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ABSTRACT

On Fourier-Mukai type functors

Alice Rizzardo

In this thesis we study functors between bounded derived categories of sheaves and how they can be

expressed in a geometric way, namely whether they are isomorphic to a Fourier-Mukai transform.

Specifically, we describe the behavior of a functor between derived categories of smooth projective

varieties when restricted to the derived category of the generic point of the second variety, when

this last variety is a curve, a point or a rational surface. We also compute in general some sheaves

that play the role of the cohomology sheaves of the kernel of a Fourier-Mukai transform and are

then able to exhibit a class of functors that are neither faithful nor full, that are isomorphic to a

Fourier-Mukai transform.
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Chapter 1

Introduction

Derived categories were first introduced in 1963 by Verdier [Ver77] [Ver96], who carried out ideas

by Grothendieck. They were initially designed with the purpose of formulating and proving an

extension of Serre’s duality theorem [Ser54] which was accomplished in [Gro63] and published in

[Har66].

Derived categories have since established themselves as a fundamental tool in algebraic geometry

as well as in a number of other disciplines, including the study of systems of partial differential

equations, microlocal analysis, and representation theory of Lie algebras and algebraic groups.

Concerning algebraic geometry, classical applications include work of Beilinson [Bei78] and

Berstein-Gelfand [Ber78] on relating coherent sheaves on projective space to representations of

certain finite dimensional algebras, as well as work of Rickard on Morita theory [Ric89][Ric91].

Interest in recent years has been renewed by applications to birational geometry in relation to

the minimal model program [Kaw05][Kaw06], and theoretical physics, in particular to string theory

[KL02].

Grothendieck’s key observation was that the constructions of homological algebra don’t actually

just yield cohomology groups, and in fact passing to cohomology means forgetting a large amount of

information. What we actually obtain are complexes that are well-defined up to quasi-isomorphism,

so that two complexes should be considered the same if there is a map between them inducing an

isomorphism on all cohomology groups.

The derived category D(A ) of an abelian category A is thus obtained by taking the category

K(A ) of complexes of objects of A , where morphisms are chain maps modulo the homotopy
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equivalence relation, and then inverting quasi-isomorphisms. What we obtain in this way is not

an abelian category, but it is a triangulated category, i.e. a category with a shift functor and

a collection of exact triangles satisfying a number of axioms. Moreover, if our category A has

enough injectives, given a left exact functor F we can define a corresponding derived functor RF

on complexes of D(A ) bounded from below: this is done by first taking a complex of injectives

which is quasi-isomorphic to our original complex, and then applying F to this complex of injectives.

The same can be done with right exact functors and complexes of projectives.

The Fourier-Mukai transform was introduced in 1981 by Mukai, in his paper [Muk81], as a way

to get an equivalence between the derived category of an abelian variety X and that of its dual X̂ .

To do that, Mukai defined the “Fourier functor” to be

RS (·) := Rp2∗(P
L
⊗ Lp∗1(·))

where P is the Poincaré bundle on X × X̂ and p1 : X × X̂ → X, p2 : X × X̂ → X̂ . This duality

was used as a tool to study Picard sheaves on X.

Interest sparked from this to investigate equivalences between derived categories of any scheme.

This is a very interesting question to ask especially in light of the fact that, by Bondal-Orlov

[BO01], if X and Y are smooth projective varieties with ample or anti-ample canonical sheaf and

Db
Coh(X) ∼= Db

Coh(Y ) it then follows that there exists an isomorphism X ∼= Y .

In his seminal paper [Orl97], Orlov showed that any equivalence between the bounded derived

categories of two smooth projective varieties is isomorphic to a Fourier-Mukai transform, i.e. a

functor as above where instead of P we can now have any complex E in the bounded derived

category of the product:

Theorem 1.0.1. [Orl97] Let X and Y be smooth projective varieties over an algebraically closed

field k. Consider an exact functor

F : Db
Coh(X) → Db

Coh(Y )

If F is fully faithful and has a right adjoint, then there exists an object E ∈ Db
Coh(X×Y ) such that

F is isomorphic to the Fourier-Mukai transform with kernel E,

ΦE(·) := Rp2∗(E
L
⊗ Lp∗1(·))
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This result has a tremendous variety of applications. First of all it can be applied to the study

of moduli problems, for instance moduli spaces of stable sheaves on K3 surfaces, see for example

Mukai [Muk87] and Orlov [Orl97]. More recent work has been carried out by Bridgeland and

others in birational geometry [BM02], [BKR01]. Another area of application is given by the study

of Bridgeland stability conditions on the bounded derived category of abelian and K3 surfaces

[Yos01].

Orlov’s result has been generalized by Ballard [Bal] to the case where X and Y are projective

schemes over a field, and by Lunts and Orlov in [LO01] for the case of X and Y quasi compact and

separated and a fully faithful functor between the unbounded derived categories of X and Y (this

requires X to have enough locally free sheaves).

One can then ask what happens when the functor we are considering is not fully faithful, namely,

will the functor still be isomorphic to a Fourier-Mukai transform in general? If that is the case,

this would allow us to study its action on singular cohomology [Orl97] and Hochschild cohomology

groups, and allow us to deform it along with the varieties [Cal03].

However, not much in known in this direction. For all the functors that can be expressed

geometrically, we know that Orlov’s result still holds even when said functors are not equivalences.

In general, in the algebraic geometric setting there are no known examples of a functor which is

not isomorphic to a Fourer-Mukai transform. The only example known by the author of an exact

functor F : Db
Coh(X) → Db

Coh(Y ) that is not of Fourier-Mukai type occurs in the non-algebraic

case and is obtained extending to the derived category the equivalence Coh(X) ∼= Coh(Y ) obtained

in [Ver08] when X and Y are generic non-projective K3 surfaces.

On the other hand, the uniqueness of the kernel does not hold in general: in fact for every elliptic

curve X over an algebraically closed field there exists E1, E2 ∈ Db(X ×X) such that E1 6= E2 but

ΦE1
∼= ΦE2

, see [CS10].

In his paper [Orl97], Orlov speculated that the result should actually hold for any exact functor

between bounded derived categories of smooth projective varieties. Orlov’s proof however makes

extensive use of “ample sequences” that mostly behave well only when the functor is full. A

somewhat stronger result was obtained by Canonaco and Stellari:

Theorem 1.0.2 ([CS07]). Let X and Y be smooth projective varieties over a field. Consider an
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exact functor F : Db
Coh(X) → Db

Coh(Y ) such that for any two sheaves F and G ∈ Coh(X)

HomDb
Coh

(Y )(F (F ), F (G )[j]) = 0 if j < 0 (1.1)

Then there exists a unique object E ∈ Db
Coh(X×Y ) such that F is isomorphic to the Fourier-Mukai

transform with kernel E.

The condition on the functor in the theorem is slightly weaker than fullness. This is however

a bittersweet result: in fact in their later paper [COS11], together with Orlov, they showed that

in the smooth projective case over a field of characteristic zero fullness in fact implies faithfulness.

Therefore, if we want to further generalize Orlov’s theorem, a whole new approach is needed.

In Chapter 2 we present a generalization of a theorem of Bondal and Van den Bergh [BVdB03]

concerning the representability of a functor Db
Coh(X) → modk, where X is defined over the field

k, to the case where the functor is to modK where K is the function field of a curve or of P2 over

k. This will allow us to describe the behavior of a functor between derived categories of smooth

projective varieties when restricted to the generic point of the second variety, if the latter has

dimension 0 or 1 or is a rational surface over k.

In Chapter 3 we give an explicit procedure that given a functor F : Db
Coh(X) → Db

Coh(Y )

computes sheaves on X × Y that are equal to the cohomology sheaves of the kernel whenever the

functor is a Fourier-Mukai transform. These sheaves seem to have in general good properties that

indicate that the functor behaves in many ways like a Fourier-Mukai transform even when we are

unable to prove it is such. By restricting to the case of dim(X) = 1 we can actually exhibit a class

of functors that are not full, nor faithful, nor do they satisfy condition 1.1, and for which we can

still find an isomorphism to a Fourier-Mukai transform.
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Chapter 2

Representability of cohomological

functors over extension fields

2.1 Introduction

Let X be a projective variety over an algebraically closed field k. In this chapter we will generalize

a result of Orlov and Van den Bergh on the representability of a functor H : Db
Coh(X) → modk to

the case of an extension field k ⊂ L:

Theorem 2.1.1. Let X be a smooth projective variety over a field k. Let L be a finitely gener-

ated separable field extension of k with trdegkL ≤ 1, or a purely transcendental field extension of

transcendence degree 2 over k. Consider a contravariant, cohomological, finite type functor

H : Db
Coh(X) → modL

Then H is representable by an object E ∈ Db
Coh(XL), i.e. there exists E such that for every

C ∈ Db
Coh(X) we have

H(C) = MorDb
Coh

(XL)(j
∗C,E)

where j∗ : XL → X is the base change morphism.

This will allow us to tackle the question of whether a functor between the bounded derived

categories of two smooth projective varieties is representable by a Fourier-Mukai transform. We

remind the reader of the definition of Fourier-Mukai transform:
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Definition 2.1.2. Given two smooth projective varieties X, Y and an object E ∈ Db
Coh(X × Y ),

the Fourier-Mukai transform associated to E is defined as

ΦE(·) := Rp2∗(E
L
⊗ Lp∗1(·))

where p1 : X × Y → X and p2 : X × Y → Y are the projection morphisms.

When dim Y ≤ 1 or Y is a rational surface we can answer positively to the question above after

restricting to the generic point of Y :

Theorem 2.1.3. Let X, Y be a smooth projective varieties, where dimY ≤ 1 or Y is a rational

surface over k. Consider a covariant exact functor

H : Db
Coh(X) → Db

Coh(Y )

let i1 : η → Y the inclusion of the generic point of Y . Then there exists an object A ∈ Db
Coh(X×Y )

such that

i∗1 ◦H = i∗1 ◦ ΦA.

2.2 The Base Change Category

In what follows, an abelian category A does not automatically have any limits or colimits apart

from the finite ones.

Given a field K, we will denote with modK the category of finite dimensional K-vector spaces,

whereas ModK will denote the category of possibly infinite-dimensional K-vector spaces. D(A)

will denote the derived category of an abelian category A.

Given an R-linear abelian category A and an inclusion of rings R →֒ S, we can define the base

change category AS as in [LVdB06, §4]:

Definition 2.2.1. The category AS is given by pairs (C, ρC) where C ∈ Ob(A) and ρC : S →

HomA(C,C) is an R-algebra map such that the composition R → S → HomA(C,C) gives back

the R-algebra structure on A. The morphisms in AS are the morphisms in A compatible with the

S-structure.
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Definition 2.2.2. For each element C ∈ A, the functor

C ⊗R − : mod(R) → A

is the unique finite colimit preserving functor with C ⊗R = C.

This gives for each finitely presented R-algebra S a functor

−⊗ S : A → AS

to the base change category AS.

Proposition 2.2.3. [LVdB06, Proposition 4.3] The functor − ⊗ S is left adjoint to the forgetful

functor

forget : AS → A

(C, ρC) 7→ C

Whenever the context is clear, given an object B ∈ AS, we will still denote by B the corre-

sponding object of A obtained via the forgetful functor.

For the purposes of this discussion we will need a more general setting for base change - specif-

ically, we need to be able to talk about base change for a bigger category of rings and not just the

ones that are finitely presented over the base. Let us extend Definition 2.2.2 as follows:

Definition 2.2.4. Let A be an R-linear abelian category satisfying AB5. Using the fact that any

R-module is the filtered colimit of finitely presented R-modules, we can extend definition 2.2.2 to

the general case of

−⊗ S : A → AS

for any R-algebra S.

The notion of base change category can be extended to the case of the derived category D(A)

of an abelian R-linear category A in the obvious way:

Definition 2.2.5. Given an inclusion of rings R →֒ S, the category D(A)S is given by pairs (C, ρC )

where C ∈ Ob(D(A)) and ρC : S → HomD(A)(C,C) is an R-algebra map such that the composition

R → S → HomD(A)(C,C) gives back the R-algebra structure on D(A). The morphisms in D(A)S

are the morphisms in D(A) compatible with the S-structure.
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Again, we have a notion of tensor product:

Definition 2.2.6. Let R be a ring, let A be an R-linear abelian category satisfying AB5, and let

M• be a complex of objects in A:

M• = . . .→M i−1 di−1

−−−→M i di

−→M i+1 → . . .

Let S be a ring, with a map R →֒ S. Then we can define M• ⊗ S, as an object of D(AS), as

M• ⊗ S = . . .→M i−1 ⊗ S
di−1⊗1
−−−−→M i ⊗ S

di⊗1
−−−→M i+1 ⊗ S → . . .

The complex M• ⊗ S can also be considered as an object of D(A )S if needed.

Remark 2.2.7. Suppose that A is a k-linear abelian category satisfying AB5 and k ⊂ K is an

extension of fields. In the situation of definition 2.2.4 and 2.2.6, similarly to the case of 2.2.3, it

is easy to show that again tensoring with K is left adjoint to the forgetful functor

• as a functor A → AK;

• as a functor D(A) → D(AK);

• as a functor D(A) → D(A)K .

Remark 2.2.8. Let R be a ring, let A be an R-linear abelian category satisfying AB5, and let M•

be a complex of objects in A,

M• = . . .→M i−1 di−1

−−−→M i di

−→M i+1 → . . .

Let S ⊂ R a multiplicative system. In this case M• ⊗R S
−1R, as an object of D(A ), is the same

as

. . .→ colim
f∈S

f−1M i−1 di−1

−−−→ colim
f∈S

f−1M i di

−→ colim
f∈S

f−1M i+1 → . . .

where colimf∈S f
−1M i is obtained by taking for every f ∈ S a copy of M i and as morphisms

only the maps

f−1M i −→ (fg)−1M i

given by multiplication by g : M i →M i.
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Lemma 2.2.9. In the situation of the remark above, if for every element f ∈ S the multiplication

by f is a quasi-isomorphism of M•, then the map

M• →M• ⊗R S
−1R

is a quasi-isomorphism in D(A).

Proof. Since taking cohomology commutes with directed colimits we have

H i(M• ⊗R S
−1R) = colim

f∈S
f−1H i(M•)

but since multiplication by any g ∈ S is a quasi-isomorphism we get

f−1H i(M•)
∼=
g

// (fg)−1H i(M•)

hence the cohomology of M• ⊗R S
−1R consists of only one copy of H i(M•), and the map M• →

M• ⊗R S
−1R is a quasi- isomorphism.

2.3 A result on base change for derived categories

The purpose of this section is to analyze the functor D(AK) → D(A)K that sends an object in

D(AK) to the same object considered as an object of D(A), together with its K-action. Specifically,

we will prove the following:

Theorem 2.3.1. Let A be a k-linear abelian category satisfying AB5, where k is a field. Let

K = k(T ) or K = k(T, T ′). Then the functor

D(AK) → D(A)K

C• 7→ (C•, ρC)

is essentially surjective, where ρC : K → Aut(C•) is the obvious map.

Moreover, if L is a finite separable extension of K = k(T ) with L = K(α) = K[T ]/P (T ) then we

can lift an object (C•, ρC) ∈ D(A )L to an object N• of D(AK) endowed with a map ψ̃ ∈ End(N•)

such that P (ψ̃) is zero on all cohomology groups, and the action of ψ̃ on N• corresponds to the

action of α on C•.
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This comes down to lifting the actions of T and T ′ on a complex C ∈ D(A)K to actions coming

from morphisms in A that commute with each other.

Lemma 2.3.2. Let A be a k-linear abelian category satisfying AB5, where k is a field. Let L• be

a complex in D(A). Let ϕ ∈ HomD(A)(L
•, L•). Then there exists a complex M• ∈ D(Ak[T ]) and a

quasi-isomorphism L• →M• as objects of D(A) such that the action of multiplication by T on M•

corresponds to the action of multiplication by ϕ on L•.

Proof. The map ϕ : L• → L• in D(A) corresponds to a diagram of complexes in D(A)

Q•

u

}}||
||

||
|| ϕ′

!!B
BB

BB
BB

B

L•
ϕ //_______ L•

where u is a quasi-isomorphism.

Let L•[T ] = L• ⊗k k[T ] as a complex in D(Ak[T ]). Consider the morphism ϕ ⊗ 1 − 1 ⊗ T :

L•[T ] → L•[T ] in D(Ak[T ]). This can be represented by actual maps of complexes

Q•[T ]

u⊗1

{{vvv
vv

vv
vv ϕ′⊗1−u⊗T

##HH
HH

HH
HH

H

L•[T ]
ϕ⊗1−1⊗T //_________ L•[T ]

The map ϕ′ ⊗ 1 − u ⊗ T is injective on all cohomology objects: to prove this we need to show

that ϕ′ ⊗ 1 − u⊗ T : Hr(Q•[T ]) → Hr(L•[T ]) is injective for every r.

Let α ∈ Hr(Q•[T ]), α 6= 0, then

α =
n
∑

i=0

αiT
i

where all of the αi are different from zero in Hr(Q•). If

0 = (ϕ′ ⊗ 1 − u⊗ T )α =

n
∑

i=0

ϕ′(αi)T
i −

n
∑

i=0

u(αi)T
i+1

then the only term of degree n + 1 in T , u(αn)T
n+1, must be zero in Hr(L•), hence u(αn) = 0,

hence αn = 0 since u is a quasi-isomorphism. This contradicts our assumption that αi 6= 0 ∀i, and

so this proves injectivity.

Now set

M• = Cone(Q•[T ]
ϕ′⊗1−u⊗T
−−−−−−−→ L•[T ])
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Then we have a triangle

Q•[T ]
ϕ′⊗1−u⊗T
−−−−−−−→ L•[T ] −→M• −→ (Q•[T ])[1] (2.1)

and by injectivity of the map ϕ′⊗1−u⊗T on the cohomology objects we get a short exact sequence

in cohomology

0 → Hr(Q•[T ])
ϕ′⊗1−u⊗T
−−−−−−−→ Hr(L•[T ]) −→ Hr(M•) → 0

hence we get

Hr(M•) = Coker(Hr(Q•[T ])
ϕ′⊗1−u⊗T
−−−−−−−→ Hr(L•[T ]))

for any r.

Now consider the composition

L• −→ L•[T ] −→M•

This map is a quasi-isomorphism; to prove this we just need to show that under the map above,

Hr(L•) ∼= Coker(Hr(Q•[T ])
ϕ′⊗1−u⊗T
−−−−−−−→ Hr(L•[T ])) for every r.

Proceed as follows: first of all, considered as a sub-object of Hr(L•[T ]) via the obvious map

L• → L•[T ], Hr(L•) is not in the image of ϕ′ ⊗ 1 − u ⊗ T , since, for any element α =
∑n

i=1 αiT
i

of Hr(Q•[T ]), its image
∑n

i=1 ϕ(αi)T
i −

∑n
i=0 u(αi)T

i+1 is either zero or has a nonzero term of

positive degree. To prove that any term of positive degree β =
∑n

i=1 βiT
i is in the image up to an

element of degree zero, notice that it can be written as an element of lower degree plus an element

of the image as follows:

n
∑

i=0

βiT
i =

n
∑

i=0

βiT
i − (ϕ′ ⊗ 1 − u⊗ T )(u−1(βn)T

n−1) + (ϕ′ ⊗ 1 − u⊗ T )(u−1(βn)T
n−1) =

=
n
∑

i=0

βiT
i − ϕ′(u−1(βn))T

n−1 + βnT
n + (ϕ′ ⊗ 1 − u⊗ T )(u−1(βn)T

n−1)

=
n−1
∑

i=0

βiT
i − ϕ′(u−1(βn))T

n−1 + (ϕ′ ⊗ 1 − u⊗ T )(u−1(βn)T
n−1)

Hence we found a complex M• ∈ D(Ak[T ]) which is quasi-isomorphic to L• as an object of D(A);

moreover the action of multiplication by ϕ on L• corresponds to the action by multiplication by T

on M•.

Lemma 2.3.3. Let A be a k-linear abelian category satisfying AB5, where k is a field. Let L• be

a complex in D(A).
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Let ϕ ∈ HomD(A)(L
•, L•) such that f(ϕ) is an isomorphism for all f ∈ k[T ] monic. Then there

exists a complex N• ∈ D(Ak(T )) and a quasi-isomorphism L• → N• as objects of D(A) such that

the action of multiplication by T on N• corresponds to the action by multiplication by ϕ on L•.

Likewise, let ϕ,ψ ∈ HomD(A)(L
•, L•) such that ϕ and ψ commute with each other and such

that f(ϕ,ψ) is a quasi-isomorphisms for all f ∈ k[T, T ′] nonzero. Then there exists a complex

N• ∈ D(Ak(T,T ′)) and a quasi-isomorphism j : L• → N• as objects of D(A) such that the action

of multiplication by T (resp. T ′) on N• corresponds to the action by multiplication by ϕ (resp. ψ)

on L•.

Proof. By Lemma 2.3.2 we can find a complex M• ∈ Ak[T ] and a quasi-isomorphism j : L• →M•

as objects of D(A) such that the action of multiplication by T on M• corresponds to the action by

multiplication by ϕ on L•. This implies that multiplication by f(T ) gives a quasi-isomorphism of

M• for all f monic.

Now let N• := M•⊗k[T ] k(T ) as in Definition 2.2.6 above. This is a complex in D(Ak(T )) and it

is quasi-isomorphic to L• as objects of D(A), by Lemma 2.2.9. The action of ϕ on L• corresponds

to the action of T on N•.

For the second case, again by Lemma 2.3.2 we can find a complex M• ∈ Ak[T ] and a quasi-

isomorphism j : L• → M• as objects of D(A) such that the action of multiplication by T on M•

corresponds to the action by multiplication by ϕ on L•.

Moreover, we have an exact triangle

L•[T ]
ϕ⊗1−1⊗T
−−−−−−→ L•[T ] −→M•

in D(Ak[T ]), see (2.1).

Then, since ϕ and ψ commute with each other, we get a commutative diagram in D(Ak[T ])

L•[T ]
ϕ⊗1−1⊗T //

ψ⊗1
��

L•[T ]

ψ⊗1
��

L•[T ]
ϕ⊗1−1⊗T // L•[T ]

By the axioms of the derived category we can find a map ψ̃ on M• so that the following diagram
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commutes:

L•[T ]
ϕ⊗1−1⊗T //

ψ⊗1
��

L•[T ]

ψ⊗1
��

// M•

ψ̃

��

// (L•[T ])[1]

ψ⊗1
��

L•[T ]
ϕ⊗1−1⊗T // L•[T ] // M• // (L•[T ])[1]

As before we can then construct P • = M• ⊗k[T ] k(T ), which is quasi-isomorphic to M• and hence

we get a corresponding map ψ̃ : P • → P •.

So we are in the following situation: we have a complex P • ∈ D(Ak(T )) and a map ψ̃ : P • → P •

so that f(ψ̃) is a quasi-isomorphism for all f ∈ k(T )[T ′] monic. By Lemma 2.3.2 again, we get a

complex Q• ∈ D((Ak(T ))k(T )[T ′]) = D(Ak(T )[T ′]) which is quasi-isomorphic to P •.

Then define

N• := Q• ⊗k(T )[T ′] k(T, T
′)

By Lemma 2.2.9, since f(T,ψ) is a quasi-isomorphisms for all nonzero f ∈ k(T )[T ′], the complex

N• ∈ D(Ak(T,T ′)) is quasi isomorphic to Q• as objects ofD(Ak(T )[T ′]) hence it is quasi-isomorphic to

L• as objects of D(A). The action of ϕ and ψ correspond to the action of T and T ′ respectively.

Lemma 2.3.4. Let A be a k-linear abelian category satisfying AB5, where k is a field. Let L• be

a complex in D(A).

Let ϕ,ψ ∈ HomD(A)(L
•, L•) such that ϕ and ψ commute with each other and such that f(ϕ)

is a quasi-isomorphisms for all f ∈ k[T ] monic and there exists an irreducible P ∈ k[T, T ′] with

P (ϕ,ψ) = 0.

Then there exists a complex N• ∈ D(Ak(T )) and a quasi-isomorphism j : L• → N• as objects of

D(A) such that the action of multiplication by T on N• corresponds to the action by multiplication

by ϕ on L•. Moreover there is a morphism ψ̃ ∈ End(N•) such that the action of ψ on L• corresponds

to the action of ψ̃ on N• and P (T, ψ̃) induces the zero map on all cohomology groups of N•.

Proof. By Lemma 2.3.2 we can find a complex M• ∈ Ak[T ] and a quasi-isomorphism j : L• →M•

as objects of D(A) such that the action of multiplication by T on M• corresponds to the action by

multiplication by ϕ on L•.

Moreover, we have an exact triangle

L•[T ]
ϕ⊗1−1⊗T
−−−−−−→ L•[T ] −→M•
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in D(Ak[T ]), see (2.1).

Then, since ϕ and ψ commute with each other, we get a commutative diagram in D(Ak[T ])

L•[T ]
ϕ⊗1−1⊗T //

ψ⊗1
��

L•[T ]

ψ⊗1
��

L•[T ]
ϕ⊗1−1⊗T // L•[T ]

By the axioms of the derived category we can find a map ψ̃ on M• so that the following diagram

commutes:

L•[T ]
ϕ⊗1−1⊗T //

ψ⊗1
��

L•[T ]

ψ⊗1
��

// M•

ψ̃

��

// (L•[T ])[1]

ψ⊗1
��

L•[T ]
ϕ⊗1−1⊗T // L•[T ] // M• // (L•[T ])[1]

As before we can then construct P • = M• ⊗k[T ] k(T ), which is quasi-isomorphic to M• and hence

we get a corresponding map ψ̃ : P • → P • and the action of ψ on L• corresponds to the action of

ψ̃ on P •.

Finally, P (T, ψ̃) = 0 on cohomology since P (T,ψ ⊗ 1) = 0 on L•[T ].

Now that we have lifted the actions of the two variables T and T ′ we are almost done in lifting

the action of the whole k[T, T ′] because of the following lemma:

Lemma 2.3.5. Let enD(A) be the category whose

1. Objects are pairs (E,ϕ1, . . . , ϕn) where E ∈ Ob(D(A)), ϕi ∈ EndD(A)(E) for all i, and ϕi

commutes with ϕj for all i, j;

2. Morphisms a : (E,ϕ1, . . . , ϕn) → (E′, ϕ′
1, . . . , ϕ

′
n) are elements a ∈ HomD(A)(E,E

′) such that

a ◦ ϕi = ϕ′
i ◦ a.

Consider the full subcategory enD′(A) ⊂ enD(A) whose objects consist of those pairs (E,ϕ1, . . . , ϕn)

such that for every nonzero f ∈ k[T1, . . . , Tn] the map f(ϕ1, . . . , ϕn) : E → E is an isomorphism in

D(A).

The category D(A)k(T1,...,Tn) is equivalent to the category enD′(A). The equivalence is given by

the functor

D(A)k(T1,...,Tn) −→ enD′(A), (E, ρE) 7−→ (E, ρE(T1), . . . , ρE(Tn)).
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Proof. The equivalence is given by the inverse functor

enD′(A) −→ D(A)k(T1,...,Tn)

(E,ϕ1, . . . , ϕn) 7→



E,
ρ : k(T1, . . . , Tn) → Aut(E)

Ti 7→ ϕi





We are now ready to prove Theorem 2.3.1:

Proof of Theorem 2.3.1. By Lemma 2.3.5, we just need to show that the functors

D(AK) → e1D′(A)

C• 7→ (C•, ·T )

and

D(AK) → e2D′(A)

C• 7→ (C•, ·T, ·T ′)

are essentially surjective.

Let (E,ϕ) ∈ e1D′(A). Then by Lemma 2.3.3 there exists N• ∈ Ak(T ) such that N is quasi

isomorphic to E and the action of ϕ on E• corresponds to the action of T on N•. This proves the

case i = 1.

Similarly, let (E,ϕ,ϕ′) ∈ e2D′(A). Then by Lemma 2.3.3 there exists N• ∈ Ak(T,T ′) such that

N is quasi isomorphic to E and the action of ϕ and ϕ′ on E• correspond to the action of T and T ′

respectively on N•. This proves the case i = 2.

The last part follows from Lemma 2.3.4.

Let us now apply this theorem to the case A = QCoh(X), whereX is a quasi-compact, separated

scheme over a field k. This is possible since QCoh(X) satisfies AB5. Before we do that, however,

we need to prove a technical lemma:

Lemma 2.3.6. Let k ⊂ K be a field extension, X a quasi-compact and separated scheme. Let

XK
j
→ X the base change morphism. Then there is an equivalence of categories

DQCoh(XK)
ψ

−→ D(QCoh(X)K)
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under this equivalence, the functors

Lj∗, · ⊗K : DQCoh(X) → D(QCoh(XK))

and

Rj∗, forget : DQCoh(XK) → D(QCoh(X))

coincide.

In other words,

Rj∗ = forget ◦ ψ : D(QCoh(X)K) → DQCoh(X)

ψ ◦ Lj∗ = −⊗K : DQCoh(X) → (DQCoh(X))K

This is summarized in the following diagram:

DQCoh(X)

⊗K




Lj∗

vv

(DQCoh(X))K

forget

JJ

DQCoh(XK) = D(QCoh(XK))

ψ

OO
j∗

66

Proof. There is an equivalence of categories induced by j∗ between quasi-coherent OXK
-modules

and quasi-coherent j∗OXK
-modules on X. But j∗OXK

= OX ⊗K and an (OX ⊗K)-module is the

same thing as an OX -module with a K-structure which is compatible with its k-structure.

Hence we get an equivalence

ψ : QCoh(XK) → QCoh(X)K

C 7→ (j∗C, ρC)

where ρC is the composition K → OX ⊗K → End(j∗C).

Under this equivalence, the two functors j∗ and “forget” coincide; moreover, always under the

same equivalence, both j∗ and −⊗K are left adjoint to j∗, hence they also coincide.

Thus all of this also holds for the corresponding derived categories; hence the statement follows

from the fact that for a quasi compact, separated schemeX we haveDQCoh(X) = D(QCoh(X)).
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Corollary 2.3.7. Let X be a quasi compact, separated scheme over a field k.

Let K = k(T ) or K = k(T, T ′).

The map

DQCoh(XK) −→ (DQCoh(X))K

C• 7→ (forget(C•), ρC)

is essentially surjective, where ρC is the obvious K-structure on C.

Moreover, if L is a finite separable extension of K = k(T ) with L = K(α) = K[T ]/P (T ) then

we can lift an object (C•, ρC) ∈ (DQCoh(X))L to an object N• of DQCoh(XK) endowed with a map

ψ̃ ∈ End(N•) such that P (ψ̃) induces the zero map on all cohomology groups of N•.

Proof. By Lemma 2.3.6, there is an equivalence between DQCoh(XK) and D(QCoh(X)K), hence it

is sufficient to show that the map

D(QCoh(X)K) → (D(QCoh(X)))K

C• 7→ (forget(C•), ρC)

is essentially surjective.

Let A = QCoh(X). This category satisfies AB5, hence theorem 2.3.1 applies in this case.

2.4 A representability theorem for derived categories

The results of the previous section will become handy to study functors from Db
Coh(X), where X

is defined over a field k, to a vector space over a bigger field in light of the following theorem:

Theorem 2.4.1. Let k be a field, A be a k-linear abelian category satisfying AB5, T = D(A ),

and let k →֒ K an inclusion of fields.

Consider an exact contravariant functor

F : {T c}op → modK

Let TK be the base-change category. Then there exists an S̃ ∈ TK such that

F (C) = MorTK
(C ⊗K, S̃)

for all C ∈ T c.



CHAPTER 2. REPRESENTABILITY OF COHOMOLOGICAL FUNCTORS 18

To prove this we will use the ideas from [CKN01, Lemma 2.14] where the version of this theorem

with k = K has been proved.

Proof of theorem 2.4.1. Let D be the functor taking a K-vector space to its dual. Then G = D ◦F

is exact and covariant.

Let G̃ : T → ModK be the Kan extension of G to T . G̃ is exact and commutes with coproducts,

hence D ◦ G̃ is exact and takes coproducts to products. Hence by [Fra01, Theorem 3.1] the functor

D ◦ G̃ is representable, as a functor to Modk, by an object Y ∈ T .

The K-action on ModK induces a K-action ρ̃ on D ◦ G̃ = hY , hence by Yoneda we get a K-

action ρ on Y , given by K
ρ
→ Nat(hY , hY ) = Aut(Y ). Therefore we obtain an object (Y, ρ) ∈ TK .

We need to show that

D ◦ G̃(C) = MorTK
(C ⊗K, (Y, ρ))

for all C ∈ T c.

To do so, first of all notice that as k-vector spaces

D ◦ G̃(C) = MorT (C, Y ) = MorTK
(C ⊗K, (Y, ρ))

because K ⊗k − is left adjoint to the functor forgetting the K-structure. By our definition of the

K-action on MorT (C, Y ), this is the same as the K-action on D ◦ G̃(C); moreover the k-vector

space map

MorT (C, Y )
γ
→ MorTK

(C ⊗K, (Y, ρ))

f 7→ f ⊗ ρ

is compatible with the K-action since, for any α ∈ K,

γ(α · f) = γ(ρ̃(α)f) = ρ̃(α)f ⊗ ρ(·) = f ⊗ ρ(α)ρ(·) = α · (f ⊗ ρ(·))

hence we found that the two actions coincide and so

D ◦ G̃(C) = MorTK
(C ⊗K, (Y, ρ))

Let S̃ = (Y, ρ). Now since F is of finite type, we get

F (C) = (D ◦D ◦ F )(C) = (D ◦G)(C) = (D ◦ G̃)(C) = MorTK
(C ⊗K,E)
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Lemma 2.4.2. Let k and K be two fields, k →֒ K.

Consider the equivalence of categories

Db(mod(Λ))
θ
−→ Db(Coh(Pnk))

as described in [Bei78].

Then there is also an equivalence of categories

Db(mod(Λ ⊗K))
θK−−→ Db(Coh(PnK))

and the diagram

Db(mod(Λ))

��

θ // Db(Coh(Pnk))

��
Db(mod(Λ ⊗K))

θK // Db(Coh(PnK))

is commutative.

Proof. By [Bei78], we have Λ = End(M) where M =
⊕n

i=0 OP
n
k
(i). Set MK =

⊕n
i=0 OP

n
K

(i), then

EndP
n
K

(MK) = EndP
n
K

(

n
⊕

i=0

OP
n
K

(i)

)

=

n
⊕

i,j=0

EndP
n
K

(

OP
n
K

(i),OP
n
K

(j)
)

=

=

n
⊕

i,j=0

K[x0, . . . , xn]j−i =

n
⊕

i,j=0

k[x0, . . . , xn]j−i ⊗K

=





n
⊕

i,j=0

k[x0, . . . , xn]j−i



⊗K = Λ ⊗K

Moreover, the equivalence θ is induced by the map

mod(Λ)
−⊗ΛM−−−−−→ Coh(Pnk)

and if we let h : PnK → Pnk be the base change morphism, we obtain the following commutative

diagram:

mod(Λ)
−⊗ΛM //

⊗K

��

Coh(Pnk)

h∗

��
mod(Λ ⊗K)

−⊗Λ⊗KMK // Coh(PnK)

this proves the last assertion.
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We are now almost ready to prove Theorem 2.1.1, but first we will prove the version of the

theorem for the purely transcendental case. The following proof uses ideas from [BVdB03, Theorem

A.1].

Theorem 2.4.3. Let X be a smooth projective variety over a field k. Let K = k(T ) or K =

k(T, T ′). Consider a contravariant, cohomological, finite type functor

H : Db
Coh(X) → modK

Then the complex S̃ of Theorem 2.4.1 lifts to a complex S ∈ Db
Coh(XK) such that H is representable

by S, i.e. for every C ∈ Db
Coh(X) we have

H(C) = MorDb
Coh

(XK)(Lj
∗C,S)

where j : XK → X is the base change morphism.

Proof. By Lemma 2.4.1, the functor H is representable by an element S̃ ∈ (DQCoh(X))K , i.e.

H(C) = Mor(DQCoh(X))K
(C ⊗K, S̃)

Let S be a lift of S̃ to DQCoh(XK) (this is possible by Corollary 2.3.7). Let C be an element of

Db
Coh(X). By applying the functors in Lemmas 2.3.1 and 2.3.6 we get a K-linear map

MorDQCoh(XK )(Lj
∗C,S)

ψ(·)
−−→Mor(DQCoh(X))K

(ψ ◦ Lj∗C, S̃)

and, since by Lemma 2.3.6, ψ ◦ Lj∗C = C ⊗K, we have

Mor(DQCoh(X))K
(ψ ◦ Lj∗C, S̃) = Mor(DQCoh(X))K

(C ⊗K, S̃) = H(C)

Hence to show that H is represented by S we just need to show that ψ(·) is an isomorphism.

It suffices to show that it is an isomorphism of k-vector spaces, which follows from the following

diagram of k-vector spaces:

MorDQCoh(XK)(Lj
∗C,S)

ψ(·) // Mor(DQCoh(X))K
(ψ ◦ Lj∗C, S̃)

MorDQCoh(X)(C,Rj∗S) Mor(DQCoh(X))K
(C ⊗K, S̃)

MorDQCoh(X)(C, forget(ψ(S))) Mor(DQCoh(X))(C, forget(S̃))
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here we used the fact that Rj∗ = forget ◦ ψ, again from Lemma 2.3.6.

So ψ(·) is an isomorphism, and hence H is represented by S ∈ DQCoh(XK). We still have to

show that S is actually in Db
Coh(XK).

Choose an embedding π : X → Pnk . Let H ′ = H ◦ Lπ∗. Let θ : Db(mod(Λ)) → Db(Coh(Pnk))

and θK : Db(mod(Λ ⊗K)) → Db(Coh(PnK)) as defined in Lemma 2.4.2 above. Let H ′′ = H ′ ◦ θ.

Let h : PnK → Pnk be the base change morphism.

Consider the following diagram:

Db(mod(Λ))
θ //

H′′

$$

��

Db(Coh(Pnk))
Lπ∗

//

H′

''

h∗

��

Db
Coh(X)

H //

Lj∗

��

V ectK

Db(mod(Λ ⊗K))
θK //

TT

Db(Coh(PnK))
Lπ∗

K // Db
Coh(XK)

and let A ∈ Db(Coh(Pnk)).

H ′(A) = H(Lπ∗(A)) = MorDQCoh(XK)(Lj
∗Lπ∗A,S) =

= MorDQCoh(XK)(Lπ
∗
Kh

∗A,S) = MorDQCoh(Pn
K

)(h
∗A,RπK∗S)

so H ′ is represented by RπK∗S ∈ DQCoh(PnK).

Let G̃ = θ−1
K (RπK∗(S)) so that H ′′ is represented by G̃. Then

H ′′(Λ) = MorΛ⊗K(Λ ⊗K, G̃)

and

∑

n

dimH ′′(Λ[n]) =
∑

n

dim Mor(Λ[n] ⊗K, G̃) =

=
∑

n

dim Mor((Λ ⊗K)[n], G̃) <∞

since H ′′ is of finite type. Therefore G̃ ∈ Db(mod(Λ ⊗K)).

This implies that Rπ∗S ∈ Db(Coh(PnK)) hence S ∈ Db(Coh(XK)).

proof of theorem 2.1.1. The case where L is purely transcendental of degree 2 over k was treated

in Theorem 2.4.3. Let L be a finitely generated separable field extension of k with trdegkL ≤ 1.
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There exists a field K such that K is a purely transcendental extension of k of degree less than or

equal 1, and K ⊂ L is a finite extension. Set L = L(α) = K[T ]/P (T ). Consider the composition

Db
Coh(X)

H //

H′

%%
modK

forget // modL

By theorem 2.4.3, H ′ is representable by an object S ∈ Db
Coh(XK). Moreover, following the

proof of Corollary 2.3.7, S is endowed with a map ϕ such that P (ϕ) = 0 is zero on all the cohomology

groups of S.

First of all, this implies that there exists an n such that P (ϕ)n = 0. In fact, consider the good

truncations τ≤iS,

. . .→ Si−1 → Zi → 0

then since P (ϕ) is zero on cohomology, it is actually zero on Zi so that P (ϕ) : τ≤iS → τ≤iS factors

through τ≤i−1S. Hence the claim follows inductively using the fact that S is a bounded complex.

Now let h : XL → XK be the base change morphism, and consider the pullback Lh∗S ∈

Db
Coh(XL). It has a L[T ] action induced by the morphism Lh∗ϕ, and P (Lh∗ϕ)n = 0 so Lh∗S has

in fact an L[T ]/Pn(T )-action.

Since, over L, P (T ) factors as P (T ) = (T − α)Q(T ), we get that

L[T ]/Pn(T ) = L[T ]/(T − α)n × L[T ]/Qn(T )

This means we can find two elements e1, e2 of L[T ]/Pn(T ) such that e21 = e1, e
2
2 = e2, e1e2 = 0,

e1 + e2 = 1. But since L[T ]/Pn(T ) acts on Lh∗S, this gives two idempotent operators e1, e2 in

AutDb
Coh

(XL)(Lh
∗S) such that e1e2 = 0, e1 + e2 = idLh∗S .

Now since Db
Coh(XL) is Karoubian by [BN93, Proposition 3.2] we have obtained that Lh∗S =

E ⊕ S2 and Lh∗ϕ acts as multiplication by α on E.

We claim that Rh∗E = S. Consider the map

S → Rh∗Lh
∗S

pr1
−−→ Rh∗E

Under the identification DQCoh(XL)
ψ

−→ D(QCoh(X)L) this corresponds to S → S ⊗ L →

forget(E), so this is actually the identity map on S.
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Then for every C ∈ Db
Coh(X) we have a map of L-vector spaces

MorDQCoh(XL)(Lj
∗C,E) → Mor(DQCoh(X))L

(C ⊗ L, S̃) = H(C)

where j : XL → X is the base change morphism, since E is a lift of S to Db
Coh(XL) with the correct

L-action. This map is an isomorphism because it is an isomorphism of K-vector spaces:

MorDQCoh(XL)(Lj
∗C,E) = Mor(DQCoh(XK))(Li

∗C,Rh∗E)

= Mor(DQCoh(XK))(Li
∗C,S) = H ′(C)

where i : XK → X is the base change morphism.

proof of theorem 2.1.3. Consider the composition

Db
Coh(X)

F

44
H // Db

Coh(Y )
i∗1 // Db

Coh(η)
H0

// modk(Y )
D // modk(Y )

where H0(−) = H0(η,−) and D is the dual as k(Y )-vector space. F is an exact contravariant

finite type functor, hence by theorem 2.1.1 it is representable by E ∈ Db
Coh(Xk(Y )).

Now consider the following diagram:

Xη
p //

i2

��
j

��

η

i1

��
X × Y

π2 //

π1

��

Y

X

Let E∨ = RHomXη
(E,OXη ). Let us construct a complex A ∈ Db

Coh(X × Y ) such that Li∗2A =

E∨ ⊗ ωXη [dimXη].

First of all, note that i2 is a flat map, so the derived pullback is just regular pullback in

every degree. Also, i2 is an affine map so that pushforward is also exact. Moreover, Db
Coh(X) ∼=

Db(Coh(X)) and every complex here is isomorphic to a complex that is nonzero only in a finite

number of degrees. SinceX and Y are projective varieties, there exists a line bundleL ∈ Coh(X×Y )

such that E∨⊗ωXη [dimXη]⊗i
∗
2L

⊗n is generated by its global sections in each degree. Let {si,d} be a

set of generators in degree d. Consider the complex i2∗(E
∨⊗ωXη [dimXη]⊗i

∗
2L

⊗n) on Db
Coh(X×Y ).
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Then take the subcomplex generated in each degree by {i2∗si,d} ∪ {i2∗dsi,d−1}, and twist it down

by L−n. This gives the desired complex A ∈ Db
Coh(X × Y ).

Then we get the following:

H0 ◦ i∗1 ◦ ΦA(C) = H0i∗1Rπ2∗(A⊗ π∗1C)

= H0Rp∗(i
∗
2A⊗ i∗2π

∗
1C) (by flat base change)

= H0Rp∗(E
∨ ⊗ ωXη [dim Xη] ⊗ j∗C)

= Mor(Oη , Rp∗(E
∨ ⊗ ωXη [dim Xη] ⊗ j∗C))

= Mor(p∗Oη, E
∨ ⊗ ωXη [dim Xη] ⊗ j∗C)

= Mor(OXη , E
∨ ⊗ ωXη [dim Xη] ⊗ j∗C)

= Mor(E,ωXη [dim Xη] ⊗ j∗C)

= D ◦ Mor(j∗C,E)

= D ◦ F (C)

= H0 ◦ i∗1 ◦H(C)

for every C ∈ Db
Coh(X).

Now since H is an exact functor,

H i ◦ i∗1 ◦H(C) = H0(i∗1 ◦H(C)[i]) = H0(i∗1 ◦H(C[i])) =

= H0(i∗1 ◦ ΦA(C[i])) = H0(i∗1 ◦ ΦA(C)[i]) =

= H i ◦ i∗1 ◦ ΦA(C)

Hence, since all cohomology groups agree and Db
Coh(k(Y )) is equivalent to the category of

graded vector spaces over k(Y ), H and ΦA agree after restricting to the generic point of Y .
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Chapter 3

On the existence of Fourier-Mukai

kernels

3.1 Introduction

Let X, Y be projective varieties over an algebraically closed field k. Consider an exact functor

F : Db
Coh(X) → Db

Coh(Y )

In this chapter we will computes sheaves on X × Y that are equal to the cohomology sheaves of

the kernel whenever the functor is a Fourier-Mukai transform.:

Theorem 3.1.1. Let X, Y be projective varieties over an algebraically closed field k, F : Db
Coh(X) →

Db
Coh(Y ) and exact functor. There exist a sequence of sheaves B

L,BL+1, . . . ,BN on X × Y and

maps

H
i(F (E (n))) → p2∗(B

i ⊗ p∗1E (n))

for any coherent locally free sheaf E , for each i = L, . . . ,N and for each n ∈ Z that are isomorphisms

for n sufficiently high (depending on E ), with

H
i(F (E (n))) = 0
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for i /∈ [L,N ], n≫ 0. Moreover, given a map E1 → E2, we have a commutative diagram

H i(F (E1(n))) //

��

p2∗(B
i ⊗ p∗1E1(n))

��
H i(F (E2(n))) // p2∗(B

i ⊗ p∗1E2(n))

We are then able, in a special case, to construct an isomorphism between a class of functors

that are not full or faithful and a Fourier-Mukai transform:

Theorem 3.1.2. Let X and Y be two smooth projective varieties of dimension one, F : Db
Coh(X) →

Db
Coh(Y ) an exact functor. Assume that the corresponding B

i = 0 for i 6= M , and that B
M =

⊕t
i=1 k(pi, qi). Let Φ be the Fourier-Mukai transform associated to the sheaf B

M placed in degree

M . Then there exists an isomorphism of functors s : Φ → F .

Even when we don’t know how to build a kernel out of the sheaves B
i that we construct

in Theorem 3.1.1, these sheaves will turn out to have good properties in their own right. As an

example, we will show that the analogue of the Cartan-Eilenberg Spectral Sequence converges when

the dimension of X is one.

From now on, X and Y will be smooth projective varieties over an algebraically closed field k.

F : Db
Coh(X) → Db

Coh(Y ) is an exact functor. OX(1) will be a very ample line bundle on X.

3.2 Determining the cohomology sheaves of the prospective kernel

Consider our functor F : Db
Coh(X) → Db

Coh(Y ). If we know that F is isomorphic to a Fourier-

Mukai transform ΦE , then we are of course able to compute the cohomology sheaves B
i = H i(E)

corresponding to E. Even if we don’t know what E is, or even if it exists, we are able to compute

some sheaves on X × Y such that if the functor comes from a Fourier-Mukai transform, then those

sheaves will turn out to be the cohomology sheaves of the corresponding kernel.

We recall the following definition from [Har77];

Definition 3.2.1. The graded module Γ∗(F ) is defined as

Γ∗(F ) =
⊕

n∈Z

Γ(X,F (n))
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Lemma 3.2.2. Let X, Y be smooth projective varieties over k = k̄, L a very ample invertible

sheaf on X. There exists an equivalence of categories between the category of coherent sheaves on

X×Y and the category of graded coherent Γ∗(OX)⊗OY -modules M = ⊕kMk such that ⊕k≥nMk is

finitely generated for some n, where two coherent sheaves are identified if they agree in sufficiently

high degree.

Moreover, if this correspondence associates a sheaf ⊕Mn on Y to a sheaf B on X × Y , there

exists a functorial map of graded Γ∗(OX) ⊗OY -modules

⊕Mn → ⊕p2∗(B ⊗ L
n)

which is an isomorphism on the nth graded piece for n sufficiently high.

Proof. Since L is a very ample invertible sheaf on X we have an immersion i : X × Y → PmY so

that X × Y = Proj(S ) with S = Γ∗(OX) ⊗OY .

By [Gro61, 3.2.4, 3.3.5, 3.4.3, 3.4.5] we have a functor







Graded coherent Γ∗(OX) ⊗OY -modules M = ⊕kMk

such that ⊕k≥n Mk is finitely generated for some n





�∼ → {Coherent OX×Y -modules}

M 7→ M̃

where ⊕Mk ∼ ⊕Nk if there exists an integer n such that Mk
∼= Nk for all k ≥ n. Moreover,

by [Gro61, 3.3.5.1] we know that

Γ̃∗(F )
∼=
−→ F

Hence to show that M 7→ M̃ gives an equivalence of categories we just need to show that

α : Mk → Γ∗(M̃k)

is an isomorphism in large enough degree, which can be checked locally and hence follows by [Ser07,

§65, Proposition 5]. The last assertion follows from the fact that as we just saw we have a graded

isomorphism

M
∼=
−→ Γ∗(M̃ ) =

⊕

n∈Z

p2∗(M̃ (n)) =
⊕

n∈Z

p2∗(B(n)) =
⊕

n∈Z

p2∗(B ⊗ L
n)
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proof of Theorem 3.1.1. By [Orl97, Lemma 2.4], we can assume that F is bounded, i.e. that F (E ) ∈

D
[L,N ]
Coh (Y ) for all coherent sheaves E on X, i.e. H i(F (E )) = 0 for i /∈ [L,N ].

We will proceed by descending induction on the cohomology degree i. We can take B
N+1 = 0

in what follows since H N+1(F (E )) = 0 for all coherent sheaves E .

Assume we found the sheaves B
N ,BN−1, . . . ,Bi+1 satisfying the conclusions of the Theorem

and let’s compute the sheaf B
i. To do this we will proceed in two steps: first we will construct

sheaves B
i
E for all coherent locally free sheaves E as well as maps

H
i(F (E (n))) → p2∗(B

i
E ⊗ p∗1OX(n))

that are isomorphisms for n sufficiently high, depending on E and i. Then we will show that

B
i
E = B

i
OX

⊗ p∗1E

For the first step, the key is showing that the sheaf
⊕

n>n0
H i(F (E (n))) on Y is finitely

generated for each n0 as a Γ∗(X,OX ) ⊗ OY -module. To do this, proceed as follows: let s be an

integer such that we have a surjection O⊕s
X → OX(1). Let E be a coherent locally free sheaf on

X. Then by tensoring the map above with E and twisting by n we have a short exact sequence of

locally free sheaves

0 → K(n) → E
⊕s(n) → E (n + 1) → 0

Hence

0 → p∗1(K(n)) → p∗1(E (n)⊕s) → p∗1(E (n+ 1)) → 0

is also a short exact sequence of locally free sheaves, and tensoring with B
i+1 will yield another

short exact sequence:

0 → B
i+1 ⊗ p∗1K(n) → B

i+1 ⊗ p∗1E
⊕s → B

i+1 ⊗ p∗1E (n+ 1) → 0

moreover, since p∗1OX is very ample with respect to X × Y → Y , for n high enough (depending on

K) the pushforward to Y will still be exact:

0 → p2∗(B
i+1 ⊗ p∗1K(n)) → p2∗(B

i+1 ⊗ p∗1OX(n)⊕s) → p2∗(B
i+1 ⊗ p∗1OX(n+ 1)) → 0
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Hence we get a diagram

H i+1(F (K(n))

��

// H i+1(F (E (n)⊕s)) //

��

H i+1(F (E (n+ 1)))

��
0 // p2∗(B

i+1 ⊗ p∗1K(n)) // p2∗(B
i+1 ⊗ p∗1E (n)⊕s) // p2∗(B

i+1 ⊗ p∗1E (n+ 1)) // 0

and for n high enough depending onK and E , the vertical arrows are isomorphisms by the induction

hypothesis; therefore the top sequence is also exact. Hence for n sufficiently high we also get a

surjection

H
i(F (E (n)))⊕s → H

i(F (E (n+ 1))) → 0

since each H i(F (E (n))) is coherent, this is enough to conclude that the sheaf

⊕

n>n0

H
i(F (E (n)))

is finitely generated for each n0 as a Γ∗(X,OX ) ⊗OY -module, where the Γ∗(X,OX)-action comes

from the action of Γ∗(X,OX ) on ⊕E (n) which gives a corresponding action on ⊕F (E (n)) and hence

on ⊕H i(F (E (n))). By Lemma 3.2.2, this corresponds to a sheaf B
i
E on X ×Y such that the map

H
i(F (E (n))) → p2∗(B

i
E ⊗ p∗1OX(n))

is an isomorphisms for n sufficiently high.

Now consider the functor

B : Coh(X) → Coh(X × Y )

E 7→ B
i
E

The functor B is additive, and it is right exact on the full subcategory of locally free sheaves on

X. In fact, given two coherent sheaves E1 and E2,

⊕

n

H
i(F ((E1 + E2)(n))) =

⊕

n

H
i(F (E1(n))) ⊕

⊕

n

H
i(F (E2(n)))

hence the functor is additive. Moreover, given a short exact sequence 0 → E1 → E2 → E3 → 0 with

Ej locally free, we get a triangle F (E1) → F (E2) → F (E3) hence for n ≫ 0 we have (by induction

hypothesis)

H i+1(F (E1(n)) //

��

H i+1(F (E2(n))) //

��

H i+1(F (E3(n)))

��
0 // p2∗(B

i+1 ⊗ p∗1E1(n)) // p2∗(B
i+1 ⊗ p∗1E2(n)) // p2∗(B

i+1 ⊗ p∗1E3(n)) // 0
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and for n sufficiently high, all of the vertical maps are isomorphisms hence the top sequence is also

exact for n high, say n > n0. Note that this is the only part of this proof where we need to be

dealing with locally free sheaves, because we are using that the bottom sequence is exact on the

left.

Hence we get

⊕

n>n0

H
i(F (E1(n))) →

⊕

n>n0

H
i(F (E2(n))) →

⊕

n>n0

H
i(F (E3(n))) → 0

and so (by the equivalence of categories) get

B
i
E1

→ B
i
E2

→ B
i
E3

→ 0

hence the functor is right exact on the full subcategory of locally free sheaves.

Moreover, for every n, for m ≫ 0 (depending on n) we have

H
i(F (E (n)(m))) = p2∗(B

i
E (n) ⊗ p∗1OX(m))

but also

H
i(F (E (n)(m))) = H

i(F (E (n+m)))

= p2∗(B
i
E ⊗ p∗1OX(n+m))

= p2∗((B
i
E ⊗ p∗1OX(n)) ⊗ p∗1OX(m))

hence it follows from the equivalence of categories that

B
i
E (n) = B

i
E ⊗OX(n)

Now let E be a coherent, locally free sheaf on X. Then there exists a sequence

⊕OX(bj) → ⊕OX(ak) → E → 0

therefore since the functor B is exact we get

B
i
⊕OX(bj)

→ B
i
⊕OX(ak) → B

i
E → 0

and since B is additive and compatible with twists we can write

⊕B
i
OX

⊗ p∗1OX(bj) → ⊕B
i
OX

⊗ p∗1OX(ak) → B
i
E → 0
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hence

B
i
E = B

i
OX

⊗ p∗1E

the Proposition then follows by taking B
i = B

i
OX

. Since there is a finite number of steps in the

induction, we can find an n0 such that for n > n0 the maps above are isomorphisms for all i.

The commutative diagram in the statement of the Proposition follows from the fact that the

map in 3.2.2 is functorial.

While Theorem 3.1.1 gives a map H i(F (E )) → p2∗(B
i ⊗ p∗1E ), for all n, in general it is only

an isomorphism for n sufficiently large. In the case of the first M such that H M (F (E )) is nonzero

for some locally free sheaf E we can actually say more:

Proposition 3.2.3. In the situation of Theorem 3.1.1, choose, M,N such that F (E ) ∈ D
[M,N ]
Coh (Y )

for all E coherent locally free sheaf on X. Then the maps

H
M (F (E )) → p2∗(B

M ⊗ p∗1E )

are isomorphisms for all coherent locally free sheaves E .

Proof. Let d = dimX. Choose sections s1, . . . , sd+1 of OX(1) such that the corresponding hyper-

planes have empty intersection. Then for any m ∈ N we have short exact sequence

0 → OX

(sm
1 ,...,s

m
d+1

)
−−−−−−−−→ OX(m)d+1 → Km → 0

where Km is a locally free sheaf.

Let E be any coherent locally free sheaf. Then by tensoring the above short exact sequence

with E we get

0 → E → E (m)⊕(d+1) → Km ⊗ E → 0

and so

0 // H M (F (E )) //

��

H M (F (E (m)d+1)) //

��

H M (F (Km ⊗ E ))

��
0 // p2∗(B

M ⊗ p∗1E ) // p2∗(B
M ⊗ p∗1E (m)d+1) // p2∗(B

M ⊗ p∗1(Km ⊗ E ))

Let m be high enough so that the center map is an isomorphism (this is possible by Proposition

3.1.1). Then the map on the left must be injective. Thus we showed: for every coherent, locally

free sheaf E , the map H M (F (E )) → p2∗(B
M ⊗ p∗1E ) is injective.
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Now let’s go back to the diagram above. By what we just showed, the map on the right

H M (F (Km ⊗ E )) → p2∗(B
M ⊗ p∗1(Km ⊗ E )) is injective. Hence we have

0 // H M (F (E )) //
� _

��

H M (F (E (m)d+1)) //

∼=
��

H M (F (Km ⊗ E ))
� _

��
0 // p2∗(B

M ⊗ p∗1E ) // p2∗(B
M ⊗ p∗1E (m)d+1) // p2∗(B

M ⊗ p∗1(Km ⊗ E ))

then by the 5 Lemma the left arrow is an isomorphism, i.e.

H
M (F (E ))

∼=
−→ p2∗(B

M ⊗ p∗1E )

Similarly to Proposition 3.2.3, we also have a stronger result than the one in Theorem 3.1.1 for

the largest N ′ such that B
i 6= 0. In this case, the map H N ′

(F (E (n)) → p2∗(B
N ′

⊗ p∗1E (n)) can

be constructed for all coherent sheaves on X instead of just the locally free ones:

Proposition 3.2.4. In the situation of Theorem 3.1.1, let N ′ be the largest i such that B
i 6= 0.

Then for all n ∈ Z, for any coherent sheaf F we have a map

H
N ′

(F (F (n)) → p2∗(B
N ′

⊗ p∗1F (n))

which is an isomorphism for n sufficiently high.

Proof. The proof is exactly the same as the proof of Theorem 3.1.1. In this case we don’t need

to ask for F to be locally free because since B
N ′+1 = 0, given a short exact sequence 0 → E →

F1 → F2 → 0, the sequence

H
N ′

(F (E (n))) → H
N ′

(F (F1(n))) → H
N ′

(F (F2(n))) → 0

is always exact for n ≫ 0 if E is locally free, and this is all we need to conclude that B
N ′+1
F

=

B
N ′

⊗ p∗1F for any coherent sheaf F .

3.3 A special case

In this section we will assume that X and Y are smooth projective varieties over an algebraically

closed field k, and F : Db
Coh(X) → Db

Coh(Y ) is an exact functor. In this section we will give an
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example of a class of functors for which we can always find an object E ∈ Db
Coh(X × Y ) and an

equivalence F ∼= ΦE. The sheaves B
i will be the ones defined as in Theorem 3.1.1.

Proposition 3.3.1. Let F : Db
Coh(X) → Db

Coh(Y ), dim(X) = 1 and assume that the sheaves B
i

defined as in Theorem 3.1.1 are zero for i 6= M . Assume also that B
M is a coherent sheaf supported

at finitely many points of X × Y .

Then for any coherent sheaf F on X we have H i(F (F )) = 0 for i 6= M,M − 1 and for any

locally free sheaf E we have H i(F (E )) = 0 for i 6= M .

Moreover, for each coherent sheaf F on X there is a functorial isomorphism

H
M (F (F ))

∼=
−→ p2∗(B

M ⊗ p∗1F )

Proof. Consider any torsion sheaf Q. Then we have a short exact sequence 0 → E ′ → E → Q→ 0

with E ,E ′ locally free. Twist E and E ′ by n ≫ 0 so that H i(F (E ′(n))) = H i(F (E (n))) = 0 for

i 6= M . Since 0 → E ′(n) → E (n) → Q→ 0 is still an exact sequence, from the long exact sequence

on cohomology we can conclude that H i(F (Q)) = 0 for all i 6= M,M − 1.

Now consider a locally free sheaf E onX. Let n̄ be large enough so that we know H i(F (E (n̄))) =

0 for all i 6= M . Then we have a short exact sequence 0 → E (n̄ − 1) → E (n̄) → T → 0 where T is

a torsion sheaf. A portion of the long exact sequence in cohomology gives

H
i−1(F (T )) → H

i(F (E (n̄− 1))) → H
i(F (E (n̄)))

and H i−1(F (T )) = H i(F (E (n̄))) = 0 for i 6= M,M + 1 hence H i(F (E (n̄ − 1))) = 0 for i 6=

M,M + 1. By descending induction on n̄ we then obtain that H i(F (E (n))) = 0 for all n and

i 6= M,M + 1. We will show at the end of the proof that H M+1(F (E ) = 0.

By Proposition 3.2.4 we know that for any coherent sheaf F on X we have a functorial map

H
M (F (F ))

∼=
−→ p2∗(B

M ⊗ p∗1F )

which is an isomorphism by Proposition 3.2.3 if F is locally free (notice that the hypotheses of 3.2.3

are satisfied by the first part of this Proposition). Moreover we also know, again by Proposition

3.2.4, that for any coherent sheaf F the map

H
M (F (F (n)))

∼=
−→ p2∗(B

M ⊗ p∗1F (n))
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is an isomorphism for n sufficiently high. But when F is a sheaf supported at a point twisting

doesn’t affect the sheaf, so we get that

H
M (F (F ))

∼=
−→ p2∗(B

M ⊗ p∗1F )

is also an isomorphism for torsion sheaves, and hence it is always an isomorphism since any coherent

sheaf on X is the direct sum of a locally free part and a torsion part.

Now let’s show that H M+1(F (E )) = 0: consider the diagram

H M (F (E (n̄))) //

∼=
��

H M (F (T )) //

∼=
��

H M+1(F (E (n̄− 1))) //

��

H M+1(F (E (n̄))) = 0

p2∗(B
M ⊗ p∗1E (n̄)) // p2∗(B

M ⊗ p∗1T ) // 0

where the bottom sequence is right exact because B
M is a flasque sheaf. From the five Lemma it

follows that H M+1(F (E (n̄ − 1))) = 0. So we can again proceed by induction on n̄.

Proposition 3.3.2. Let F : Db
Coh(X) → Db

Coh(Y ), dim(X) = 1 and assume B
i = 0 for i 6= M .

Assume also that B
M is a coherent sheaf supported at finitely many points of X × Y . Let Φ be the

Fourier-Mukai transform associated to the sheaf B
M placed in degree M .

Then there is an isomorphism of δ-functors

H
i(F (·))

∼=
−→ H

i(Φ(·))

on the category of coherent sheaves on X, which gives an isomorphism of functors F → Φ for the

full subcategory of Db
Coh(X) consisting of locally free sheaves placed in degree zero.

Proof. The fact that there is a functorial isomorphism

H
M (F (·))

∼=
−→ H

M (Φ(·))

on the category of coherent sheaves on X follows immediately from Proposition 3.3.1 given that

H M (Φ(F )) = p2∗(B
M ⊗ p∗1F ).

Moreover, for any locally free sheaf E , since the only nonzero cohomology sheaf of F (E ) is in

degree M and pushforward is exact for flasque sheaves,

F (E ) = H
M (F (E ))[−M ]

∼=
−→ H

M (Φ(E ))[−M ] =

= p2∗(B
M ⊗ p∗1E )[−M ] = Rp2∗(B

M [−M ]
L
⊗ Lp∗1E ) = Φ(E )
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This gives the isomorphism of functors on the full subcategory of Db
Coh(X) of locally free sheaves

placed in degree zero.

Let us now construct the isomorphism

H
M−1(F (·))

∼=
−→ H

M−1(Φ(·))

Consider a coherent sheaf Q on X which is not locally free. Then there is a short exact sequence

0 → A′ → A → Q → 0 where A′ and A are locally free. Then we get a long exact sequence in

cohomology

0 // H M−1(F (Q)) // H M (F (A′)) //

��

H M (F (A))

��
0 // H M−1(Φ(Q)) // H M (Φ(A′)) // H M (Φ(A))

so we get an isomorphism H M−1(F (Q)) → H M−1(Φ(Q)).

We still need to show that this map is functorial and that it does not depend on the choice of

a short exact sequence. Consider a map Q → T of coherent sheaves. Then we can construct two

short exact sequences

0 // A′ //

��

A //

id

��

Q // 0

0 // B′ // A // T // 0

with A,A′, B and B′ torsion free. Then we get the following diagram on cohomology:

0 // H M−1(Φ(Q)) //

��

H M (Φ(A′)) //

��

H M (Φ(A))

��

0 // H M−1(F (Q))

88qqqqqqqqqq

//

��

H M (F (A′))

99ssssssssss

//

��

H M (F (A))

::ttttttttt

��

0 // H M−1(Φ(T )) // H M (Φ(B′)) // H M (Φ(B))

0 // H M−1(F (T ))

88qqqqqqqqqq

// H M (F (B′))

99ssssssssss

// H M (F (B))

::ttttttttt

(3.1)

and since the two rightmost diagonal squares commute, the leftmost diagonal square will also

commute. This shows functoriality.

To show that the maps we chose do not depend on the choice of a short exact sequence, notice

that given two short exact sequences 0 → A′ → A → Q → 0 and 0 → B′ → B → Q → 0 there
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is a short exact sequence 0 → C → A ⊕ B → Q → 0 mapping to both of them. So we just need

to prove this statement for two short exact sequences with maps between them. But then we are

again in the situation of diagram (3.1), where T = Q and the two rightmost maps in the diagram

are the identity. So this follows again from the commutativity of the leftmost diagonal square.

Finally, we have to show that for every short exact sequence 0 → B′ → B → Q→ 0 the diagram

H M−1(F (Q)) //

��

H M (F (B′))

��
H M−1(Φ(Q)) // H M (Φ(B′))

is commutative. This follows immediately by the construction when B′ and B are locally free.

Otherwise, construct a diagram

0 // A′ //

��

A //

��

Q // 0

0 // B′ // B // Q // 0

with A,A′ locally free. Then we get a diagram as in (3.1) with T = Q and where everything

commutes except possibly for the bottom leftmost parallelogram, but that follows immediately

since the leftmost arrow is the identity.

Theorem 3.3.3. Let X and Y be two projective varieties, dim(X) = 1, F : Db
Coh(X) → Db

Coh(Y )

an exact functor. Assume that the corresponding B
i = 0 for i 6= M , and that B

M is a skyscraper

sheaf supported at a finite number of points, B
M =

⊕t
j=1 k(pi, qi). Let Φ be the Fourier-Mukai

transform associated to the sheaf B
M placed in degree M . Restrict the two functors to the full

subcategory of sheaves supported in degree 0 (here the only triangles are short exact sequences of

sheaves). Then there exists an isomorphism of triangulated functors s(·) : Φ(·) → F (·).

Before we prove the Theorem, let us prove two technical Lemmas that we will use in the proof.

Lemma 3.3.4. Let X be a projective variety and OX(1) be a very ample invertible sheaf on X.

Consider a surjective map α : ⊕tOX → Q where Q is torsion sheaf. Then there exists an integer

h, depending on Q, such that for all m ≥ h(Q) and for any map β : OX(−m) → Q there exists a
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map γ : OX(−m) → ⊕tOX making the following diagram commute:

OX(−m)
γ //_______

β
##HH

HH
HH

HH
HH

⊕

tOX

α
||xx

xx
xx

xx
x

Q

Proof. We have a short exact sequence

0 → Ker(α) → ⊕OX → Q→ 0

Twist by OX(m) to get

0 → Ker(α)(m) → ⊕OX(m) → Q(m) → 0

A map β : OX(−m) → Q is the same thing as a map OX → Q(m), hence as an element β(m) ∈

H0(X,OX (m)). By Serre vanishing, there exists an h ≥ 0 such that H1(X,Ker(α)(m) = 0 for all

m ≥ h. Hence β lifts to a section γ(m) of H0(X,OX (m)). Twist down by m to get the desired

map γ : OX(−m) → ⊕OX .

Lemma 3.3.5. Let X be a smooth projective variety over an algebraically closed field, let p1, . . . , pt ∈

X and let E be a locally free sheaf of rank r generated by global sections. Then there exist and open

set U containing p1, . . . , pt and global sections s1, . . . , sr of E that generate the stalk Ep at each

point p ∈ U .

Proof. Assume we found s1, . . . , si ∈ Γ(X,E ) that are linearly independent at each stalk at p1, . . . , pt

so that we have

0 → O⊕i
X → E

f
−→ Q→ 0

ej 7→ sj

Let’s find a global section of E such that its image inQ doesn’t vanish at p1, . . . , pt. Let ui ∈ Γ(X,E )

such that f(ui) doesn’t vanish at pi (we can do this because f is surjective on stalks and E is

generated by global sections). Then u1, . . . , ut form a sub-vector space V of Γ(X,E ) of dimension

l for some l and, for each i, dim({u ∈ V : f(u)(pi) = 0}) ≤ l − 1. Hence

{u ∈ V : f(u)(pi) = 0 for some i} =
⋃

i

{u ∈ V : f(u)(pi) = 0}
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is a union of subsets of dimension less or equal to l− 1 and hence it is strictly contained in V since

our field of definition is infinite (because it is algebraically closed). So we can find a section si+1

in V that doesn’t vanish at any of the pi. Then s1, . . . , si+1 are linearly independent at each pi as

sections of E . We can keep doing this as long as rkQ > 0. Then the sections s1, . . . , sr will generate

the stalk Ep at each point p in an open set U containing p1, . . . , pt.

Proof of Theorem 3.3.3. We will first construct the isomorphism on objects, starting with the sub-

category of locally free sheaves and torsion sheaves. This will a priori involve making non-canonical

choices, but as it later turns out, the choices we are making are actually unique. Then we will

prove that the isomorphisms are compatible with morphisms and this will allow us to define said

isomorphism on a general coherent sheaf. Lastly, we will show that the given isomorphisms induce

maps of triangles when applied to a short exact sequence of sheaves.

I. On the subcategory of locally free sheaves: Let E be a locally free sheaf on X. Then

by Proposition 3.3.2 there is a functorial equivalence s(E ) : ΦB(E ) → F (E ).

II. On torsion sheaves: Consider a torsion sheaf Q on X. There exists a short exact

sequence 0 → K → O⊕t
X

α
−→ Q→ 0, with K a locally free sheaf. Then we have a diagram

Φ(K) //

s(K)qis

��

Φ(O⊕t
X ) //

s(O⊕t
X

)
��

Φ(Q)

���
�

�

F (K) // F (O⊕t
X ) // F (Q)

so there exists a dotted arrow Φ(Q) → F (Q) which is a quasi-isomorphism (this dotted arrow is

not necessarily unique). Choose one such arrow and call it s(Q). Notice that s(Q) will induce

on cohomology the maps that we found in Proposition 3.3.2 because the maps induced on the

M th cohomology are the same as the ones in Proposition 3.3.2, and the maps H M−1(Φ(Q)) →

H M (Φ(K)) and H M−1(F (Q)) → H M (F (K)) are injective.

III. s(−) is compatible with maps E → Q, E locally free, Q torsion: First of all we will

prove the following: for any map OX(i) → Q, the diagram

Φ(OX(i))

s(OX(i))
��

// Φ(Q)

s(Q)
��

F (OX(i)) // F (Q)
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commutes. In fact, by Lemma 3.3.4, for every map β : OX(−m) → Q with m ≥ h(Q) we have a

diagram

OX(−m) //_______

β
##HH

HH
HH

HH
HH

⊕

tOX

α
||xx

xx
xx

xx
x

Q

so by applying the functors F and Φ we obtain the following diagram:

Φ(OX(−m)) //

ttiiiiiiiiiiiiiiiiiii

��

Φ(Q)

idtthhhhhhhhhhhhhhhhhhhhhhhh

s(Q)

��

Φ(O⊕t
X ) //

��

Φ(Q)

s(Q)

��

F (OX(−m)) //

ttiiiiiiiiiiiiiiiiiii
F (Q)

idtthhhhhhhhhhhhhhhhhhhhhhhh

F (O⊕t
X ) // F (Q)

and the bottom left square commutes, hence the top right square will also commute.

Now let i > −h(Q) and consider γ : OX(i) → Q. Then pick any map δ : OX(−h(Q)) → OX(i)

such that δ is an isomorphism on an open set containing p1, . . . , pt, and let η = γ ◦δ. Then the map

Φ(δ) : Φ(OX(−h(Q))) → Φ(OX(i)) is an isomorphism: in fact the map p∗1(δ) : p∗1(OX(−h(Q))) →

p∗1(OX(i)) is an isomorphism on an open set containing (p1, q1), . . . , (pt, qt) and hence we will get

an isomorphism when tensoring with a sheaf supported at (p1, q1), . . . , (pt, qt). So once again we

get a diagram

Φ(OX(i)) //

��

Φ(Q)

��

Φ(OX(−h(Q)))
Φ(η) //

��

Φ(δ)
33hhhhhhhhhhhhhhhhhhh

Φ(Q)

��

id

44iiiiiiiiiiiiiiiiiiiiii

F (OX(i)) // F (Q)

F (OX(−h(Q))) //

33hhhhhhhhhhhhhhhhhhh

F (Q)

id

44iiiiiiiiiiiiiiiiiiiii

since Φ(δ) is invertible and the bottom left square is commutative, the top right square will also

commute.
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Now consider any map E → Q with E locally free. Let m ∈ Z+ such that E (m) is generated

by global sections, and let n = rkE . By Lemma 3.3.5 we can find s1, . . . , sn global sections of

E (m) that are linearly independent at each stalk of an open set U containing p1, . . . , pt. Then the

corresponding map
⊕

nOX → E (m) is injective and it is an isomorphism on U . Twisting down by

m we get a map
⊕

nOX(−m) → E which is an isomorphism on U . Hence we get again a diagram

like the above one,

Φ(E ) //

��

Φ(Q)

s(Q)

��

⊕

n Φ(OX(−m)) //

��

qis

44iiiiiiiiiiiiiiiiiiii

Φ(Q)

s(Q)

��

id

55kkkkkkkkkkkkkkkkkk

F (E ) // F (Q)

⊕

n F (OX (−m)) //

44iiiiiiiiiiiiiiiiiiii

F (Q)

id

55kkkkkkkkkkkkkkkkk

and since the diagonal maps are quasi isomorphisms and the bottom left square commutes, the top

right square will also commute.

IV. s(−) is compatible with maps Q → T , Q and T torsion: We need to show that for

any map between torsion sheaves Q→ T , the corresponding diagram

Φ(Q) //

s(Q)
��

Φ(T )

s(T )
��

F (Q) // F (T )

is commutative. To do this, consider a locally free sheaf A =
⊕

rOX with a surjection f : A→ Q.

For consistency we will represent this situation with a square diagram as before

A //

f

��

T

id

��
Q // T
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Then we get the following diagram:

Φ(Q) //

��

Φ(T )

��

Φ(A) //

��

55kkkkkkkkkkkkkkkkkk
Φ(T )

��

id

55kkkkkkkkkkkkkkkkkk

F (Q) // F (T )

F (A) //

55kkkkkkkkkkkkkkkkk
F (T )

id

55kkkkkkkkkkkkkkkkkk

where the bottom left square commutes by III. Hence the top right square will also commute after

pre-composing with the map Φ(A) → Φ(Q). But then we can conclude that the top right square

also commutes - in fact it commutes on cohomology because of Proposition 3.3.2, so we can apply

Lemma 3.3.6 below.

V. On a general coherent sheaf on X: Let F be any coherent sheaf on X. Then we have

a decomposition F ∼= FT ⊕FF where FT is the canonical summand consisting of the torsion part

of F and FF corresponds to the torsion free part (this summand is not canonical). Then define

s(F ) = s(FT ) ⊕ s(FF ). We need to show that this map doesn’t depend on the choice of the

decomposition. So consider two such decompositions F ∼= FT ⊕ FF and F ∼= FT ⊕ F ′
F and call

s(F ) and s′(F ) respectively the two induced maps on Φ(F ). Then the identity F → F induces

a map α : FF → F ′
F ⊕ FT , and by I. and III. the following diagram is commutative:

Φ(FF ) //

��

Φ(F ′
F ) ⊕ Φ(FT )

s(FT )
��

s(FF )
��

F (FF ) // F (F ′
F ) ⊕ F (FT )

whereas the diagram for the torsion part is clearly commutative because the induced maps are just

the identity, hence every square in the following diagram is commutative

Φ(F )
∼= //

s(F )

��

id

**
Φ(FT ) ⊕ Φ(FF )

s(FT )

��
s(FF )

��

id⊕Φ(α)// Φ(FT ) ⊕ Φ(F ′
F )

s(FT )
��

s(F ′
F

)

��

∼= // Φ(F )

s′(F )

��
F (F )

∼= //

id

44F (FT ) ⊕ F (FF )
id⊕F (α)// F (FT ) ⊕ F (F ′

F )
∼= // F (F )
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Hence the external rectangle commutes, which proves precisely that s(F ) = s′(F ).

VI. s(−) is compatible with any maps A → B, for A and B coherent sheaves: Given

a map f : A → B, write A = AF ⊕ AT and B = BF ⊕ BT . Then s will be compatible with Φ(f)

and F (f) because it is compatible with the maps AF → BF , AF → BT , and AT → BT .

VII. s(−) is compatible with triangles of the type 0 → A → B → C → 0 for A and B

locally free: The last thing to show is that given a short exact sequence of coherent sheaves on

X, 0 → A→ B → C → 0, the maps s(A), s(B) and s(C) give a morphism of triangles

Φ(A) //

s(A)
��

Φ(B) //

s(B)
��

Φ(C) //

s(C)
��

Φ(A)[1]

s(A)[1]
��

F (A) // F (B) // F (C) // F (A)[1]

(3.2)

First of all we will analyze the map Φ(B) → Φ(C). We know that Φ(B) is supported in degree

M , whereas Φ(C) is supported in degrees M and M − 1 hence, by [Dol60], as a complex we have

Φ(C) ∼= H M (φ(C))[−M ] ⊕H M (φ(C))[−M + 1] (in a non-canonical way). The situation looks as

follows:

H M (Φ(B))[−M ] //

**TTTTTTTTTTTTTTTT
H M (Φ(C))[−M ]

**UUUUUUUUUUUUUUUUU

H M−1(Φ(C))[−M + 1] //

0

OO

H M (Φ(A))[−M + 1]

We will now show that the induced maps Φ(B) → H M−1(Φ(C))[−M+1] as well as H M (Φ(C))[−M ] →

Φ(A)[1] are zero in Db
Coh(Y ) for some choice of a decomposition Φ(C) ∼= H M−1(Φ(C))[−M + 1]⊕

H M (Φ(C))[−M ]. In fact, consider a locally free resolution of p∗1C, C̄−1 → C̄0. Then the map

B → C induces a map of complexes

(p∗1B ⊗ B
M )[−M ] // (C̄0 ⊗ B

M )[−M ]

(C̄−1 ⊗ B
M )[−M + 1]

OO

now since the complexes are direct sums of complexes of vector spaces over k(pi, qi), we can write

the complex on the right as a direct sum of its cohomology groups and get a map of complexes

(p∗1B ⊗ B
M )[−M ] //

(H M (p∗1(C)
L
⊗ B

M ))[−M ]

⊕

(H M−1(p∗1(C)
L
⊗ B

M ))[−M + 1]
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and by pushing forward to Y we get a map of complexes

Φ(B) //
p2∗(H

M (p∗1(C)
L
⊗ B

M ))[−M ] ∼= H M (Φ(C))[−M ]

⊕

p2∗(H
M−1(p∗1(C)

L
⊗ B

M ))[−M + 1] ∼= H M−1(Φ(C))[−M + 1]

this proves precisely that the first map in question is zero (p2∗ is exact here because the sheaves are

flasque). For the second map we can reason as follows: since the map Φ(B) → H M−1(φ(C))[−M+

1] is zero, it follows that the composition Φ(B) → H M (Φ(C))[−M ] → Φ(A)[1] is zero, the result

follows if the map

Hom(H M (Φ(C))[−M ],Φ(A)[1]) → Hom(Φ(B),Φ(A)[1])

is injective, i.e. the map

Ext1(H M (Φ(C)),H M (Φ(A))) → Ext1(H M (Φ(B)),H M (Φ(A)))

is injective. A short computation shows that the map in question is
e
⊕

i=1

⊕

r

H
M (Φ(A))/mqiH

M (Φ(A))
α
−→

e
⊕

i=1

⊕

ji

H
M (Φ(A))/mqiH

M (Φ(A))

where ji ≤ r and there exists a basis such that α =

















1

. . .

1

0 . . . 0

















where π is an equalizer at Q, hence it is injective as desired.

We’re finally ready to show that

Φ(C) //

��

Φ(A)[1]

��
F (C) // F (A)[1]

commutes. To do this, take the same decomposition Φ(C) ∼= H M−1(Φ(C))[−M+1]⊕H M (Φ(C))[−M ]

as above. We will show that the two diagrams

H M (Φ(C))[−M ] //

��

Φ(A)[1]

��
F (C) // F (A)[1]

and H M−1(Φ(C))[−M + 1] //

��

Φ(A)[1]

��
F (C) // F (A)[1]
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are both commutative. Notice that the composition Φ(B) → H M (Φ(C))[−M ] → F (C) → F (A)[1]

is zero, because we already know that the central square in (3.2) commutes. By the same compu-

tation as above, we get that

Hom(H M (Φ(C))[−M ], F (A)[1]) → Hom(Φ(B), F (A)[1])

is again injective hence the composition H M (Φ(C))[−M ] → F (C) → F (A)[1] is zero. In the same

way, we know that H M (Φ(C))[−M ] → Φ(A) → F (A)[1] is also zero. This shows that the first

square commutes.

To show that the second square above is commutative, we just need to show that the square

H M−1(Φ(C))[−M + 1] //

��

Φ(A)[1]

��
H M−1(F (C))[−M + 1] // F (A)[1]

is commutative. But this follows from Proposition 3.3.2.

VIII. s(−) is compatible with triangles of the type 0 → A → B → C → 0 for any A

and B: in this situation we can find A′, B′ locally free and a diagram

0 // A′ //

��

B′ //

��

C // 0

0 // A // B // C // 0

Then we get

Φ(A) // Φ(B) // Φ(C) // Φ(A)[1]

s(A)[1]

yy

Φ(A′) //

��

OO

Φ(B′) //

��

OO

Φ(C) //

	

��

	

Φ(A′)[1]

	

��

OO

F (A′) //

��

F (B′) //

��

F (C) //

	

F (A′)[1]

��
F (A) // F (B) // F (C) // F (A)[1]

where the top and bottom right squares commute because Φ and F are functors, the middle square
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by part VII, and the semi-circle by part III. Therefore the boundary maps commute:

Φ(C) //

s(C)

��

Φ(A)[1]

s(A)[1]

��
F (C) // F (A)[1]

Lemma 3.3.6. In the setup of Theorem 3.3.3, let A, B be two torsion coherent sheaves on X.

Consider a coherent sheaf A′ on X with a surjection A′ → A. Consider a map

Φ(A) → F (B)

that induces the zero map on all cohomology groups. If the composition Φ(A′) → Φ(A) → F (B) is

zero, then the map is zero to begin with.

Proof. We know that

Φ(A) ∼= p2∗(Tor1(B, p∗1A))[−M + 1] ⊕ p2∗(B ⊗ p∗1A)[−M ]

(since B is supported at a finite number of points and hence is flasque). Moreover, we know that

F (B) is isomorphic to Φ(B) (even if we haven’t already established an isomorphism of functors

yet) so we also know that

F (B) ∼= p2∗(Tor1(B, p∗1B))[−M + 1] ⊕ p2∗(B ⊗ p∗1B)[−M ]

Fix two isomorphisms as above. Now if we know that the given map Φ(A) → F (B) is zero on

cohomology, the map can be represented by a map

p2∗(B ⊗ p∗1A)[−M ] → p2∗(Tor1(B, p∗1B))[−M + 1]

i.e. an element of Ext1(p2∗(B ⊗ p∗1A), p2∗(Tor1(B, p∗1B))). Then it suffices to show that the map

Ext1(p2∗(B ⊗ p∗1A), p2∗(Tor1(B, p∗1B))) → Ext1(p2∗(B ⊗ p∗1A
′), p2∗(Tor1(B, p∗1B)))

is injective.

But since A′ surjects onto A, we have a surjection p2∗(A
′ ⊗ B

M ) → p2∗(A⊗ B
M ) and both of

these sheaves are supported at the points q1, . . . , qt, hence this is a surjection of vector spaces and

therefore it splits. Hence the map on Ext1 above is injective.
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Theorem 3.3.7. Consider a functor F : Db
Coh(X) → Db

Coh(Y ) and assume that dim(X) = 1 and

that there exists an isomorphism of triangulated functors s : Φ → F on the full subcategory of

coherent sheaves placed in degree zero. Then s extends to an isomorphism of triangulated functors

on the whole Db
Coh(X).

Proof. Consider a complex C• ∈ Db
Coh(X). Then by [Dol60] C• ∼= ⊕H i(C•)[−i], in a non-canonical

way. Choose one such isomorphism for each C•. By Theorem 3.3.3, since both functors are

compatible with shifting, we immediately get an isomorphism s(C•) : Φ(C•) → F (C•).

Now consider a map C• → D•. This is the same as a map ⊕H i(C•)[−i] → ⊕H i(D•)[−i], and

again since the two functors are compatible with shifting, and X has dimension 1, it is enough to

show that s(−) is compatible with maps F → G and F → G [1], where F and G are sheaves.

The first case follows from the fact that s is an isomorphism of triangulated functors. A map

α : F → G [1] corresponds to an element in Ext1(F ,G ) so we have a short exact sequence

0 → G → H → F → 0

and by Theorem 3.3.3 we get an isomorphism of triangles

Φ(G ) //

s(G )
��

Φ(H ) //

s(H )
��

Φ(F )

s(F )
��

Φ(α) // Φ(G )[1]

s(G )[1]
��

F (G ) // F (H ) // F (F )
F (α) // F (G )[1]

hence s is compatible with α. The fact that s is compatible with triangles is immediate.

Proof of Theorem 3.1.2. This follows immediately from Theorem 3.3.3 and Theorem 3.3.7.

Remark 3.3.8. Notice that any functor satisfying the hypothesis of 3.1.2 will not be full and will

not satisfy

HomDb
Coh

(Y )(F (F ,G [j]) = 0 if j < 0

for all F ,G ∈ OX (take for example F to be supported at one of the pi’s). Hence this improves

the result of [CS07].
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3.4 A Spectral Sequence

Even when we don’t know how to build a kernel out of the sheaves B
i that we constructed in

Theorem 3.1.1, these sheaves still satisfy some good properties. As an example, we will show that

the analogue of the Cartan-Eilenberg Spectral Sequence converges when the dimension of X is one.

Consider a Fourier-Mukai functor ΦE with E ∈ Db
Coh(X × Y ). Then for each locally free sheaf

E ∈ Coh(X) the Cartan-Eilenberg Spectral Sequence gives

Epq2 = Rpp2∗(H
q(E) ⊗ p∗1E ) ⇒ H

p+q(ΦE(E ))

Now assume F is an exact functor Db
Coh(X) → Db

Coh(Y ), and suppose we computed the coho-

mology sheaves B
i of the prospective kernel in Db

Coh(X × Y ) as in Theorem 3.1.1. Then we have

the following:

Proposition 3.4.1. For any X, Y smooth projective and E a locally free sheaf on X the following

sequence is exact:

0 → R1p2∗(B
M ⊗ p∗1E ) → H

M+1(F (E )) →

→ p2∗(B
M+1 ⊗ p∗1E ) → R2p2∗(B

M ⊗ p∗1E ) → H
M+2(F (E ))

Proof. Assume that there is an embedding X → Pd. Then for every m > 0 we have a short exact

sequence 0 → OX → OX(m)⊕(d+1) → Km → 0 where Km is a locally free sheaf.

Let E be a locally free sheaf on X. Then by tensoring the sequence above with E we get a short

exact sequence

0 → E → E (m)⊕(d+1) → Km ⊗ E → 0

Choose m high enough so that R1p2∗(B
M⊗p∗1(E (m))) = 0. Assume that F (E ) ∈ D

[M,N ]
Coh (Y ) for all

coherent locally free sheaves E on X (again, we can do this by [Orl97, Lemma 2.4]). By applying

the functor F and then taking cohomology we get a long exact sequence

0 → H
M (F (E )) → H

M (F (E (m)))⊕(d+1) → H
M (F (Km ⊗ E )) → H

M+1(F (E )) → . . .

By Proposition 3.2.3, for any coherent locally free sheaf F we have a functorial isomorphism

H
M (F (F ))

∼=
−→ p2∗(B

M ⊗ p∗1F )
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Then we get the following diagram:

. . . // H M (F (E (m)))⊕(d+1) //

��

H M (F (Km ⊗ E )) //

∼=
��

H M+1(F (E )) // . . .

. . . // p2∗(B
M ⊗ p∗1E (m)⊕(d+1)) // p2∗(B

M ⊗ p∗1(Km ⊗ E )) // R1p2∗(B
M ⊗ p∗1E ) // 0

so there exists a map

R1p2∗(B
M ⊗ p∗1E ) → H

M+1(F (E ))

By Theorem 3.1.1 we also have a map H M+1(F (E )) → p2∗(B
M+1 ⊗ p∗1E ). The fact that the

sequence

0 → R1p2∗(B
M ⊗ p∗1E ) → H

M+1(F (E )) → p2∗(B
M+1 ⊗ p∗1E )

is exact follows from diagram chasing. This is the first part of our sequence.

Now since the sequence above is exact for any E coherent locally free sheaf on X, it will also

be exact for Km ⊗ E . So we have the following diagram:

0

��
R1p2∗(B

M ⊗ p∗1(Km ⊗ E ))

��
. . . // H M+1(F (E )) //

��

H M+1(F (E (m)))⊕(d+1) //

∼=��

H M+1(F (Km ⊗ E ))

��

// . . .

. . . // p2∗(B
M+1 ⊗ p∗1E

// p2∗(B
M+1 ⊗ p∗1E (m)⊕(d+1)) // p2∗(B

M+1 ⊗ p∗1(Km ⊗ E )) // . . .

by diagram chasing we get a map

p2∗(B
M+1 ⊗ p∗1E ) → R1p2∗(B

M ⊗ p∗1(Km ⊗ E ))

This has an obvious map to H M+2(F (E )) given by the composition

R1p2∗(B
M ⊗ p∗1(Km ⊗ E )) → H

M+1(F (Km ⊗ E )) → H
M+2(F (E ))

but since R1p2∗(B
M ⊗ p∗1E (m)) = R2p2∗(B

M ⊗ p∗1E (m)) = 0, we know that

R1p2∗(B
M ⊗ p∗1(Km ⊗ E )) ∼= R2p2∗(B

M ⊗ p∗1E )

this gives the second part of our sequence,

p2∗(B
M+1 ⊗ p∗1E ) → R2p2∗(B

M ⊗ p∗1E ) → H
M+2(F (E ))

Exactness of the whole sequence again follows by diagram chasing.
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Proposition 3.4.2. Let X, Y smooth projective varieties over an algebraically closed field with

dim(X) = 1, F : Db
Coh(X) → Db

Coh(Y ) an exact functor, and consider the sheaves B
i as in

Theorem 3.1.1. Then for all locally free sheaves E on X there is a spectral sequence

Epq2 = Rpp2∗(B
q ⊗ p∗1E ) ⇒ H

p+q(F (E ))

Proof. The only nonzero terms of the spectral sequence are E0,q
2 and E1,q

2 . Therefore all the

differentials are zero and to show that the SS converges we need to show:

• There exists a map F 1Hq = E1,q−1
2 = R1p2∗(B

q−1 ⊗ p∗1E ) →֒ H q(F (E ))

• E0,q
2 = p2∗(B

q ⊗ p∗1E ) ∼= H q(F (E ))/R1p2∗(B
q−1 ⊗ p∗1E )

Since dim X = 1 we have R2p2∗(B
q ⊗ p∗1E ) = 0. Therefore the exact sequence of Proposition

3.4.1 becomes a short exact sequence

0 → R1p2∗(B
M ⊗ p∗1E ) → H

M+1(F (E )) → p2∗(B
M+1 ⊗ p∗1E ) → 0 (3.3)

Choose m high enough so that Rpp2∗(B
q ⊗ p∗1(E (m))) = 0 for all q and all p > 0, and such that

H i(F (E (m))) ∼= p2∗(B
i⊗p∗1E (m)) for all i (this can be done by Theorem 3.1.1). Then using again

the short exact sequence in the proof of Proposition 3.4.1

0 → E → E (m)⊕(d+1) → Km ⊗ E → 0

we get that

R1p2∗(B
i ⊗ p∗1(E ⊗Km)) ∼= R2p2∗(B

i ⊗ p∗1E ) = 0

for all i.

Now assume by induction that we get the same short exact sequence as (3.3) starting with

B
M+n−1 for any locally free sheaf E :

0 → R1p2∗(B
M+n−1 ⊗ p∗1E ) → H

M+n(F (E )) → p2∗(B
M+n ⊗ p∗1E ) → 0

then the same exact sequence will hold if we substitute E with Km ⊗ E :

0 → R1p2∗(B
M+n−1 ⊗ p∗1(Km ⊗ E )) → H

M+n(F (Km ⊗ E )) → p2∗(B
M+n ⊗ p∗1(Km ⊗ E )) → 0
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But since R1p2∗(B
i ⊗ p∗1(E ⊗Km)) = 0 this gives an isomorphism

H
M+n(F (Km ⊗ E )) ∼= p2∗(B

M+n ⊗ p∗1(Km ⊗ E ))

Hence from the diagram

. . . // H M+n(F (Km ⊗ E )) //

∼=
��

H M+n+1(F (E ))

��

// . . .

. . . // p2∗(B
M+n ⊗ p∗1(Km ⊗ E )) // R1p2∗(B

M+n ⊗ p∗1E ) // 0 0 // p2∗(B
M+n+1 ⊗ p∗1E ) // . . .

we get a sequence

0 → R1p2∗(B
M+n ⊗ p∗1E ) → H

M+n+1(F (E )) → p2∗(B
M+n+1 ⊗ p∗1E ) (3.4)

which is exact by diagram chasing. Again, we also have the corresponding exact sequence for the

locally free sheaf Km ⊗ E :

0 → R1p2∗(B
M+n ⊗ p∗1(Km ⊗ E )) → H

M+n+1(F (Km ⊗ E )) → p2∗(B
M+n+1 ⊗ p∗1(Km ⊗ E ))

and the first term of the sequence is zero, i.e. the map H M+n+1(F (Km ⊗ E )) → p2∗(B
M+n+1 ⊗

p∗1(Km ⊗ E )) is injective. This is reflected in the following diagram:

. . . // H M+n+1(F (E )) //

��

H M+n+1(F (E (m)))⊕(d+1)

∼=
��

// H M+n+1(F (Km ⊗ E )) //
� _

��

. . .

0 // p2∗(B
M+n+1 ⊗ p∗1E ) // p2∗(B

M+n+1 ⊗ p∗1E (m)⊕(d+1)) // p2∗(B
M+n+1 ⊗ p∗1(Km ⊗ E )) // . . .

By diagram chasing this tells us that the map

H
M+n+1(F (E )) → p2∗(B

M+n+1 ⊗ p∗1E )

is actually surjective, hence (3.4) becomes a short exact sequence, and this completes the proof.
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