Academic Commons

Theses Doctoral

Architectures, Antennas and Circuits for Millimeter-wave Wireless Full-Duplex Applications

Dinc, Tolga

Demand for wireless network capacity keeps growing exponentially every year, as a result a 1000-fold increase in data traffic is projected over the next 10 years in the context of 5G wireless networks. Solutions for delivering the 1000-fold increase in capacity fall into three main categories: deploying smaller cells, allocating more spectrum and improving spectral efficiency of wireless systems. Smaller cells at RF frequencies (1-6GHz) are unlikely to deliver the demanded capacity increase. On the other hand, millimeter-wave spectrum (frequencies over 24GHz) offers wider, multi-GHz channel bandwidths, and therefore has gained significant research interest as one of the most promising solutions to address the data traffic demands of 5G.
Another disruptive technology is full-duplex which breaks a century-old assumption in wireless communication, by simultaneous transmission and reception on the same frequency channel. In doing so, full-duplex offers many benefits for wireless networks, including an immediate spectral efficiency improvement in the physical layer. Although FD promises great benefits, self-interference from the transmitter to its own receiver poses a fundamental challenge. The self-interference can be more than a billion times stronger than the desired signal and must be suppressed below the receiver noise floor. In recent years, there has been some research efforts on fully-integrated full-duplex RF transceivers, but mm-wave fully-integrated full-duplex systems, are still in their infancy.
This dissertation presents novel architectures, antenna and circuit techniques to merge two exciting technologies, mm-wave and full-duplex, which can potentially offer the dual benefits of wide bandwidths and improved spectral efficiency. To this end, two different antenna interfaces, namely a wideband reconfigurable T/R antenna pair with polarization-based antenna cancellation and an mm-wave fully-integrated magnetic-free non-reciprocal circulator, are presented. The polarization-based antenna cancellation is employed in conjunction with the RF and digital cancellation to design a 60GHz full-duplex 45nm SOI CMOS transceiver with nearly 80dB self-interference suppression. The concepts and prototypes presented in this dissertation have also profound implications for emerging applications such as vehicular radars, 5G small-cell base-stations and virtual reality.

Files

  • thumnail for Dinc_columbia_0054D_14613.pdf Dinc_columbia_0054D_14613.pdf application/pdf 13.5 MB Download File

More About This Work

Academic Units
Electrical Engineering
Thesis Advisors
Krishnaswamy, Harish
Degree
Ph.D., Columbia University
Published Here
May 1, 2018
Academic Commons provides global access to research and scholarship produced at Columbia University, Barnard College, Teachers College, Union Theological Seminary and Jewish Theological Seminary. Academic Commons is managed by the Columbia University Libraries.