Heart Rate Recovery after Cognitive Challenge is Preserved with Age

Olga V. Shcheslavskaya, Ph.D.,
Division of Behavioral Medicine, Department of Psychiatry, Columbia University, Medical Center, New York, NY

Matthew M. Burg, Ph.D.,
Yale University School of Medicine, New Haven, CT; Columbia University School of Medicine, New York, NY

Paula S. McKinley, Ph.D.,
Division of Behavioral Medicine, Department of Psychiatry, Columbia University, Medical Center, New York, NY

Joseph E. Schwartz, Ph.D.,
Columbia University School of Medicine, New York, NY

William Gerin, Ph.D.,
Department of Biobehavioral Health, College of Health and Human Development, Pennsylvania State University, University Park, PA

Carol D. Ryff, Ph.D.,
Department of Psychology, University of Wisconsin, Madison, WI; Institute on Aging and Adult Life, University of Wisconsin, Madison, WI

Maxine Weinstein, Ph.D.,
Center for Population and Health, Georgetown University, Washington, DC

Teresa E. Seeman, Ph.D., and
Division of Geriatrics, UCLA David Geffen School of Medicine, Los Angeles, CA

Richard P. Sloan, Ph.D.
Division of Behavioral Medicine, Department of Psychiatry, Columbia University, Medical Center, New York, NY

Abstract

Objectives—To investigate the effect of age on heart rate recovery (HRR) from cognitive challenge.

Background—Aging is an independent risk factor for the development of cardiovascular disease. HRR from exercise is an established predictor of cardiac morbidity and mortality, and evidence suggests that HRR from cognitive challenge is predictive of cardiac morbidity as well. Aging is associated with delayed HRR from exercise stress, but little is known about the effect of aging on HRR from psychological stress. We tested the hypothesis that age would be related to delayed HRR from psychological stress.

Correspondence should be addressed to Olga V. Shcheslavskaya, PhD, Division of Behavioral Medicine, Department of Psychiatry, Columbia University Medical Center; os2184@columbia.edu; 1150 St. Nicholas Ave Suite 121B, New York, NY 10032.
Methods—HRR following exposure to cognitive challenge (mental arithmetic and Stroop) was investigated in a sample of 436 participants aged 35–84 in MIDUS II, a national study of health and well-being. HRR was measured as (1) the amount of change from the stress level; (2) time to recover; and (3) the area under the curve (AUC). The analyses were controlled for medical comorbidities and medications that influence HR, such as BMI, smoking, sex, menopausal status, and amount of physical activity/exercise.

Results—There was no effect for age on HRR as evaluated by all three recovery assessment methods.

Conclusions—Contrary to expectation and in contrast to findings concerning HRR from exercise, HRR from cognitive challenge was preserved with age. These findings require further inquiry into differential mechanism(s) underlying HRR from psychological vs. exercise stress, including any role for improved emotion regulation with greater age.

Keywords
heart rate recovery; aging; autonomic nervous system; area under the curve; rumination

INTRODUCTION

Aging is strongly associated with elevated risk for cardiovascular morbidity and mortality. For example, the prevalence of coronary artery disease and hypertension rises significantly with age, while over 80% of cardiovascular deaths occur in people aged 65 or older (1). In an effort to understand these findings, the Baltimore Longitudinal Study on Aging reported age-related changes to cardiovascular structure and function that per se represent a risk for the development of cardiovascular disease even in otherwise healthy individuals (2). Aging is associated with changes in cardiac autonomic control, including chronically elevated sympathetic activation (3,4), which is also seen in essential hypertension (5). This chronic elevation in sympathetic activity may be one factor that contributes to arterial stiffening and the associated increase in the vascular afterload on the heart seen as age increases (2,5). At rest, age-related vascular changes are compensated for by alterations in the structure of the heart and its contractile properties (2). These effects however, become striking during exposure to physical challenge. For example, during exercise, older individuals demonstrate an attenuated heart rate response, which is indicative of decreased sensitivity to β-adrenergic stimulation (2,5). Moreover, the effects of age persist during the post-exercise recovery period, as older individuals recover considerably more slowly compared to their younger counterparts (6–9).

In both cross-sectional (10) and longitudinal (11,12) studies, heart rate recovery (HRR) from physical exercise is an important predictor of cardiovascular health. Delayed HRR after exercise is associated with carotid atherosclerosis (10) and acute cardiac events (11,12). Indeed, the recovery literature provides compelling evidence demonstrating the prognostic value of HRR from exercise for both cardiovascular and all-cause mortality in patients (6,13) and initially healthy cohorts (14–16). Like recovery from exercise, faster recovery following cognitive challenge is also associated with better cardiovascular outcomes in healthy cohorts (17–19). For example, Hepioniemi et al. (17) found that faster HRR after the mental arithmetic task was associated with lower incidence of atherosclerosis at the 2-year follow-up assessment. Since delayed HRR from both exercise and cognitive challenge increases risk for cardiovascular morbidity, the effect of age on this parameter may be important for understanding more completely the relationship of age to disease.

Existing research reveals that age is associated with poor HRR from physical exercise (6–9). Only one study, however, has addressed the influence of age on HRR from cognitive challenge. Steptoe et al. (20) investigated HRR after three 5-minute cognitive tasks derived from the
Wechsler Adult Intelligence Scale and Wechsler Memory Scale in a sample of 152 healthy men and women aged 27–80 years. The averaged data from the three tasks and corresponding recovery periods were aggregated, and a repeated measures approach was used to analyze the effects of age, education, and gender on HRR. The results showed that irrespective of gender, older participants had slower HRR compared to younger participants. In addition, those older participants who had lower education recovered more slowly compared to those older participants who had higher education. While suggestive, the reliance of these analyses on averaged scores rather than on a more complete post-stress trajectory of HRR limits the interpretation of these findings. In summary, previous studies have established the contribution of age to incident cardiovascular events and revealed that age-related changes in cardiovascular autonomic control, structure, and function represent independent risk factors for the development of cardiovascular disease (2,5). HRR from both exercise and cognitive challenge have been found to predict cardiovascular morbidity (10–12,17), but only one study has investigated the association of age to HRR from cognitive challenge (20), and this study has important limitations. The purpose of the present study was to test the hypothesis that greater age would be associated with slower HRR from cognitive challenge.

METHODS

Participants

The data for the current study are from the MIDUS II, a 9-year follow-up of the MIDUS I cohort. MIDUS is a national study of midlife development in the USA. MIDUS II included four new studies, one of which, the Biomarker Study conducted from July 2004 to June 2006, included a laboratory-based psychophysiology protocol from which the current data were drawn. Among 507 participants in this project, laboratory heart rate data were available for 436 participants. The age of these 207 male and 229 female participants ranged from 35 to 84 (mean = 58.26 +/- 11.46 years). Table 1 provides detailed information concerning demographics, BMI, level of physical exercise, smoking status, menopausal status, medical comorbidities, and medications that can influence cardiac autonomic control. Thirty seven participants (8.5% of the sample) did not show an HR increase in response to the cognitive challenges, and therefore had no HR recovery. Data from these 37 participants was not included in the analysis. This study was approved by the IRB at each participating center.

Procedures

Participants traveled to one of three regional sites (Georgetown University, UCLA or University of Wisconsin, Madison) for an overnight stay in a General Clinical Research Center. The psychophysiology protocol took place during the following morning after a light breakfast with no caffeinated beverages.

ECG electrodes were placed on the left and right shoulders, and in the left lower quadrant. The participant was seated, and a keypad for responding to the stress tasks was secured in a comfortable position relative to the dominant hand. The protocol order was as follows: seated baseline (11 minutes); psychological stress task 1 (mental arithmetic or Stroop task - 6 minutes); recovery 1 (6 minutes); psychological stress task 2 (mental arithmetic or Stroop task - 6 minutes); recovery 2 (6 minutes). Task order was counterbalanced. Participants were instructed to remain silent throughout the procedures.

Cognitive stressors

Mental Arithmetic—A computer-administered mental arithmetic task (21) was utilized. The task presented addition or subtraction problems that were adjusted in level of difficulty based on participants’ performance.
Stroop Color-Word Task—In this computer-administered version of the Stroop task, a color name (blue, green, yellow, or red) was presented on a computer monitor in a color that was either congruent or incongruent with the name. The participants’ task was to press a key on the keypad corresponding to the color in which the word was presented rather than the color name.

Acquisition and Processing of ECG Signals

Analog ECG signals were digitized at 500 Hz by a National Instruments A/D board and passed to a microcomputer for collection. The ECG waveform was submitted to an R-wave detection routine implemented by proprietary event detection software, resulting in an RR interval series. Errors in marking of R-waves were corrected interactively following established procedures (22,23). HR was calculated based on 58.75 and 60-sec epochs; the epoch length was adjusted to cover the entire recovery period.

Assessment of Recovery

HR data were averaged on a minute-by-minute basis for the Math and the Stroop tasks and associated recovery periods. Mean baseline HR was assessed as an average of minutes 5–10. The averaging was performed in order to obtain a stable estimate of HR response and to improve the reliability of our findings (24).

HRR was evaluated using the three different methods reported in studies that measure recovery (20,25,26). The first method assessed the amount of HR change, operationalized as the difference between the averaged reactivity and the averaged recovery period (20). The second method computed the time required for HR to recover by 50, 75 % (26), or 100% (25). Finally, we computed HRR as area under the curve (AUC), as illustrated by Figure 1 (26), and operationalized as the ratio of R2/(R1 + R2). Following this formulation, a greater ratio reflects faster recovery.

Statistical Analysis

All analyses were conducted using SPSS 17 (SPSS Inc., 2009). Replicating Steptoe et al. (20), age was categorized into 5 groups according to the established MIDUS guidelines (32–44, 45–54, 55–64, 65–74, and 75–84 years old), and HR values were averaged across the baseline and stress, and recovery periods. Repeated measures ANOVA was then conducted with age as the independent variable. Unlike Steptoe et al. (20), we did not include education in the model, because all but 3 of our participants graduated from high school and therefore fell into the “high education” category.

Time to recovery was also analyzed, using multiple linear regression with age and the confounders predicting the 7 recovery levels as an categorical variable (corresponding to the 6 minutes of the recovery period and the additional 7th category for those participants who never met the specified recovery criteria). As time to recovery was assessed using 3 different criteria (50%, 75% and 100%), we report the results of 3 different analyses. A final analysis of HRR AUC also was conducted using multiple linear regression. All the analyses controlled for the effects of the medical, demographic, and life style factors known to affect cardiovascular functioning. To account for the effects of disease conditions and medications that can influence cardiac autonomic control, a dummy variable classifying each participant as either having or not having disease conditions/taking medications was entered in the analysis. This ordinal variable was created using classification guidelines from the CARDIA study (27). Three dummy variables classifying participants’ smoking status were created; two of them (current smoker and ex-smoker) were entered in the model, while the third one (never smoked) was used as a reference category. Menopausal status was classified as pre-, peri- and post-menopausal; post-menopausal and peri-menopausal status variables were entered in the
Results

Repeated Measures Analysis—The repeated measures ANOVA demonstrated no age effect on the HR change across the baseline, reactivity, and recovery periods (F (8, 401) = 1.738, p=.104). Figure 2 depicts mean HR changes for the five age groups adjusted for the effects of the covariates.

Time to Recovery—Table 2 presents the results of analyses of time to 50%, 75%, and 100% HR recovery. Like the repeated measures analysis, there was no significant effect of age on the time to recovery as assessed in this way.

Area under the Curve—Analyses for area under the curve appear in Table 2. As the table shows, and as Figure 3 illustrates, there was no significant effect of age on the HRR AUC.

DISCUSSION

In the current investigation, HRR from cognitive challenge was preserved with age as measured by all three recovery assessment methods. To the best of our knowledge, only Steptoe et al. (20) has previously investigated the relationship between age and HRR from cognitive challenge. They conducted a repeated measures analysis on the average HR during baseline, three cognitive tasks, and three recovery periods and found that greater age was associated with slower recovery (20). However, certain methodological features of their analysis may have contributed to this finding. Rather than collect data on a relatively continuous set of age categories, Steptoe et al. compared 65–80 year olds to 27–42 year olds. In addition, their sample size, 158, was considerably smaller than ours. Using a larger sample with a broader range of age categories (32–44, 45–54, 55–64, 65–74, and 75–84 years olds), we reproduced their repeated measures analytic approach but found no effect of age on HRR.

Analysis of the mean value of HRR does not reflect the dynamics of recovery, which may provide important insights concerning the functioning of cardiovascular system. For example, the same amount of HR change may occur either immediately after stressor termination, or require a prolonged period of recovery, which in the current study was 6 minutes. To address this possibility, we measured HRR recovery in one minute epochs and analyzed the occurrence of HRR at 50%, 75%, and 100% levels. Moreover, we also conducted combined analysis of the amount and speed HRR by computing AUC (25,26). Neither HRR measured as time to recovery nor AUC was associated with age. The combination of the comprehensive evaluation of recovery, employing three different analytic approaches, and the large dataset that included both male and female participants of diverse age range provides confidence in our finding that HRR from cognitive challenge is preserved across the age spectrum.

This finding contrasts with evidence showing that age is related to slower recovery from exercise and may derive from the different physiology of the two responses. HR is the product of both sympathetic and parasympathetic cardiac control. In the case of exercise challenge, the initial HR response is driven primarily by parasympathetic withdrawal but as exercise progresses, the HR-increasing contribution of the sympathetic nervous system rises dramatically. In the case of psychological challenge, the initial HR response also is driven by...
parasympathetic withdrawal but the sympathetic contribution to the HR reactivity is smaller than that observed in exercise studies (28,29). The relatively greater sympathetic contribution to the HR response to exercise may lead to greater residual sympathetic activation at the termination of the stressor, thus slowing HR recovery. Because aging is associated with increased sympathetic cardiac control both at rest and in response to stress (3,4), HR in older participants may indeed take longer to recover after exercise.

Studies of RR interval variability reveal that cardiac parasympathetic modulation decreases with age (30,31), but no studies have examined the role of age on recovery of parasympathetic control after cognitive challenge. HRR from cognitive challenge may possibly be preserved in older participants because the restoration of parasympathetic HR modulation may also be preserved with age. Investigation of the age-related differences in the recovery of parasympathetic and sympathetic cardiac control however, is beyond the scope of the present study, and should be addressed by the future research. It is also possible that the preservation of the HRR after cognitive challenge with age may be the product of psychological factors. For example, cognitive challenge, in contrast to exercise, can lead to post-challenge rumination, which has consistently been shown to delay cardiovascular recovery from that challenge (32–34). Thus, Glynn et al. (34) compared the effects of mental re-creation of subjects’ performance on mental arithmetic and exercise tasks on cardiovascular recovery, and found that rumination delayed cardiovascular recovery after the mental arithmetic task but not after exercise. Aging is associated with decreased rumination (35) and improved emotion regulation (36,37). Mood induction studies demonstrate that, compared to their younger counterparts, older adults are better able to restore their mood after watching films and listening to music that elicited negative emotions (38,39). Thus, we speculate that a reduction in the tendency to ruminate may buffer the age-associated deterioration of cardiovascular structure and function.

Our findings are limited by the cross-sectional nature of the present investigation as heart rate recovery preservation in older individuals may represent a cohort effect. The longitudinal follow-up is necessary to validate our results. Because MIDUS II lacked any rumination-related measures, we were unable to test the hypothesis that HRR is preserved older adults because they engage in superior emotion regulation following cognitive stress.

To conclude, we found that HRR after cognitive challenge, measured comprehensively using 3 methods was preserved with age. This finding remained after adjustment for several potential demographic, life-style, and medical confounders. Future research should explore the role that changes in emotion regulation with increasing age may play in HR recovery from cognitive challenge.

Acknowledgments

This study was supported by a grant from the National Institute on Aging (P01-AG020166) to conduct a longitudinal follow-up of the MIDUS (Midlife in the U.S.) investigation (Dr. Ryff). The original study was supported by a grant from the John D. and Catherine T. MacArthur Foundation Research Network on Successful Midlife Development (Dr. Ryff). We thank the staff of the Clinical Research Centers at the University of Wisconsin-Madison (UW), UCLA, and Georgetown University for their support in conducting this study. The study also received support from M01-RR023942 (Georgetown), M01-RR00865 (UCLA) from the General Clinical Research Centers Program and 1UL1RR025011 (UW) from the Clinical and Translational Science Award (CTSA) program of the National Center for Research Resources, National Institutes of Health and from the Nathaniel Wharton Fund. We thank the staff of the Clinical Research Centers at the University of Wisconsin-Madison (UW), UCLA, and Georgetown University for their support in conducting this study. We also appreciate helpful advice of Ivy Chen, MST, who consulted on many important aspects of the statistical analysis for the present paper.

Glossary

| HR | heart rate |
HRR heart rate recovery
AUC area under the curve
BMI body mass index
ECG electrocardiogram

References

34. Glynn LM, Christenfeld N, Gerin W. The role of rumination in recovery from reactivity:
[PubMed: 12271102]
35. Phillips LH, Henry JD, Hosie JA, Milne AB. Age, anger regulation and well-being. Aging & Mental
36. Gross JJ, Carstensen LL, Pasupathi M, Tsai J, Skorpen CG, Hsu AYC. Emotion and aging:
37. Mroczek DK, Kolarz CM. The effect of age on positive and negative affect: A developmental
9866191]
38. Phillips LH, Henry JD, Hosie JA, Milne AB. Effective regulation of the experience and expression
of negative affect in old age. Journals of Gerontology Series B-Psychological Sciences and Social
emotional reactivity and emotion regulation in a negative mood induction procedure. International
Figure 1.
Computation of the Area Under the Curve.
Figure 2.
HR values for the baseline, reactivity, and recovery periods for the 5 age groups (means and standard errors; adjusted for the effects of the covariates).
Figure 3.
Age and HRR AUC (adjusted for the effects of the covariates).
Table 1

Sample characteristics

<table>
<thead>
<tr>
<th>Variable</th>
<th>N</th>
<th>Mean and SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>436</td>
<td>58.26±11.46</td>
</tr>
<tr>
<td>BMI</td>
<td>436</td>
<td>29.60±6.56</td>
</tr>
<tr>
<td>Diseases altering cardiac autonomic function</td>
<td></td>
<td></td>
</tr>
<tr>
<td>High Blood pressure</td>
<td>140</td>
<td>N/A</td>
</tr>
<tr>
<td>Heart Disease</td>
<td>46</td>
<td></td>
</tr>
<tr>
<td>Circulation problems</td>
<td>29</td>
<td></td>
</tr>
<tr>
<td>TIA or stroke</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>Depression</td>
<td>85</td>
<td></td>
</tr>
<tr>
<td>Diabetes</td>
<td>48</td>
<td></td>
</tr>
<tr>
<td>Medications altering cardiac autonomic function</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beta-blockers</td>
<td>57</td>
<td>N/A</td>
</tr>
<tr>
<td>AV-node blockers</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Anticholinergic</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>Sympathomimetic</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Have any of the diseases/take any medications listed above</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>327</td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>109</td>
<td></td>
</tr>
<tr>
<td>Sex</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>207</td>
<td>N/A</td>
</tr>
<tr>
<td>Female</td>
<td>229</td>
<td></td>
</tr>
<tr>
<td>Menopausal status (women)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pre-menopausal</td>
<td>54</td>
<td></td>
</tr>
<tr>
<td>Peri-menopausal</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>Post-menopausal</td>
<td>157</td>
<td></td>
</tr>
<tr>
<td>Smoking</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Never</td>
<td>235</td>
<td>N/A</td>
</tr>
<tr>
<td>Smoker</td>
<td>47</td>
<td></td>
</tr>
<tr>
<td>Ex-smoker</td>
<td>154</td>
<td></td>
</tr>
<tr>
<td>Exercise/physical activity (hours per week)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vigorous</td>
<td>436</td>
<td>0.99±2.83</td>
</tr>
<tr>
<td>Moderate</td>
<td>436</td>
<td>2.63±5.40</td>
</tr>
<tr>
<td>Light</td>
<td>436</td>
<td>1.57±3.85</td>
</tr>
<tr>
<td>Predicted variable</td>
<td>50% HRR</td>
<td>75% HRR</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>Age</td>
<td>-0.09</td>
<td>0.08</td>
</tr>
<tr>
<td>Disease/medications</td>
<td>0.044</td>
<td>0.175</td>
</tr>
<tr>
<td>BMI</td>
<td>-0.002</td>
<td>0.11</td>
</tr>
<tr>
<td>Sex</td>
<td>0.014</td>
<td>0.238</td>
</tr>
<tr>
<td>Vigorous exercise (hrs/week)</td>
<td>-0.014</td>
<td>0.26</td>
</tr>
<tr>
<td>Moderate exercise (hrs/week)</td>
<td>0.031</td>
<td>0.18</td>
</tr>
<tr>
<td>Light exercise (hrs/week)</td>
<td>0.001</td>
<td>0.03</td>
</tr>
</tbody>
</table>

Notes:

- Menopausal status was coded as a dummy variable: three categories (pre-, peri-, and post-menopausal; men coded as 0 on all the three categories), pre-menopausal is used as a reference category.
- Smoking status was coded as a dummy variable: three categories (never smoked, current smoker, ex-smoker), never smoked is used as a reference category.