arcs	 via	 inhibitory	 dimerization	 in	 trans.	 However,	 we	 did	 observe	

expression	 of	 cdh13	 in	 the	 GL	 and	 Add	 motor	 pools,	 both	 of	 which	 are	 situated	

ventrally	 with	 respect	 to	 the	 TA	 motor	 pool.	 It	 is	 therefore	 possible	 that	 cdh13	

expression	by	GL	and	Add	motor	neurons	might	repel	TA	afferents	from	projecting	

too	 far	 ventrally	 within	 the	 LMC,	 analogous	 to	 the	 reported	 Sema3E/PlxnD1-

mediated	 repulsion	 of	 hamstring	 afferents	 by	 GL	 motor	 neurons	 within	 the	 LMC	

(Fukuhara	et	al.,	2013).	

	

6.2.2	 vstm2b	 knockout	 mice	 lack	 TA	 afferent	 misprojections	 to	 GS	 motor	

neurons	

	

	 The	 near-complete	 restriction	 of	 vstm2b	 expression	 to	 proprioceptors	

innervating	dorsal	limb	musculature	(see	Figure	2.5H)	led	us	to	consider	a	role	for	
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this	gene	in	targeting	laterally	situated	LMC	motor	neurons.	vstm2b	is	predicted	to	

encode	 a	 transmembrane	 protein	 belonging	 to	 the	 Ig	 superfamily	 (IgSF),	 a	 large	

class	of	molecules	with	diverse	roles	in	neuronal	circuit	formation	(Figures	6.5A	and	

B;	 Rougon	 and	 Hobert,	 2003).	 The	 murine	 VSTM	 gene	 family	 includes	 vstm2a,	

vstm2b,	vstm2l,	vstm3,	vstm4,	and	vstm5	(Figures	6.5B,	C	and	D),	all	of	which	encode	

IgSF	proteins	of	various	complexity	and	domain	structure.	Of	these,	the	best-studied	

is	 Vstm3	 (TIGIT),	 which	 interacts	 with	 two	 nectin	 IgSF	 proteins	 at	 the	

immunological	 synapse	 between	 natural	 killer	 and	 T	 cells	 to	 regulate	 T	 cell	

activation	(Levin	et	al.,	2011).	

	 	

	 Because	β-galactosidase	protein	is	not	transported	axonally	in	Vstm2b::LacZ	

mice,	 we	were	 unable	 to	 utilize	 reporter	 expression	 to	 assay	 for	 the	 presence	 of	

vstm2bon	TA	group	boutons	on	GS	motor	neurons.	Instead,	we	took	advantage	of	the	

differential	transport	properties	of	the	neuronal	tracers	ctb	and	rhodamine-dextran.	

While	 both	 rhodamine-dextran	 and	 ctb	 are	 retrogradely	 transported	 to	 motor	

neuron	and	proprioceptor	cell	bodies,	only	ctb	is	transported	transganglionically	to	

central	 synapses	 (Figure	 6.6A;	 Sürmeli	 et	 al.,	 2011),	 thereby	 allowing	 two	

populations	of	motor	neurons	and	one	population	of	sensory	terminals	to	be	labeled	

in	one	experimental	animal.		

	

Using	this	method,	we	assayed	for	misprojections	by	TA	proprioceptors	onto	

GS	motor	neurons	at	P7	in	Vstm2bmut::LacZ	mice.	Comparison	of	the	fraction	of	ctb+	

TA	sensory	terminals	in	contact	with	antagonist	GS	group	motor	neurons	in		
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Figure	6.5	Structure	of	Vstm2b	and	other	VSTM	family	members	
	
(A)	 Primary	 amino	 acid	 sequence	 of	 Vstm2b.	 Note	 that	 Vstm2b	 is	 a	 Type	 II	
transmembrane	 protein,	with	 its	 transmembrane	 domain	 near	 the	 N	 terminus.	
Blue:	transmembrane	domain.	Green:	IgV	domain.	Pink:	putative	low	complexity	
domains.	(B)	Structure	of	Vstm2b,	with	domains	colored	as	in	(A).	(C)	Predicted	
structures	 of	 other	 murine	 VSTM	 proteins	 based	 on	 primary	 amino	 acid	
sequence.	Vstm2a	and	2l	lack	transmembrane	domains.	Vstm3	(TIGIT)	is	unique	
in	the	presence	of	an	ITIM	domain,	which	signals	 intracellularly.	 (D)	Cladogram	
illustrating	 the	 relationship	 between	 primary	 amino	 acid	 sequences	 of	 murine	
VSTM	proteins.	
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Figure	6.6	Antagonist	specificity	is	preserved	in	the	absence	of	vstm2b		
	
(A)	 Retrograde	 labeling	 with	 ctb	 and	 dextran	 identifies	 motor	 neurons	
innervating	one	of	two	muscles	and	proprioceptors	 innervating	one	muscle.	(B)	
Sensory-motor	specificity	is	maintained	in	Vstm2bmut::LacZ	mice,	as	indicated	by	
examination	of	TA	boutons	on	GS	motor	neurons	at	P7.	Left:	TA	boutons	on	TA	
motor	neurons	are	identified	by	coincidence	of	ctb	and	vGluT1.	Right:	GS	motor	
neurons	 lacked	 ctb+,	 vGluT1+	 boutons,	 indicating	 that	 antagonist	 avoidance	 is	
preserved	 in	 Vstm2bmut::LacZ	 mice.	 ctb+	 proprioceptor	 input,	 demarcated	 by	
vGluT1,	to	the	soma	and	proximal	100	μM	dendrites	of	retrogradely	labeled	TA	or	
GS	motor	neurons	was	analyzed	 in	Vstm2bhet::LacZ	and	Vstm2bmut::LacZ	mice	at	
P7	 following	 tracer	 injection	 at	P3	 (Vstm2bhet::LacZ	mice:	 n	=	18	TA	and	 16	GS	
MNs,	878	TA	and	597	GS	 	boutons;	Vstm2bmut::LacZ	mice:	n	=	19	TA	and	16	GS	
MNs,	533	TA	and	372	GS	boutons).	 (C)	Percentage	of	vGluT1+	 inputs	labeled	by	
ctb	 on	 TA	 and	 GS	motor	 neurons	 of	 Vstm2bhet::LacZ	 and	 Vstm2bmut::LacZ	mice.	
Vstm2bmut::LacZADJ:	values	normalized	for	the	efficiency	of	ctb	transport	between	
individual	 mice.	 (D)	 Percentage	 of	 GS	 motor	 neurons	 receiving	 vGlut1+,	 ctb+	
input.	
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Vstm2bmut::LacZ	 mice	 revealed	 no	 difference	 in	 the	 proportion	 of	 ctb+/vGluT1+	

proprioceptor	 terminals	 on	 retrogradely	 labeled	 GS/SOL/PL	 motor	 neurons	

compared	 with	 Vstm2bhet::LacZ	 littermates	 after	 adjusting	 for	 efficiency	 of	

retrograde	labeling	(Figures	6.6B	and	C).	Thus,	Vstm2b	does	not	appear	to	influence	

selectivity	within	the	TA	and	GS	reflex	arcs.	

	

6.3	Discussion	

6.3.1	Involvement	of	Cdh13	and	Vstm2b	in	sensory-motor	circuit	formation	

	

	 In	 this	 chapter,	we	have	 identified	 a	 role	 for	cdh13	 in	motor	neuron	 target	

discrimination	 by	 Group	 Ia	 proprioceptive	 afferents.	 While	 its	 effect	 is	 clear,	 the	

molecular	mechanism	by	which	Cdh13	mediates	recognition	is	less	so.	Cdh13	is	an	

atypical	 GPI-anchored	 cadherin	 and	 as	 such	 lacks	 an	 intracellular	 domain	 with	

signal	 transduction	 capacity,	 suggesting	 that	 it	 must	 act	 in	 cis	 with	 an	 as	 yet	

unknown	 coreceptor	 in	 its	 role	mediating	 target	 recognition.	 Furthermore,	motor	

neuron	cdh13	expression	does	not	match	proprioceptor	expression	of	the	gene	in	a	

manner	 corresponding	 to	 homophilic	 or	 homophobic	 recognition,	 raising	 the	

question	of	what	Cdh13	binds	in	trans.	

	

	 Studies	of	afferent	trajectory	in	FoxP1	mutant	mice	hold	clues	to	the	cellular	

source	 of	 Cdh13	 ligand.	 Afferents	 in	 FoxP1	mutants	maintain	 the	 ability	 to	 target	

appropriate	 dorsoventral	 tier	 domains	 of	 the	 LMC	 when	 motor	 neurons	 are	

scrambled	 or	 even	 absent,	 suggesting	 that	 guidance	 cues	 directing	 dorsoventral	
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afferent	 trajectory	 are	 supplied	 by	 the	 neuropil	 surrounding	 motor	 neurons	

(Sürmeli	 et	 al.,	 2011).	However,	mediolateral	 targeting	 is	disrupted	 in	 these	mice,	

indicating	 that	 along	 this	 axis,	 guidance	 cues	 are	 supplied	 by	 motor	 neurons	

themselves	(Sürmeli	et	al.,	2011).	Thus,	a	heterotypic	binding	partner	for	Cdh13	is	

likely	to	be	located	on	the	motor	neuron	surface.	

	

We	also	 lack	a	mechanistic	explanation	for	the	transience	of	misprojections	

observed	 in	 Cdh13mut::GFP	 mice.	 While	 activity-dependent	 refinement	 does	 not	

appear	 to	 sculpt	 the	 initial	 pattern	 of	 homonymous	monosynaptic	 connections	 in	

wild-type	mice,	it	could	act	to	eliminate	errant	contacts	in	a	mutant	context.	As	mice	

become	ambulatory	over	 the	 first	 few	weeks	of	postnatal	 life,	 rhythmic	 locomotor	

activity	might	act	 to	strengthen	appropriate	monosynaptic	contacts	and	prune	 the	

rare	ectopic	TA	boutons	present	on	GS	motor	neurons	in	Cdh13mut::GFP	mutants.	

	

We	were	unable	to	observe	an	effect	of	vstm2b	deletion	on	specificity	within	

the	 TA	 and	 GS	 reflex	 arcs,	 despite	 its	 expression	 by	 dorsal	 proprioceptors	 and	

suspected	role	in	mediolateral	targeting.	It	is	possible	that	the	lack	of	misprojection	

phenotype	 observed	 in	Vstm2bmut::LacZ	mice	was	 due	 to	 low	 efficiency	 of	 bouton	

labeling	by	ctb.	To	circumvent	this	problem,	the	Cdh13::GFP	reporter	allele	could	be	

used	in	place	of	ctb	to	label	central	synapses.	Because	all	TA	group	proprioceptors	

express	 both	 vstm2b	and	 cdh13,	Cdh13::GFP	 expression	 could	 be	 used	 to	 examine	

the	 termination	 pattern	 of	 vstm2bon	 TA	 group	 afferents	 in	 the	 vstm2b	 knockout	

background.	 Alternatively,	 physiological	 methods	 could	 be	 used	 to	 assay	 for	
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misprojections	 in	 Vstm2bmut::LacZ	 mice;	 short-latency	 monosynaptic	 input	 to	

antidromically	identified	motor	neurons	can	be	assessed	via	intracellular	recording	

following	stimulation	of	individual	muscle	nerves	(refer	to	Fukuhara	et	al.,	2013).	

	

	 The	relatively	late	onset	of	vstm2b	at	e13.5	(Figure	3.5)	argues	against	a	role	

in	peripheral	sensory	targeting,	although	Vstm2b	might	be	involved	in	the	formation	

of	muscle	spindles.	Complicating	our	assessment	of	Vstm2b	function	is	our	inability	

to	 determine	 its	 subcellular	 localization.	 Attempts	 to	 generate	 a	 Vstm2b	 antibody	

have	 yielded	 non-specific	 staining	 or	 cross-reactivity	 with	 Vstm2a;	 the	 effort	 to	

produce	 a	 specific	 reagent	 is	 ongoing.	 Determining	 whether	 Vstm2b	 protein	 is	

present	on	the	axon	or	at	peripheral	or	central	axon	terminals	would	greatly	aid	our	

characterization	of	its	function	in	proprioceptors.	

	

6.3.2	Completing	the	monosynaptic	connectivity	matrix	

	

Sensory-motor	circuit	assembly	requires	the	contribution	of	several	distinct	

developmental	mechanisms.	Sensory	afferents	utilize	positional	targeting,	molecular	

recognition,	and	activity-dependent	mechanisms	during	sequential	stages	of	circuit	

formation	that	require	increasingly	subtle	forms	of	target	discrimination.	

	

The	small	but	significant	misprojection	phenotype	observed	in	Cdh13mut::GFP	

mice	 is	 consistent	 with	 the	 view	 that	 formation	 of	 the	 complete	 matrix	 of	

monosynaptic	 connectivity	 is	 a	 highly	 redundant	 and	 combinatorial	 process	



Chapter	6:	Involvement	of	muscle-type	genes	in	synaptic	specificity	

	 167	

(Schwabe	et	al.,	2013).	Indeed,	the	lack	of	overt	behavioral	deficits	in	Cdh13mut::GFP	

mice	(data	not	shown)	supports	a	role	for	functional	redundancy	in	the	formation	of	

this	 crucial	 circuitry.	 Furthermore,	 the	 large	 number	 of	 differentially	 expressed	

guidance	 and	 adhesion	 molecules	 identified	 in	 our	 screen	 of	 muscle-type	

proprioceptors	 suggests	 that	 combinatorial	 gene	 expression	 is	 likely	 to	 define	

proprioceptor	muscle-type	subsets.	Future	studies	will	 focus	on	characterizing	 the	

large	number	of	differentially	expressed	genes	whose	functions	 in	the	assembly	of	

spinal	 circuitry	 have	 not	 yet	 been	 ascertained,	 including	 known	 recognition	

molecules	Sema5a	and	Crtac1.	

	

Expression	 of	 cdh13	 demarcates	 a	 proprioceptor	 columelar	 group,	 and	 our	

analysis	 of	 Cdh13mut::GFP	 mice	 implicates	 Cdh13	 in	 maintaining	 the	 fidelity	 of	

columelar	 targeting.	 While	 such	 a	 mechanism	 would	 restrict	 afferents	 to	 small	

regions	of	 the	LMC	 that	 contain	biomechanically	appropriate	motor	neuron	 target	

populations,	 the	 connectivity	 within	 these	 columelar	 domains	 must	 be	 weighted	

according	 to	 the	 homonymous	 or	 heteronymous	 status	 of	 the	 motor	 neurons	

contained	within.	How	might	these	fine	distinctions	be	achieved?	

	

One	possibility	 is	suggested	by	the	cdh13on	“pool”	 identity	of	rectus	femoris	

proprioceptors	(Figure	2.5D).	The	cdh13	expression	status	of	rectus	femoris	muscle	

deviates	from	that	of	its	vastii	synergists	within	the	quadriceps	group	-	a	difference	

that	 could	 conceivably	 mediate	 discrimination	 between	 homonymous	 and	

heteronymous	 motor	 neuron	 targets.	 Alternatively,	 proprioceptor	 activity	 could	
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account	 for	 the	 synaptic	weighting	 observed	 in	mature	 animals.	 Indeed,	 following	

blockade	of	sensory	transmission	by	tetanus	toxin	expression	in	proprioceptors,	an	

increase	in	the	incidence	of	heteronymous	connections	was	observed	within	the	TA	

synergist	group,	suggesting	that	connections	within	a	columelar	group	are	 initially	

promiscuous	and	are	later	pruned	by	activity-mediated	feedback	(Mendelsohn	et	al.,	

2015).		

	

6.3.3	 Beyond	 monosynaptic	 connectivity:	 proprioceptor	 input	 to	 local	

interneuron	circuits	

	

	 The	cdh13on	status	of	all	proprioceptors	innervating	a	given	muscle	raises	the	

question	 of	why	 its	 expression	 is	 required	 in	 Group	 Ib	 and	 II	 afferents.	While	we	

have	 identified	 a	 role	 for	 Cdh13	 in	 mediating	 monosynaptic	 contacts	 between	 Ia	

afferents	and	motor	neurons,	the	reason	for	its	presence	in	Ib	and	II	afferents,	which	

do	not	contact	motor	neurons	directly,	is	less	clear.	

	

	 Recent	work	has	characterized	the	topographical	and	molecular	organization	

of	 various	 local	 interneuron	 populations	 in	 the	 spinal	 cord	 (Bikoff	 et	 al.,	 2016;	

Gabitto	et	al.,	2016;	Tripodi	et	al.,	2011).	Genetic	studies	have	identified	a	number	of	

subpopulations	within	 the	 Engrailed1-defined	V1	 cardinal	 interneuron	population	

that	 are	 marked	 by	 combinatorial	 transcription	 factor	 expression	 (Bikoff	 et	 al.,	

2016;	Gabitto	et	al.,	2016).	These	 transcriptionally	defined	subpopulations	occupy	

discrete	spatial	domains	and	are	likely	to	express	different	combinations	of	surface	
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recognition	 molecules	 based	 on	 transcription	 factor	 profile.	 Moreover,	 several	 of	

these	 subpopulations,	 such	 as	 Renshaw	 cells,	 are	 integrated	 into	 distinct	 spinal	

microcircuits	 with	 respect	 to	 motor	 neurons.	 It	 is	 highly	 likely	 that	 these	

interneurons	 receive	 differential	 input	 from	 muscle-type	 proprioceptor	 subsets,	

invoking	a	need	for	molecular	distinctions	encompassing	Group	Ib	and	II	afferents.	

Although	 we	 lack	 tools	 for	 the	 representation	 of	 vstm2b	 at	 end	 organs	 within	

muscle,	our	backfill	studies	of	vstm2b	strongly	imply	that	it	is	expressed	by	Group	Ia,	

II	and	Ib	proprioceptors:	vstm2b	expression	is	consistently	detected	in	100%	of	TA	

proprioceptors	identified	by	retrograde	labeling.	Thus,	although	we	were	unable	to	

demonstrate	 a	 need	 for	 Vstm2b	 in	 the	 formation	 of	 monosynaptic	 specificity,	 its	

expression	might	be	 required	 for	differential	 connectivity	with	 spinal	 interneuron	

populations.	
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7	General	discussion	

	

In	this	thesis,	I	have	described	efforts	to	characterize	proprioceptor	subtype	

identity	 as	 it	 relates	 to	 limb	 muscle	 innervation.	 I	 employed	 RNA-Sequencing	 to	

identify	 genetic	 determinants	 of	 proprioceptor	 subpopulations	 terminating	 in	

distinct	 muscles	 or	 muscle	 groups	 located	 at	 distinct	 positions	 along	 the	

proximodistal	 and	 dorsoventral	 axes	 of	 the	 mouse	 hindlimb,	 resulting	 in	 the	

identification	 of	 proprioceptor	 genes	 whose	 expression	 is	 correlated	 with	

peripheral	 innervation.	 Detailed	 characterization	 of	 the	 expression	 of	 several	 of	

these	genes	–	cdh13,	vstm2b,	sema5a,	and	crtac1	–	revealed	hierarchical	principles	of	

proprioceptor	 organization	with	 respect	 to	 limb	 biomechanics	 and	 the	 pattern	 of	

spinal	connectivity	between	limb-innervating	sensory	afferents	and	motor	neurons.	

	

The	identification	of	proprioceptor	muscle-type	genes	enabled	me	to	assess	

the	 impact	of	 three	peripheral	 tissues	–	motor	axon,	 limb	mesenchyme	and	 target	

muscle	 –	 on	 the	 specification	 of	 proprioceptor	 subtype	 identity.	 I	 first	 found	 that	

motor	 axon	 plays	 neither	 an	 instructive	 nor	 permissive	 role	 in	 inducing	

proprioceptor	gene	expression.	I	next	observed	that	the	dorsoventral	identity	of	the	

limb	 mesenchyme	 instructs	 patterned	 expression	 of	 cdh13,	 vstm2b,	 sema5a,	 and	

crtac1	 in	 proprioceptors.	 Lastly,	 I	 found	 that	 muscle	 is	 dispensable	 for	

proprioceptor	 cdh13	 expression	 but	 is	 required	 for	 vstm2b	 induction,	 in	 which	 it	

may	 play	 either	 an	 instructive	 role	 by	 directly	 patterning	 vstm2b	 or	 a	 permissive	

one	via	an	effect	on	mesenchyme.	
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	 Finally,	 I	 examined	 whether	 cdh13	 or	 vstm2b	 plays	 a	 role	 in	 establishing	

selective	connections	between	muscle-specific	afferent	populations	and	their	motor	

neuron	 targets.	 While	 I	 detected	 no	 role	 for	 Vstm2b	 in	 the	 formation	 of	 specific	

contacts	between	TA	afferents	and	GS	motor	neurons,	I	observed	a	subtle	targeting	

defect	between	these	populations	in	Cdh13	mutant	mice,	thereby	providing	a	direct	

molecular	 link	 between	peripheral	 specification	 of	 proprioceptor	 subtype	 identity	

and	the	ability	of	these	afferents	to	form	patterned	connections	in	the	spinal	cord.	

	

Here,	I	discuss	these	findings	in	the	context	of	the	development	of	neuronal	

circuits	 underlying	 coordinated	 limbed	 movement.	 I	 elaborate	 alternative	 limb-

based	 and	 intrinsic	 strategies	 for	 specifying	 proprioceptor	 subtype	 diversity,	 and	

describe	 how	 these	 mechanisms	 might	 contribute	 to	 the	 formation	 of	 mature	

circuitry	 in	 the	 spinal	 cord.	 I	 also	 propose	 several	 experiments	 rooted	 in	 our	

findings	 that	 are	 designed	 to	 uncover	 the	 transcriptional	 logic	 and	 molecular	

mechanisms	of	proprioceptor	subtype	specification.		

	

7.1.1	Proprioceptor	diversity	assigned	in	limb	motor	coordinates	

	

	 The	distinct	molecular	character	of	muscle-type	proprioceptors,	exemplified	

by	cdh13,	vstm2b,	sema5a,	and	crtac1	expression,	reveals	molecular	differences	that	

correlate	 with	 muscle	 positional	 character.	 Genes	 that	 mark	 defined	 subsets	 of	

proprioceptors	 had	 been	 identified	 previously,	 but	 without	 examining	 the	 link	
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between	gene	expression	and	the	domain	of	limb	innervation.	For	example,	plexinD1	

and	 lmo4	 are	 expressed	 by	 proprioceptors	 supplying	 both	 dorsal	 and	 ventral	

muscles,	 but	 the	 status	 of	molecular	 expression	with	 regard	 to	 the	 proximodistal	

limb	axis	has	not	been	analyzed	(Chen	et	al.,	2002;	Fukuhara	et	al.,	2013).	

	

	 Our	muscle-by-muscle	analysis	of	proprioceptor	cdh13	expression	 indicates	

that	 the	muscle-type	 identity	of	proprioceptors	 is	assigned	 in	a	positional	manner	

that	conforms	to	the	common	biomechanical	function	exhibited	by	synergist	muscle	

groups	 (Eccles	 et	 al.,	 1957;	 Nichols,	 1994).	 It	 also	 implies	 that	 proprioceptor	 and	

motor	 pool	 identities	 adhere	 to	 the	 same	 positional	 logic.	 This	 is	 perhaps	 not	

surprising,	since	the	peripheral	and	central	terminals	of	both	sets	of	neurons	occupy	

the	same	local	microdomains	 in	the	 limb	and	spinal	cord.	The	expression	of	cdh13	

by	proprioceptors	innervating	each	of	the	ankle	flexor	muscles	further	suggests	that	

functionally	 related	 proprioceptors	 share	 a	 common	 molecular	 profile.	

Nevertheless,	 in	 some	 instances,	proprioceptor	 identity	 segregates	with	 individual	

muscles.	This	is	apparent	in	the	expression	of	cdh13	by	proprioceptors	innervating	

the	 rectus	 femoris	 but	 not	 vastii	 muscles,	 potentially	 a	 reflection	 of	 the	 distinct	

biomechanical	 features	 and	 activity	 profiles	 of	 these	muscles	 (Eccles	 et	 al.,	 1957;	

Nichols,	1994).	

	

	 Other	 proprioceptor	 subtype	 genes	 identified	 in	 our	 screen	 –	 notably	

vestm2b,	 sema5a,	 and	crtac1	 –	 exhibit	 patterns	of	 expression	distinct	 from	 that	 of	

cdh13,	yet	conform	to	the	core	principle	of	positional	distinctions	for	individual	limb	
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domains.	The	fact	that	cdh13	and	vstm2b	are	expressed	by	proprioceptors	supplying	

partially	 overlapping	muscle	 groups	 suggests	 that	 the	 logic	 of	 proprioceptor	 pool	

identity	may	emerge	 through	combinatorial	programs	of	 specification	 supplied	by	

both	 limb	 mesenchyme	 and	 muscle,	 as	 discussed	 in	 Chapter	 5.	 Thus,	 the	 limb	

mesenchyme	 may	 coordinate	 multiple	 aspects	 of	 motor	 circuit	 assembly	 by	

regulating	muscle	cleavage	and	motor	axon	guidance,	as	well	as	the	specification	of	

proprioceptor	muscle-type	identity.	

	

7.1.2	Linking	peripheral	specification	and	central	connectivity		

	

A	 number	 of	 the	 genes	 identified	 and	 characterized	 in	 proprioceptors	 as	 a	

result	of	our	screen	are	known	to	function	as	guidance	and	adhesion	molecules.	The	

role	of	 limb	peripheral	tissue	in	instructing	proprioceptor	connectivity	with	motor	

neurons	 prompted	 us	 to	 examine	 whether	 these	 genes	 might	 be	 involved	 in	

establishing	specific	monosynaptic	contacts	with	motor	neurons.	Some	support	for	a	

role	 for	muscle-type	 identity	 in	 establishing	 sensory-motor	 specificity	 is	 provided	

by	our	analysis	of	cdh13	mutant	mice,	which	exhibit	a	modest	incidence	of	aberrant	

sensory-motor	connections.	The	nature	of	 the	observed	changes	 in	connectivity	 in	

cdh13	 mutants	 could	 reflect	 the	 combinatorial	 or	 redundant	 roles	 of	 other	

molecules	 in	 establishing	 final	 patterns	 of	 sensory-motor	 connectivity.	 Moreover,	

because	 cdh13	 is	 not	 expressed	 by	 GS	 or	 TA	 motor	 neurons,	 heterophilic	

interactions	may	link	Cdh13	to	other	type	II	cadherins.	Limb	inductive	signals	that	

specify	dorsoventral	proprioceptor	identity	are	likely	to	instruct	the	recognition	of	
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motor	 neurons	 in	medial	 and	 lateral	 divisions	 of	 the	 LMC,	whereas	 proximodistal	

limb	signaling	may	confer	recognition	of	the	tier	domains	that	appear	to	contribute	

to	the	dorsoventral	patterning	of	sensory-motor	connections	(Sürmeli	et	al.,	2011).		

	

To	 this	 end,	 we	 surmised	 that	 vstm2b	 might	 play	 a	 role	 in	 discriminating	

between	medial	 and	 lateral	 LMC	motor	neurons.	Vstm2b	 is	 predicted	 to	 encode	 a	

type	 II	 transmembrane	 Ig-domain	 protein,	 placing	 it	 physically	 within	 the	

membrane	where	it	could	be	involved	in	cellular	recognition.	However,	we	did	not	

observe	 a	 connectivity	 defect	 in	 vstm2b	 mutant	 animals.	 This	 may	 be	 due	 to	

limitations	of	the	technical	approach	used	to	assay	misprojections;	below,	I	discuss	

an	 alternative	 strategy	 for	 labeling	 TA	 afferents	 that	 may	 improve	 our	 ability	 to	

detect	 aberrant	 synapses.	 Vstm2b	 may	 also	 be	 involved	 in	 establishing	 selective	

connectivity	 with	 interneuron	 populations	 in	 the	 spinal	 cord.	 However,	 prior	 to	

assaying	 the	 putative	 functional	 involvement	 of	 Vstm2b	 in	 any	 aspect	 of	 circuit	

formation,	 it	 is	 critical	 to	 determine	 whether	 it	 is	 present	 at	 central	 and/or	

peripheral	 proprioceptor	 terminals.	 Unfortunately,	 in	 the	 absence	 of	 a	 specific	

antibody,	 we	 are	 unable	 to	 assess	 the	 subcellular	 localization	 of	 Vstm2b	 in	

proprioceptors	at	different	stages	of	circuit	formation.	

	

7.1.3	A	 role	 for	 intrinsic	 specification	 in	defining	proprioceptor	muscle-type	

identity	
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	 The	 abundance	 of	 evidence	 pointing	 to	 a	 peripheral	 influence	 in	 sensory	

patterning	led	us	to	focus	our	examination	of	proprioceptor	subtype	specification	on	

the	role	of	limb	elements.	However,	studies	performed	in	chick	have	suggested	that	

some	 aspects	 of	 proprioceptor	 subtype	 identity	 might	 be	 intrinsically	 specified.	

Lmo4,	which	marks	a	subset	of	proprioceptors	in	a	manner	correlated	with	muscle	

innervation,	 is	expressed	 in	 the	same	proportion	of	proprioceptors	 following	 limb	

ablation,	 indicating	 that	 its	expression	 is	patterned	 in	 the	absence	of	 limb-derived	

cues	(Chen	et	al.,	2002).	

	

One	of	our	proposed	models	for	vstm2b	 induction	raises	the	possibility	that	

intrinsic	features	of	proprioceptor	identity	might	be	required	for	the	acquisition	of	

muscle-type	 identity.	 In	the	model	of	vstm2b	induction	 involving	a	permissive	role	

for	muscle,	we	propose	that	generic	features	of	proprioceptor	identity	might	create	

a	 cellular	 environment	 that	 is	 competent	 to	 respond	 to	 dorsoventrally	 restricted	

mesenchymal	cues.	One	interpretation	of	our	study	of	vstm2b	expression	holds	that	

the	 expression	 of	 muscle-type	 markers	 by	 proprioceptors	 but	 not	 cutaneous	

sensory	 neurons	 requires	 the	 activation	 of	 as-yet-unidentified	 surface	 effector	

molecules	downstream	of	pan-proprioceptor	transcription	factors	such	as	Runx3	or	

Er81	 to	 mediate	 a	 selective	 response	 to	 restricted	 mesenchymal	 cues.	 Such	

intrinsically	specified	determinants	of	proprioceptor	muscle-type	identity	would	be	

characterized	by	several	properties:	(1)	expression	prior	to	innervation	of	the	limb	

bud	and	in	the	absence	of	the	limb	bud;	(2)	restricted	expression	by	proprioceptors;	

and	(3)	protein	localization	to	the	cell	membrane.	
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7.1.4	Alternative	modes	of	peripheral	specification	

	

	 As	 discussed	 in	 Chapter	 6,	 the	 topographic	 alignment	 between	 limb	

coordinate	and	motor	neuron	settling	position	suggests	a	scheme	for	simplifying	the	

connectivity	problem	faced	by	proprioceptors.	Limb	positional	coordinates	imposed	

by	 cues	 distributed	 along	 the	 cardinal	 limb	 axes	 might	 induce	 gene	 expression	

profiles	 in	proprioceptors	that	 instruct	 the	targeting	of	discrete	spinal	coordinates	

containing	 appropriate	motor	 neuron	 targets.	 	 Our	 screen	 of	muscle-type	 identity	

was	 designed	 with	 this	 possibility	 in	 mind;	 we	 surveyed	 genetic	 distinctions	 in	

proprioceptors	 correlated	 with	 termination	 along	 the	 proximodistal	 and	

dorsoventral	hindlimb	axes,	with	the	ultimate	goal	of	exploring	the	influence	of	the	

cues	assigning	limb	positional	values	on	the	generation	of	neuronal	diversity.	

	

Beyond	 this	 model,	 NT3	 signaling	 has	 been	 proposed	 to	 play	 a	 role	 in	

specifying	 proprioceptor	 subtype	 identity,	 providing	 an	 alternative	 pathway	 for	

generating	proprioceptor	diversity.	NT3	 is	expressed	at	distinct	 levels	by	different	

muscles	of	 the	embryonic	hindlimb	 (Figure	7.1A	and	B).	 Interestingly,	 the	 level	of	

muscle	 NT3	 expression	 is	 uncorrelated	with	 the	 position	 of	 the	muscle	 along	 the	

three	 cardinal	 limb	 axes.	 While	 the	 need	 for	 mosaic	 muscle-by-muscle	 NT3-

dependent	 programs	 of	 gene	 expression	 in	 limb-innervating	 proprioceptors	 is	

unclear,	NT3	appears	to	play	a	broader	role	in	the	specification	of	proprioceptor		
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Figure	7.1	Muscle	NT3	level	directs	proprioceptor	subtype	identity	
	
(A)	β-gal	activity	levels	in	e15.5	embryonic	hindlimb	muscles	of	NT3::LacZ	mice.	
Muscles	 indicated	 are	 rectus	 femoris	 (RF),	 soleus	 (Sol),	 extensor	 digitorum	
longus	(EDL),	tibialis	anterior	(TA),	and	biceps	femoris	(BF).	(B)	NT3	expression	
levels	 in	 e16.5	 hindlimb	 muscles	 relative	 to	MyoD.	 Asterisk	 denotes	 that	 NT3	
expression	 in	Quadrieps	 (Q)	 and	medial	Gastrocnemius	 (Gm)	 is	 asymmetrically	
distributed,	with	the	highest	MT3	levels	observed	near	sensory	endings.	ax:	axial;	
bw:	body	wall;	Glut:	gluteus;	Pl:	plantaris;	Per:	peroneus;	 Ilio:	 iliacus.	 (A	and	B)	
are	 adapted	 from	 de	 Nooij	 et	 al.,	 2013.	 (C)	 Pairwise	 comparison	 of	 GL	 and	 GS	
samples	 reveals	 45	 and	 37	 upregulated	 transcripts,	 respectively,	 that	 may	 be	
regulated	 by	 muscle	 NT3	 level.	 Taken	 from	 the	 RNA-Seq	 dataset	 presented	 in	
Chapter	2.	
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subtypes.	The	expression	level	of	NT3	differs	uniformly	between	axial	and	hypaxial	

musculature,	suggesting	that	NT3	signaling	through	the	TrkC	receptor	could	direct	

class-defining	 features	of	axial	and	hypaxial	proprioceptors	(de	Nooij	et	al.,	2013).	

Muscle	 NT3	 level	 is	 correlated	 with	 proprioceptor	 sensitivity	 to	 loss	 of	 the	

transcription	factor	Er81	(de	Nooij	et	al.,	2013).	Notably,	several	muscles	low	in	NT3	

expression	 and	 deprived	 of	 proprioceptor	 innervation	 in	 Er81	 mutants	 -	 limb	

gluteus	 and	 adductor	 muscles,	 hypaxial	 muscles,	 and	 axial	 muscles	 -	 share	 one	

organizational	 feature:	 lack	of	group	Ia	reciprocal	 inhibitory	circuitry	 in	 the	spinal	

cord	(refer	to	Figure	1.1;	Eccles	and	Lundberg,	1958;	Jankowska	and	Odutola,	1980;	

Sears,	1964).	Thus,	the	proprioceptor	NT3-Er81	signaling	cassette	may	confer	gene	

expression	 profiles	 that	 help	 to	 organize	 spinal	 circuitry	 appropriate	 to	 the	

biomechanical	demands	of	the	target	muscle	group.	

	

Our	muscle-type	RNA-Seq	data	has	been	used	to	probe	the	role	of	differential	

NT3	 signaling	 by	 limb	 muscles	 in	 assigning	 proprioceptor	 subtype	 identity.	 The	

gluteus	muscle	expresses	 low	 levels	of	NT3	during	embryonic	development,	while	

the	 gastrocnemius	muscle	 is	marked	 by	 comparatively	 high	 NT3	 expression.	 It	 is	

therefore	 possible	 that	 distinctions	 in	 gene	 expression	 between	 GL	 and	 GS	

proprioceptors	are	reflective	of	differential	exposure	to	NT3.	Our	comparison	of	GL	

and	GS	proprioceptors	yielded	45	genes	upregulated	 in	GL	proprioceptors	and	37	

upregulated	 in	 GS.	 While	 the	 investigation	 of	 these	 genes	 with	 respect	 to	 NT3	

signaling	 is	ongoing,	one	GS	gene	–	spp1	 –	appears	 to	be	directly	 regulated	by	 the	

level	of	NT3	supplied	by	muscle	(Joriene	de	Nooij,	unpublished	data).	
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7.2	Future	directions	

7.2.1	Patterning	proprioceptor	proximodistal	identity	

	

In	 this	 thesis,	 I	 focused	 my	 investigation	 of	 proprioceptor	 subtype	

specification	 by	 the	 periphery	 on	 the	 influence	 of	 the	 dorsoventral	 hindlimb	 axis.	

However,	many	of	the	genes	identified	in	our	RNA-Seq	screen	are	predicted	to	differ	

in	expression	along	the	proximodistal	axis	of	the	hindlimb;	in	one	of	many	examples,	

cdh13	is	restricted	to	proprioceptors	innervating	distal	segments	of	the	limb	(Figure	

2.5).	 Given	what	 is	 known	 about	 limb	development,	 how	might	 the	 proximodistal	

restriction	of	proprioceptor	muscle-type	gene	expression	be	achieved?	

	

	 During	 embryonic	 development,	 the	 outgrowth	 and	 segmental	morphology	

of	 the	 limb	 is	 established	 by	 opposing	 gradients	 of	 retinoic	 acid	 (RA)	 and	 FGF		

(Mariani	et	al.,	2008;	Vogel	et	al.,	1996;	Yashiro	et	al.,	2004)	.	RA	is	produced	at	the	

proximal	end	of	the	limb	by	the	synthetic	enzyme	RALDH2,	and	FGFs	are	expressed	

at	 the	distal	 end	of	 the	 limb	by	 cells	 of	 the	 apical	 ectodermal	 ridge	 (Figure	7.2A).	

These	gradients	direct	the	expression	of	Hox	transcription	factors	and	cofactors	by	

limb	 mesenchyme	 in	 discrete	 proximodistal	 domains	 that	 give	 rise	 to	 the	 thigh,	

shank	and	foot	of	the	mature	hindlimb	(Figure	7.2A;	Cooper	et	al.,	2011;	Mercader	et	

al.,	 2005).	 Intriguingly,	 we	 examined	 response	 to	 RA	 signaling	 in	 a	 mouse	 line	

expressing	LacZ	under	control	of	a	RA	response	element	(RARE::LacZ)	and	observed	

signal	in	a	subset	of	DRG	neurons	at	e14.5,	raising	the	possibility	that	
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Figure	7.2	Retinoic	acid	and	FGFs	pattern	the	proximodistal	limb	axis	
	
(A)	 Proximodistal	 RA	 and	 FGF	 gradients	 direct	 specification	 of	 limb	
proximodistal	patterning,	including	the	induction	of	mesenchyme	transcriptional	
domains.	 Adapted	 from	 Bénazet	 and	 Zeller,	 2009.	 (B)	 X-Gal	 staining	 in	
RARE::LacZ	 embryos	 reveals	 a	 subset	 of	 lumbar	 DRG	 neurons	 responsive	 to	
retinoic	acid	at	e14.5.	
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proprioceptors	 are	 influenced	 by	 RA	 signaling	 around	 the	 time	muscle-type	 gene	

expression	is	initiated	(Figure	7.2B).	

	

Assessing	the	impact	of	proximodistal	ectodermal	or	mesenchymal	character	

on	 proprioceptor	 gene	 expression	 poses	 a	 practical	 challenge.	 Whereas	

manipulation	of	the	dorsoventral	limb	axis	results	in	the	duplication	of	limb	tissues,	

altering	the	expression	of	genes	 involved	 in	proximodistal	patterning	often	results	

in	limb	truncation	or	segmental	deletion	(Sun	et	al.,	2002),	rendering	an	assessment	

of	gene	expression	by	proprioceptors	innervating	ectopic	limb	territory	impossible.	

Thus,	 rather	 than	 examining	 mice	 deficient	 in	 proximodistal	 patterning	 genes,	 a	

more	 fruitful	 strategy	 may	 be	 to	 adopt	 a	 genetic	 gain-of-function	 approach.	 The	

generation	of	a	Rosa26::lox-STOP-lox.RALDH2	or	similar	FGF	transgenic	line,	when	

combined	with	a	Prx1::Cre	driver,	would	drive	the	overexpression	of	proximodistal	

patterning	genes	throughout	the	limb	mesenchyme.	Although	this	approach	comes	

with	potential	 complications	 regarding	 the	 timing	 and	 tissue	 source	of	 ectopically	

expressed	patterning	cues,	these	modifications	have	not	yet	been	attempted	in	mice	

and	may	provide	a	 suitable	 system	 for	examining	proprioceptor	muscle-type	gene	

expression	in	an	altered	proximodistal	context.	

	

It	 is	 interesting	 to	 note	 that	 the	 extent	 of	 the	 truncation	 or	 deletion	

phenotypes	 observed	 following	 deletion	 of	 proximodistal	 patterning	 genes	 differs	

between	 the	 forelimb	and	hindlimb	 (Sun	et	 al.,	 2002),	with	 forelimb	defects	often	
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being	less	severe.	To	this	end,	characterizing	the	expression	patterns	of	muscle-type	

genes	in	forelimb-innervating	proprioceptors	may	be	useful.	

	

7.2.2	Probing	the	transcriptional	logic	of	proprioceptor	muscle-type	identity	

	

The	 Hox	 code	 that	 specifies	 motor	 neuron	 pool	 identity	 is	 directed	 by	

opposing	gradients	of	RA	and	FGF	signaling	(Dasen	and	Jessell,	2009).	Likewise,	we	

expected	that	the	RA	and	FGF	gradients	present	 in	the	developing	hindlimb	would	

direct	 a	 transcription	 factor	 code	 underlying	 the	 specification	 of	 proprioceptor	

muscle-type	 identity.	 However,	 we	 failed	 to	 identify	 a	 transcriptional	 logic	 in	

muscle-type	proprioceptors	resembling	that	of	motor	neurons.	

	

This	 may	 be	 due	 to	 the	 developmental	 timing	 of	 our	 screen.	 Prior	 to	 this	

study,	 the	 only	method	 permitting	 the	 identification	 of	 proprioceptors	 by	muscle	

innervation	 was	 neuronal	 tracer	 backfill,	 which	 must	 be	 performed	 postnatally.	

However,	 any	 transcription	 factors	 specifying	 proprioceptor	 muscle-type	 identity	

would	 presumably	 be	 induced	 soon	 after	 hindlimb	 innervation	 around	 e11.5	 and	

might	 be	 required	 only	 transiently	 to	 direct	 muscle-type	 programs	 of	 gene	

expression.	 Transcription	 factor	 expression	 might	 therefore	 have	 been	

downregulated	prior	to	our	characterization	of	muscle-type	distinctions	at	P1.	

	

The	 markers	 identified	 in	 our	 screen	 now	 permit	 the	 isolation	 of	

proprioceptors	 innervating	 distinct	 muscles	 by	 genetic	 reporter	 expression.	 It	 is	
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now	 possible	 to	 isolate	 muscle-type	 proprioceptors	 as	 early	 as	 e12.5	 using	

Cdh13::GFP	mice.	Likewise,	isolation	of	vstm2b-expressing	proprioceptors	should	be	

possible	 as	 early	 as	 e13.5	 using	 the	 Vstm2b::LacZ	 allele	 in	 combination	 with	 a	

commercially	 available	 substrate	 designed	 to	 fluorescently	 label	 live	 β-gal-

expressing	cells.		In	combination	with	a	fluorescent	reporter	of	proprioceptor	status	

driven	 by	 the	 pv	 or	 runx3	 promoter,	 these	 tools	 will	 permit	 the	 isolation	 and	

comparison	 of	 cdh13on/vstm2bon,	 cdh13off/vstm2bon,	 and	 cdh13off/vstm2boff	

proprioceptors	 –	 overlapping	 but	 distinct	 muscle-type	 cohorts	 with	 unique	

proximodistal	and	dorsoventral	termination	patterns	-	at	e13.5.	This	approach	will	

yield	 an	 unprecedented	 view	 into	 the	 early	 steps	 of	 proprioceptor	 muscle-type	

specification	 and	 should	 result	 in	 the	 identification	 of	 transcription	 factors	 that	

assign	muscle-type	identity.	

		

7.2.3	Identifying	proprioceptor	patterning	cues	

	

	 Our	 experiments	 have	 identified	 requirements	 for	 limb	 mesenchyme	 and	

muscle	 in	 patterning	 proprioceptor	 muscle-type	 gene	 expression.	 However,	 the	

molecular	 agents	 acting	 within	 these	 tissues	 to	 directly	 influence	 proprioceptor	

gene	expression	remain	unknown.	How	might	we	identify	the	molecules	involved	in	

patterning	proprioceptor	muscle-type	gene	expression?	

	

	 Our	studies	of	cdh13	induction	indicate	definitively	that	its	patterning	cue	is	

supplied	 by	 limb	 mesenchyme.	 Due	 to	 the	 dorsodistal	 restriction	 in	 cdh13on	
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proprioceptor	 innervation,	 we	 expect	 that	 the	 cdh13	 patterning	 cue(s)	 will	 be	

similarly	compartmentalized	along	the	proximodistal	and	dorsoentral	axes	in	one	of	

several	 possible	 patterns	 depending	 on	 the	 inductive	 or	 repressive	 nature	 of	 the	

patterning	 cue(s)	 involved.	 Interestingly,	 studies	 examining	 the	 altered	

transcriptional	 profile	 of	 the	mesenchyme	 in	 double-ventral	 limbs	 have	 identified	

genes	regulated	by	lmx1b	whose	expression	is	restricted	along	the	dorsoventral	and	

proximodistal	axes	(Feenstra	et	al.,	2012;	Gu	and	Kania,	2010;	Krawchuk	and	Kania,	

2008).	We	can	therefore	adopt	a	candidate	approach	to	identifying	cdh13	inductive	

molecules.	The	secreted	cerebellin	(Cbln)	family	of	proteins	contains	candidates	for	

cdh13	 induction,	given	their	restricted	expression	by	dorsal	 limb	mesenchyme	and	

downregulation	 from	 limb	 mesenchyme	 in	 Lmx1b-/-	 mice	 (Feenstra	 et	 al.,	 2012;	

Haddick	et	al.,	2014).	Alternatively,	it	is	possible	that	mesenchymal	cues	responsible	

for	 guiding	motor	 axons	have	 a	 dual	 role	 in	 specifying	proprioceptor	muscle-type	

identity:	 ephrins,	 glial-derived	 neurotrophic	 factor	 (GDNF),	 and	 netrin1	 are	

expressed	 in	 a	 restricted	 manner	 by	 dorsal	 or	 ventral	 limb	 mesenchyme	 and	

regulate	the	dorsoventral	choice	of	motor	axons	(Poliak	et	al.,	2015;	Stifani,	2014).	

An	in	vitro	culture	system	could	be	used	to	test	the	ability	of	these	proteins	to	induce	

cdh13	expression	in	explanted	Cdh13::GFP	lumbar	DRG.	

	

	 Proprioceptor	 vstm2b	 expression	 presents	 a	more	 complicated	 scenario	 in	

that	 it	 might	 be	 patterned	 directly	 by	 muscle	 or	 through	 a	 permissive	 effect	 of	

muscle	on	mesenchymal	gene	expression.	We	must	therefore	consider	two	possible	

tissue	 sources	 of	 patterning	 information.	 Regardless	 of	 tissue	 source,	 a	 vstm2b	
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pattering	 cue	 must	 meet	 several	 criteria.	 The	 muscle-type	 expression	 pattern	 of	

vstm2b	dictates	that	its	patterning	cue	will	be	restricted	to	the	dorsal	or	ventral	limb	

and	will	 span	 its	proximodistal	extent,	 regardless	of	 tissue	source.	Unlike	putative	

cdh13	 inductive	 cues,	 the	 expression	 of	 a	 vstm2b	 patterning	 gene	 would	 be	

downregulated	in	Lbx1	mutants	due	to	the	requirement	of	muscle	for	its	expression.	

Furthermore,	 because	 of	 the	 patterning	 defect	 observed	 following	 lmx1b	

manipulation,	 we	 would	 expect	 the	 expression	 of	 this	 cue	 to	 be	 either	 absent	 or	

ectopically	expressed,	depending	on	the	inductive	or	repressive	nature	of	the	signal,	

in	the	double-ventral	limbs	of	Lmx1b	mutants.		

	

To	 identify	 putative	muscle-derived	 patterning	 cues,	we	must	 first	 identify	

differences	in	gene	expression	between	the	dorsal	and	ventral	muscle	masses	at	the	

time	when	vstm2b	 	expression	 initiates	 in	proprioceptors.	To	this	end,	 I	propose	a	

comparative	screen	of	dorsal	and	ventral	hindlimb	myoblasts	at	e12.5.	The	Lbx1	null	

allele	 used	 in	 this	 study	 harbors	 a	 GFP	 knockin	 allele,	 allowing	 the	 fluorescent	

labeling	 of	 all	migratory	muscle	 precursors	 in	situ	within	 the	 limb	bud.	 Following	

the	 separation	 of	 dorsal	 from	 ventral	 limb	 bud,	 dissociation	 and	 FACS	 sorting	 of	

muscle	 cells	 will	 permit	 the	 isolation	 and	 genetic	 profiling	 of	 these	 populations.	

Dorsoventrally	 segregated	 secreted	 or	 surface	 proteins	 identified	 in	 this	 screen	

present	attractive	targets	for	vstm2b	patterning	cues.	

	

	 In	 cases	 of	 proprioceptor	 patterning	 by	 the	 mesenchyme,	 the	 precise	

mesenchymal	 cell	 type	 that	 represents	 the	 source	 of	 inductive	 signals	 is	 also	
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uncertain.	Based	on	the	timing	of	onset	of	cdh13	expression,	undifferentiated	 limb	

mesechymal	 cells	or	one	of	 their	derivative	 tissues	 could	be	 sources	of	patterning	

information.	 For	 example,	 TCF4-positive	 limb	 connective	 tissue,	 which	 has	 been	

proposed	to	set	the	pattern	of	muscle	cleavage	(Kardon	et	al.,	2003),	could	specify	

proprioceptor	positional	identity.	

	

7.2.4	Characterizing	the	role	of	vstm2b	in	circuit	formation	

	

Our	analysis	of	the	role	of	Vstm2b	in	spinal	circuit	formation	was	based	on	an	

assumption	 that	 the	 dorsoventral	 selectivity	 of	 this	 gene	 confers	 mediolateral	

targeting	specificity	within	the	spinal	cord.	This	led	us	to	search	for	misprojections	

between	TA	afferents	and	GS	motor	neurons	in	Vstm2b	mutant	mice,	which	we	were	

unable	to	detect.	This	may	have	been	due	to	the	low	efficiency	of	bouton	labeling	by	

the	 retrograde	 tracer	 ctb;	 rare	misprojections	by	TA	 afferents	may	not	 have	been	

detected	 in	 this	 scenario.	To	circumvent	 this	possible	 technical	 issue,	 ctb	could	be	

replaced	by	the	Cdh13::GFP	reporter,	which	would	allow	visualization	of	TA	group	

sensory	boutons	via	native	fluorescence.		

	

While	 this	 assay	 might	 be	 used	 to	 reveal	 misprojections	 between	 other	

pairwise	combinations	of	sensory	and	motor	neurons,	it	is	labor	intensive	and	low-

yield	 in	 light	 of	 the	 complexity	 of	 sensory-motor	 connectivity.	 We	 therefore	

considered	taking	a	viral	tracing	approach	to	compare	the	overall	spinal	trajectory	

of	 TA	 proprioceptors	 in	 wild-type	 and	 Vstm2b	 mutant	 backgrounds.	 In	 this	
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paradigm,	an	AAV	virus	carrying	Cre	protein	 is	 injected	 into	 individual	muscles	of	

mice	carrying	both	Pv::Flp	and	Rosa26::dual.stop-tdTomato	alleles,	resulting	 in	 the	

sparse	 labeling	 of	 a	 muscle-specific	 population	 of	 proprioceptive	 afferents	 with	

tdTomato.	 This	 approach	 will	 allow	 us	 to	 detect	 gross	 deviations	 in	 both	 the	

trajectory	 and	 termination	 of	 a	 muscle-specific	 afferent	 population	 deficient	 in	 a	

single	putative	determinant	of	synaptic	specificity.	In	this	manner,	we	will	be	able	to	

determine	 wholesale	 if	 the	 pattern	 of	 connectivity	 between	 muscle-type	

proprioceptors	and	interneuronal	or	motor	neuron	populations	might	be	altered	by	

allowing	 us	 to	 examine	 many	 postsynaptic	 target	 populations	 in	 parallel.	 This	

approach	 could	 in	 theory	 be	 utilized	 to	 assess	 the	 role	 of	 any	 candidate	 gene	 in	

establishing	specific	synaptic	contacts,	so	long	as	a	null	allele	is	available.	

	

	 If	 Vstm2b	 is	 found	 to	 regulate	 synaptic	 specificity,	 it	 will	 be	 necessary	 to	

determine	 its	 binding	 partners	 in	 both	 cis	 and	 trans.	 We	 observed	 vstm2b	

expression	 in	 spinal	 motor	 neurons	 and	 interneuronal	 populations,	 although	 the	

subtype	 specificity	 of	 its	 expression	 –	 if	 any	 –	 has	 not	 yet	 been	 characterized.	

Defining	the	motor	pool	expression	pattern	of	vstm2b	may	therefore	provide	insight	

into	 the	 mode	 of	 recognition	 underlying	 target	 recognition	 by	 vstm2b-expressing	

afferents.	

	

7.3	Conclusion	

Proprioceptive	 feedback	 represents	 a	 significant	 mechanism	 by	 which	

movement	 is	 coordinated	 and	 refined.	 Limbed	 motion	 is	 dependent	 on	 the	
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specification	 of	 proprioceptor	 subtypes	 linking	 muscle	 to	 motor	 neuron,	 and	 the	

work	 presented	 in	 this	 thesis	 addresses	 two	 intrinsically	 linked	 sides	 of	 this	

problem	 by	 way	 of	 characterizing	 the	 molecular	 identities	 of	 muscle-type	

proprioceptors.	First,	I	have	determined	that	the	induction	of	proprioceptor	muscle-

type	 genes	 occurs	 in	 a	 manner	 dependent	 on	 both	 mesenchyme	 and	 muscle,	

suggesting	that	cues	from	multiple	tissue	sources	are	integrated	to	specify	the	~50	

proprioceptor	 subtypes	 presumably	 required	 to	 establish	 the	 complete	 matrix	 of	

sensory-motor	connections.	Second,	I	have	established	a	molecular	link	between	the	

peripheral	 specification	 of	 proprioceptor	 subtype	 identity	 and	 the	 formation	 of	

specific	sensory-motor	contacts	within	the	spinal	cord.	Despite	these	advances,	this	

work	 only	 begins	 to	 characterize	 the	 subtype	 diversity	 of	 proprioceptive	 sensory	

neurons;	 continued	 efforts	 in	 this	 field	 will	 provide	 additional	 insight	 into	 the	

mechanisms	through	which	proprioceptors	diversify	to	generate	the	spinal	circuits	

required	for	motor	control.		
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8	Experimental	procedures	

	

All	experiments	and	procedures	were	performed	in	accordance	with	NIH	guidelines	

and	were	approved	by	the	Institutional	Animal	Care	and	Use	Committee	of	Columbia	

University.	

	

8.1	Mouse	strains	

	

The	 following	mouse	strains	were	used	 in	 this	work:	Pv::Cre	(Hippenmeyer	

et	al.,	2005),	Thy1::lox-STOP-lox.YFP	(Buffelli	et	al.,	2003),	Cdh13::CreERT2	(Poliak	et	

al.,	 2016),	Tau::lox-STOP-lox.mGFP	 (Hippenmeyer	 et	 al.,	 2005),	Bax-/-	(Knudson	 et	

al.,	 1995),	 Olig2::Cre	 (Dessaud	 et	 al.,	 2007),	 floxed	 FoxP1	 (Feng	 et	 al.,	 2010),	

Rosa26::lox-STOP-lox.DTA	 (Wu	 et	 al.,	 2006),	 Lbx1-/-	 (Gross	 et	 al.,	 2000),	 Lmx1b-/-	

(Chen	et	al.,	1998),	Prx1::Cre	(Logan	et	al.,	2002),	Rosa26::lsl.Lmx1b	(Li	et	al.,	2010),	

and	RARE-hsp68::LacZ	(Rossant	et	al.,	1991;	JAX	strain	008477).	

	

The	Vstm2b::LacZ	reporter/null	allele	was	generated	 from	targeted	ES	cells	

obtained	 from	 the	 EUCOMM	division	 of	 the	 IKMC	 project	 (Ringwald	 et	 al.,	 2011).	

Chimeras	were	 produced	 from	 vstm2b	ES	 cell	 clone	 F02	with	 the	 help	 of	Monica	

Mendelsohn	and	Natalia	Zabello	at	Columbia	University,	and	offspring	carrying	the	

targeted	 allele	 were	 crossed	 to	 Protamine::Cre	 (O’Gorman	 et	 al.,	 1997;	 JAX	 strain	

003328)	mice	 to	 achieve	male	 germline	 deletion	 of	 the	 Neo	 cassette	 and	 vstm2b	

exons	 2-4.	We	 also	 utilized	Rosa26::FlpO	mice	 (Raymond	 and	 Soriano,	 2007;	 JAX	
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strain	 007844)	 to	 excise	 the	 LacZ	 reporter	 and	 Neo	 cassette	 to	 generate	 a	

conditional	Vstm2b	allele.	

	

Cre	 activity	 and	 subsequent	 expression	 of	 GFP	 in	 Cdh13::mGFP	mice	were	

induced	by	 intraperitoneal	 injection	of	 tamoxifen	(5	mg	 in	sesame	oil;	Sigma)	 into	

pregnant	females	at	the	gestational	times	indicated	in	the	text.		

	

8.2	Isolation	of	muscle-specific	proprioceptors	

	

Muscles	 of	 P0	mice	 anesthetized	 by	 hypothermia	were	 injected	with	 ctb555	

(List	Biological	Laboratories)	using	a	hand-pulled	capillary	attached	to	an	aspirator	

tube.	The	specificity	of	muscle	injections	was	confirmed	at	P1	by	muscle	dissection	

and	examination	under	a	fluorescence	microscope.	Following	ventral	laminectomy,	

DRG	 containing	 ctb555-filled	 neurons	were	 identified	 under	 a	microscope	 (MVX10	

MacroView,	 Olympus)	 and	 removed	 from	 the	 spinal	 column	 using	 a	 fine	 forceps.	

Isolated	 DRG	 were	 transferred	 to	 a	 microcentrifuge	 tube	 containing	 ACSF	 and	

dissociated	by	sequential	treatments	in	papain	and	collagenase/dispase	solutions	as	

described	previously	(Malin	et	al.,	2007).	Dissociated	cells	were	sparsely	plated	on	a	

transparent	Sylgard-lined	3	cm	dish	and	allowed	to	settle	for	10	minutes	at	4C.	

	

Cells	 positive	 for	both	YFP	and	 ctb555	were	manually	 isolated	 essentially	 as	

described	in	Hempel	et	al.,	2007.	Isolated	neurons	were	transferred	directly	into	an	

RNase-free	 microcentrifuge	 tube	 (SafeSeal	 Microcentrifuge	 Tubes;	 Sorenson	
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BioScience,	 Inc.)	 containing	 100	 μL	 lysis	 buffer	 (Arcturus	 PicoPure	 RNA	 Isolation	

Kit;	 Applied	 Biosystems)	 on	 ice.	 At	 the	 end	 of	 collection,	 the	 cells	 were	 lysed	 by	

incubation	for	30	minutes	at	42C.	Lysed	cell	samples	were	stored	at	-80C	until	use.		

	

8.3	RNA-sequencing	

8.3.1	cDNA	library	preparation	and	sequencing	

	

	 When	 necessary,	 individual	 collections	were	 pooled	 to	 generate	 25-30	 cell	

samples.	These	samples	were	concentrated	to	a	uniform	volume	suitable	for	input	to	

subsequent	 processing	 steps	 using	 a	 Speedvac	 vacuum	 concentrator	

(ThermoFisher).	 RNA	 was	 extracted	 from	 pooled	 samples	 using	 a	 PicoPure	 RNA	

isolation	kit	(Arcturus)	according	to	the	manufacturer’s	instructions,	and	cDNA	was	

synthesized	using	the	Ovation	RNA-Seq	System	V2	Kit	(Nugen).	cDNA	libraries	were	

constructed	at	the	Columbia	Genome	Center	using	the	Nextera	DNA	Sample	Prep	Kit	

(Illumina),	 and	 100	 bp	 paired-end	 reads	 were	 generated	 on	 an	 Illumina	 HiSeq	

sequencer	to	a	depth	of	25-30	million	reads	per	sample.	RNA-Seq	data	for	TA	and	GS	

samples	 was	 published	 in	 Poliak	 et	 al.,	 2016,	 and	 the	 corresponding	 FASTQ	 files	

have	been	deposited	in	the	GEO	repository	under	the	accession	number	GSE71028.	

	

8.3.2	Data	processing	

	

Raw	 FASTQ	 sequencing	 files	 were	 processed	 using	 the	 ExpressionPlot	

framework	(Friedman	and	Maniatis,	2011).	Illumina	adapter	sequences,	low	quality	
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bases,	and	primers	were	removed	from	the	dataset.	Reads	were	then	aligned	to	the	

mm9	mouse	 genome	 assembly	 and	 to	 a	 database	 of	 splice	 junctions	 using	 bowtie	

(Langmead	et	al.,	2009).	Aligned	reads	were	then	mapped	to	genes	annotated	in	the	

UCSC	 Genome	 Browser	 (Karolchik	 et	 al.,	 2014)	 and	 Ensembl	 (Aken	 et	 al.,	 2016)	

databases.	

	

8.3.3	Identification	of	differentially	expressed	genes	

	

Differentially	 expressed	 genes	 (DEGs)	 between	 proprioceptor	

subpopulations	were	extracted	by	multiple	pairwise	comparisons	in	ExpressionPlot	

using	 the	 DESeq	 package	 (Anders	 et	 al.,	 2010),	 which	 normalizes	 samples	 using	

median	 fold	 change	 and	 models	 read	 counts	 using	 the	 negative	 binomial	

distribution.	P-values	were	derived	using	Fisher’s	exact	test.	

	

DEGs	 identified	 in	 ExpressionPlot	 were	 filtered	 using	 the	 following	

parameters:	P<10-4,	 FC>5	 (for	 any	 pairwise	 comparison),	 and	RPKMmin=10	 (for	 at	

least	one	replicate	of	the	subpopulation	exhibiting	upregulated	expression.	Refer	to	

Table	2.1	for	a	complete	list	of	genes	meeting	these	criteria.	

	

8.3.4	Data	visualization	

	

	 Heat	 maps	 illustrating	 normalized	 DEG	 expression	 levels	 were	 generated	

from	.txt	files	using	the	following	R	code:	
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>	setwd(“/Users/username/desktop/foldername”)	
>	genes	<-	read.table(“filename.txt”,	header	=	TRUE)	
>	genes	
>	row.names(genes)	<-	genes$gene	
>	genes	<-	genes[,2:15]	
>	genes	
>	genes_matrix	<-	data.matrix(genes)	
>	my_palette	<-	colorRampPalette(c(“white”,	“darkblue”))(n=299)	
>	genes_heatmap	<-	heatmap(genes_matrix,	Rowv=NA,	Colv=NA,	col=my_palette,	
scale=”column”,	margins=c(5,10))	
	
where	 entities	 in	 bold	 must	 be	 specified	 by	 the	 user.	 Heatmaps	 were	 scaled	 to	

uniform	row	heights	using	Adobe	Illustrator.	

	

8.4	In	situ	hybridization	

	

For	 chromogenic	 in	situs,	 10-16	μM	cryostat	 sections	were	hybridized	with	

digoxigenin	 (DIG)-labeled	 probes	 as	 described	 previously	 (Schaeren-Wiemers	 and	

Gerfin-Moser,	 1993).	 Fluorescence	 in	 situ	 hybridization	 (FISH)	was	 performed	 on	

12-16	 μM	 cryostat	 sections	 hybridized	 with	 DIG-	 and	 fluorescein	 isothiocyanate	

(FITC)-labeled	probes	using	the	FITC/Cy5	TSA	Plus	Fluorescence	System	for	signal	

amplification	according	to	the	manufacturer’s	instructions	(PerkinElmer).	All	in	situs	

were	performed	on	fresh-frozen	tissue.		

	

Probe	templates	were	isolated	by	polymerase	chain	reaction	(PCR)	from	P1	

lumbar	 DRG	 or	 e13.5	 whole	 embryo	 cDNA	 libraries.	 cDNA	 libraries	 were	

synthesized	 using	 the	 SuperScript	 III	 First-Strand	 Synthesis	 System	 for	 RT-PCR	

(Invitrogen)	 from	 RNA	 purified	 using	 an	 Absolutely	 RNA	 Miniprep	 Kit	 (Agilent).	

Primers	were	sourced	from	the	Allen	Mouse	Brain	Atlas	(Lein	et	al.,	2007)	or	were	
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designed	 using	 the	 web-based	 Primer3	 program	 (http://bioinfo.ut.ee/primer3/).	

Reverse	 primers	 were	 appended	 with	 the	 T7	 polymerase	 binding	 sequence	 to	

facilitate	 probe	 synthesis.	 PCR	 products	 were	 gel	 purified,	 sequenced,	 and	 used	

directly	for	the	transcription	of	DIG-	or	FITC-labeled	(Roche)	probes.		

	

8.5	Immunohistochemistry	

	

	 Tissue	used	for	immunohistochemistry	was	fixed	for	2	h	or	overnight	in	4%	

paraformaldehyde	 in	 phosphate	 buffered	 saline	 (PBS).	 The	 tissue	 was	 then	

embedded	 in	 low-melt	 agarose	 for	 vibratome	 sectioning	 (30-100	 μM;	 Leica)	 or	

dehydrated	 in	 a	 30%	sucrose	 solution	 in	 0.1M	PB	 and	 embedded	 in	OCT	 (Tissue-

Tek)	 for	 cryosectioning	 (10-20	 μM;	 Bright).	 For	 cryosections,	

immunohistochemistry	was	performed	by	overnight	incubation	of	the	tissue	at	4C	in	

primary	 antibody	 diluted	 in	 PBS	 containing	 0.1%	 Triton	 X-100	 detergent	 (0.1%	

PBT).	The	tissue	was	then	washed	3x	in	PBS	and	incubated	with	secondary	antibody	

diluted	in	0.1%	PBT	for	1	h	at	room	temperature.	Sections	were	then	washed	in	PBS	

and	mounted	 in	 Vectashield	 (Vector	 Laboratories).	 For	 vibratome	 sections,	 tissue	

was	incubated	with	primary	antibodies	at	4C	for	24-72	h	in	0.3%	PBT.	The	sections	

were	 washed	 for	 5	 h	 in	 0.3%	 PBT	 and	 then	 incubated	 overnight	 at	 4C	 with	

secondary	antibodies	diluted	 in	0.3%	PBT.	Sections	were	 then	washed	 in	PBS	and	

mounted	in	Vectashield.	

	

	 The	 following	 primary	 antibodies	 were	 used	 in	 this	 work:	 rabbit	 anti-Pv	
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(1:5000,	Swant),	guinea	pig	anti-Islet1/2	(1/16000;	Dasen	et	al.,	2005),	rabbit	anti-

GFP	 (1:1500,	 Life	 Technologies),	 guinea	 pig	 anti-vGluT1	 (1:8000;	 Betley	 et	 al.,	

2009),	 rabbit	 anti-FoxP1	 (1/16000;	Dasen	 et	 al.,	 2008),	 chick	 anti-β-galactosidase	

(1:5000,	Abcam	ab9361),	goat	anti-cholera	toxin	B	subunit	(1:8000,	List	Biological	

Laboratories),	and	rabbit	anti-tetramethylrhodamine	(1:1000,	Invitrogen).		

	

	 Secondary	antibodies	were	generated	in	donkey	and	conjugated	to	FITC,	Cy3,	

or	 Cy5	 (Jackson	 Immunoresearch	 Laboratories).	 Those	 conjugated	 to	 FITC	 or	 Cy5	

were	diluted	1:500	and	those	conjugated	to	Cy3	were	diluted	1:1000.	

	

8.6	X-gal	staining	

	

Sections	 of	 β-gal-expressing	 tissue	 were	 post-fixed	 in	 4%	 formaldehyde	

(Sigma)	 and	 immersed	 in	 X-Gal	 staining	 solution	 (0.02%	 Igepal,	 0.01%	 sodium	

deoxychoate,	 5	mM	 potassium	 ferricyanide,	 5	mM	 potassium	 ferrocyanide,	 and	 2	

mM	MgCl2	diluted	in	0.1M	PBS,	pH	7.5	and	supplemented	with	1	mg/mL	X-Gal	just	

prior	to	use)	overnight	at	37C	in	the	dark.	

	

8.7	Connectivity	assays	

	

	 The	presence	of	misprojections	from	TA	proprioceptors	to	GS	motor	neurons	

in	 genetic	 knockout	 lines	 was	 assessed	 essentially	 as	 described	 by	 Sürmeli	 et	 al.	

(2011).	 For	vstm2b	 knockout	mice,	 unconjugated	 ctb	was	 injected	 into	TA	muscle	
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and	rhodamine-dextran	(rh-dex)	was	injected	into	GS	muscle	at	P3-P4,	the	earliest	

timepoint	 GS	 injection	 specificity	 could	 be	 achieved.	 After	 four	 days,	 the	 animals	

were	 sacrificed	 and	 prepared	 for	 vibratome	 sectioning	 (70	 μM).	 Sections	 were	

immunostained	for	ctb,	rh-dex	(TMR),	and	vGluT1.	This	procedure	was	repeated	for	

cdh13	 knockout	 (Cdh13::mGFP)	 mice,	 but	 mGFP	 labeling	 of	 TA/EDL/PL	 sensory	

boutons	was	 used	 in	 place	 of	 ctb	 backfill.	 Correspondingly,	 sensory	 endings	were	

immunostained	for	GFP	rather	than	ctb	protein.	

	

	 Quantification	 of	 vGluT1+	 sensory	 boutons	 with	 and	 without	 ctb	 or	

Cdh13::mGFP	expression	on	retrogradely	labeled	motor	neuron	somata	and	~75	μM	

of	 the	 proximal	 dendritic	 arbor	 was	 performed	 for	 Z-stack	 images	 using	 Zen	

software	(Zeiss).	

	

8.8	Imaging	

	

	 Fluorescence	 images	 were	 collected	 on	 a	 Zeiss	 LSM	 510	 Meta	 confocal	

microscope.	Bright	field	images	were	captured	on	an	Olympus	microscope.	

	

8.9	Statistical	Analysis	

	

	 Statistical	 analyses	 were	 performed	 using	Microsoft	 Excel.	 Comparisons	 of	

gene	 expression	 between	DRG	 and	 experimental	 conditions	were	made	 using	 the	
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one-tailed	Student’s	t-test	for	unequal	variance;	error	bars	were	represented	as	the	

standard	error	of	the	mean	(SEM).	
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