A Search for Squarks and Gluinos with Recursive Jigsaw Reconstruction

Russell W. Smith

Submitted in partial fulfillment of the requirements for the degree of
Doctor of Philosophy
in the Graduate School of Arts and Sciences

COLUMBIA UNIVERSITY
2017
A search for squarks and gluinos in all hadronic final states in $\sqrt{s} = 13$ TeV proton-proton collisions using an integrated luminosity of $13.3\,\text{fb}^{-1}$ collected by the ATLAS detector at the LHC is presented. The search is the first to use Recursive Jigsaw Reconstruction, a technique to impose a particular decay tree interpretation on events. The decay tree is resolved using jigsaw rules, which define boosts between the relevant reference frames to define an uncorrelated basis of variables to describe the decay. The Recursive Jigsaw Reconstruction variables are used to define a set of selections with sensitivity to pair produced squarks and gluinos.

No excess is observed over the Standard Model background. Results are interpreted in simplified models where squarks and gluinos are pair produced and decay to jets and the lightest supersymmetric particle. These limits substantially extend the region of supersymmetric phase space excluded by previous searches.
Contents

List of Figures \hspace{1cm} iv

List of Tables \hspace{1cm} x

1 Introduction \hspace{1cm} 1

2 The Standard Model \hspace{1cm} 4
 2.1 Overview \hspace{1cm} 4
 2.2 Field Content \hspace{1cm} 4
 2.3 Deficiencies of the Standard Model \hspace{1cm} 14

3 Supersymmetry \hspace{1cm} 19
 3.1 Supersymmetric theories : from space to superspace \hspace{1cm} 19
 3.2 Minimally Supersymmetric Standard Model \hspace{1cm} 22
 3.3 Phenomenology \hspace{1cm} 28
 3.4 How SUSY solves the problems with the Standard Model \hspace{1cm} 30
 3.5 Conclusions \hspace{1cm} 33

4 The Large Hadron Collider \hspace{1cm} 34
 4.1 Accelerator Physics \hspace{1cm} 34
 4.2 Accelerator Complex \hspace{1cm} 37
 4.3 Large Hadron Collider \hspace{1cm} 38
 4.4 Dataset Delivered by the LHC \hspace{1cm} 40
5 The ATLAS detector 45

5.1 Magnets 46
5.2 Inner Detector 48
5.3 Calorimetry 52
5.4 Muon Spectrometer 56
5.5 Trigger System 62

6 Object Reconstruction 67

6.1 Primitive Object Reconstruction 67
6.2 Physics Object Reconstruction and Quality Identification 73

7 Recursive Jigsaw Reconstruction 98

7.1 Razor variables 98
7.2 Recursive Jigsaw Reconstruction 104
7.3 Variables used in the search for zero lepton SUSY 110
7.4 Conclusions 115

8 A search for squarks and gluinos in all hadronic final states with Recursive Jigsaw Reconstruction 117

8.1 Simulation samples 117
8.2 Event selection 120
8.3 Background estimation 126
8.4 Fitting procedures 143

9 Results 145

9.1 Signal region distributions 145
9.2 Systematic Uncertainties 147
9.3 Model-Independent Limits and Model-Dependent Exclusions 151

10 Conclusion 157
Bibliography 160

Appendix A Additional Control Region N-1 Figures 173

Appendix B Additional Signal Region N-1 Figures 182
List of Figures

2.1 Sombrero potential 6
2.2 Cross-sections of various Standard Model processes as measured by ATLAS 10
2.3 The interactions of the Standard Model 13
2.4 The running of Standard Model gauge couplings. The Standard Model couplings do not unify at high energies, which indicates it cannot completely describe nature through the Planck scale. 16
2.5 The dominant quantum loop correction to the Higgs mass in the Standard Model 17
2.6 Particles of the Standard Model 18

3.1 Particles of the MSSM 24
3.2 Feynman diagram showing proton decay induced by the MSSM if one does not impose \(R \)-parity 25
3.3 Simplified SUSY signals 28
3.4 SUSY production cross-sections as a function of sparticle mass at \(\sqrt{s} = 13 \) TeV [85] 29
3.5 Loop diagrams correct the Higgs mass in the MSSM 30
3.6 The running of Standard Model gauge couplings: compare to Fig. 2.4. The MSSM gauge couplings nearly intersect at high energies. 31
3.7 WIMP exclusions from direct dark matter detection experiments 32

4.1 The CERN accelerator complex. Copyright CERN 37
4.2 Schematic of an LHC dipole magnet. Copyright CERN

4.3 Photograph of a technician connecting an LHC dipole magnet. Copyright CERN

4.4 Integrated Luminosity delivered by the LHC and collected by ATLAS in the 2015 and 2016 datasets.

4.5 Simulated event with many pileup vertices

4.6 Mean number of interactions per bunch crossing in the 2015 and 2016 datasets

5.1 The ATLAS detector. Copyright CERN

5.2 The ATLAS magnet system. Copyright CERN

5.3 The ATLAS inner detector. Copyright CERN

5.4 The ATLAS pixel detector. Copyright CERN

5.5 A ring of the Semiconductor Tracker. Copyright CERN

5.6 A schematic of the Transition Radiation Tracker. Copyright CERN

5.7 The ATLAS calorimeter. Copyright CERN

5.8 A schematic of a subsection of the barrel LAr electromagnetic calorimeter. Copyright CERN

5.9 A schematic of Tile hadronic calorimeter. Copyright CERN

5.10 The ATLAS muon spectrometer. Copyright CERN

5.11 A schematic in z/η showing the location of the subdetectors of the muon spectrometer. Copyright CERN

5.12 Schematic of a Muon Drift Tube chamber. Copyright CERN

5.13 Photo of the installation of Cathode Strip Chambers and Monitored Drift Tubes. Copyright CERN

5.14 Photo of a muon Big Wheel, consisting of Thin Gap Chambers. Copyright CERN

5.15 Turn-on curves for a variety of E_T^{miss} triggers
6.1 The parameters associated to a track

6.2 Track reconstruction efficiency as a function of track p_T and η. The efficiency is defined as the number of reconstructed tracks divided by the number of generated charged particles.

6.3 Example of topoclustering on a simulated dijet event

6.4 The interactions of particles with the ATLAS detector. Solid lines indicate the particle is interacting with the detector, while dashed lines are shown where the particle does not interact.

6.5 Photon total cross sections as a function of energy in carbon and lead, showing the contributions of different processes [58]

6.6 Unconverted photon efficiency as measured in [104]

6.7 Medium muon efficiency as measured in [105]

6.8 The steps used by ATLAS to calibrate jets

6.9 Combined jet energy scale uncertainty as a function of p_T at $\eta = 0$ [112, 113].

6.10 TST E_{x}^{miss}, E_{y}^{miss}, and E_T^{miss} distributions of early $\sqrt{s} = 13$ TeV data compared with simulation after the $Z \rightarrow \mu\mu$ selection. The data sample consists of 6 pb$^{-1}$.

6.11 Resolution of TST E_T^{miss} of early $\sqrt{s} = 13$ TeV data compared with simulation after the $Z \rightarrow \mu\mu$ selection. The data sample consists of 6 pb$^{-1}$.

6.12 Scale of TST E_T^{miss} of early $\sqrt{s} = 13$ TeV data compared with simulation after the $Z \rightarrow \mu\mu$ selection. The data sample consists of 6 pb$^{-1}$.

6.13 Comparison of E_T^{miss} resolution and linearity using different E_T^{miss} algorithms with simulated $W \rightarrow e\nu$ events

6.14 Comparison of E_T^{miss} resolution using different E_T^{miss} algorithms with simulated $Z \rightarrow \mu\mu$ events
6.15 Comparison of E_{miss}^T scale using different E_{miss}^T algorithms with simulated $Z \rightarrow \mu \mu$ events 96
6.16 Comparison of E_{miss}^T distributions using different E_{miss}^T algorithms with a data sample of 80 pb$^{-1}$ after the $Z \rightarrow \mu \mu$ selection 97
6.17 Comparison of E_{miss}^T resolution using different E_{miss}^T algorithms with a data sample of 80 pb$^{-1}$ after the $Z \rightarrow \mu \mu$ selection 97

7.1 Feynman diagrams for the SUSY signals considered in this thesis 99
7.2 Frames considered when applying the razor technique, from [124]. 101
7.3 Recursive Jigsaw Reconstruction decay trees 106

8.1 Schematic leading the development of the SUSY signal regions in this thesis. A variant of this schematic is used for most SUSY searches on ATLAS and CMS. 122
8.2 Optimization of the $H_{T,4,1}^{PP}$ cut for a gluino signal model with $(m_{\tilde{g}}, m_{\tilde{\chi}_1^0}) = (1500, 700)$ GeV assuming 10 fb$^{-1}$ and an uncertainty of 20% on the background estimate. 123
8.3 Boson p_T ratio as a function of true boson p_T 131
8.4 Scale variable distributions for the photon control regions for SRC1, SRG1a, and SRS1a 135
8.5 Scale variable distributions for the W control regions for SRC1, SRG1a, and SRS1a 136
8.6 Scale variable distributions for the top control regions for SRC1, SRG1a, and SRS1a 137
8.7 Scale variable distributions for the QCD control regions for SRC1, SRG1a, and SRS1a 138
8.8 Summary of the validation region pulls. Dashes indicate the validation region is not applicable to the given signal region. 141
9.1 Scale variable distributions for the gluino signal regions 146
9.2 Scale variable distributions for the squark signal regions 147
9.3 Scale variable distributions for the compressed signal regions 148
9.4 Summary of the signal regions 150
9.5 Exclusion limits for direct production of (a) light-flavour squark pairs with
decoupled gluinos and (b) gluino pairs with decoupled squarks. Exclusion
limits are obtained from the signal region with the best expected sensitivity
at each point. The blue dashed lines show the expected limits at 95% CL,
with the yellow bands indicating the 1σ exclusions. Observed limits are
indicated by maroon curves where the solid contour represents the nominal
limit and the dashed contours indicate the 1σ exclusions. 156

A.1 Scale variable distributions for the compressed CRY regions 174
A.2 Scale variable distributions for the squark and gluino CRY regions 175
A.3 Scale variable distributions for the compressed CRW regions 176
A.4 Scale variable distributions for the squark and gluino CRW regions 177
A.5 Scale variable distributions for the compressed CRT regions 178
A.6 Scale variable distributions for the squark and gluino CRT regions 179
A.7 Scale variable distributions for the compressed CRQ regions 180
A.8 Scale variable distributions for the squark and gluino CRQ regions 181

B.1 N-1 plots for all variables used in SRC1 183
B.2 N-1 plots for all variables used in SRC2 184
B.3 N-1 plots for all variables used in SRC3 185
B.4 N-1 plots for all variables used in SRC4 186
B.5 N-1 plots for all variables used in SRC5 187
B.6 N-1 plots for all variables used in SRG1a 188
B.7 N-1 plots for all variables used in SRG1b 189
B.8 N-1 plots for all variables used in SRG2a 190
B.9 N-1 plots for all variables used in SRG2b 191
B.10 N-1 plots for all variables used in SRG3a 192
B.11 N-1 plots for all variables used in SRG3b 193
B.12 N-1 plots for all variables used in SRS1a 194
B.13 N-1 plots for all variables used in SRS1b 195
B.14 N-1 plots for all variables used in SRS2a 196
B.15 N-1 plots for all variables used in SRS2b 197
B.16 N-1 plots for all variables used in SRS3a 198
B.17 N-1 plots for all variables used in SRS3b 199
List of Tables

2.1 Parameters of the Standard Model. For values dependent on the renormalization scheme, we use a combination of the on-shell normalization scheme [61–64] and modified minimal subtraction scheme with $m_{\text{\overline{MS}}}$ as indicated in the table [65] 15

4.1 Beam parameters of the Large Hadron Collider. 41

5.1 High-Level Triggers used in this thesis. Descriptions of loose, medium, tight, and isolated can be found in [94]. The d_0 cut refers to a quality cut on the vertex position, which was removed from many triggers in 2016 to increase sensitivity to displaced vertex signals. For most triggers, the increased thresholds in 2015 compared to 2016 were designed to keep the rate approximately equal. 65

8.1 The Standard Model background Monte Carlo simulation samples used in this thesis. The generators, the order in α_s of cross-section calculations used for yield normalization, PDF sets, parton showers and tunes used for the underlying event are shown. Alternative generators are only used for the major backgrounds. 119

8.2 Preselection for the various event topologies used in the analysis. $p_T(j_1)$ ($p_T(j_2)$) refers to the leading (second-leading) jet, ordered by p_T. 121

8.3 Event selection for squark signal regions 125

8.4 Event selection for gluino signal regions 125
8.5 Event selection for compressed signal regions

8.6 Definitions of the control regions used to estimate the Standard Model background entering the signal regions. The kinematic selections are chosen as closely as possible to the signal regions. They are loosened as described in the text.

8.7 Description of the systematic uncertainties in the analysis.

9.1 Numbers of events observed in the signal regions compared with background expectations. Empty cells (indicated by a ‘-’) correspond to estimates lower than 0.01. Also shown are 95\% CL upper limits on the visible cross-section ($\langle \epsilon \sigma \rangle_{\text{obs}}^{95}$), the visible number of signal events (S_{obs}^{95}) and the number of signal events (S_{exp}^{95}) given the expected number of background events (and ±1σ excursions of the expectation).

9.2 Breakdown of the dominant systematic uncertainties in the background estimates. The individual uncertainties can be correlated, and do not necessarily add in quadrature. Δ_{μ} uncertainties result from control region statistical uncertainties and the systematic uncertainties in the appropriate control region. In brackets, uncertainties are given relative to the expected total background yield, also presented in the Table. Empty cells (indicated by a ‘-’) correspond to uncertainties <0.1\%.

xi
Acknowledgements

I’m lucky to have so many people I want to acknowledge that I couldn’t possibly put them all here. Anyone who has offered help with homework, a kind word of encouragement, or shared a beer has my thanks.

Some people deserve special mention here. To my family, for constant support, while keeping me grounded and sane. I would never be here without my undergraduate advisor, Stephane Willocq, who spent many more hours helping debug code than I could have ever expected. Problem sets were only half-terrible due to my brilliant and supportive friends from UMass.

Too many incredible physicists offered many hours of their time throughout my time at Columbia and CERN. My advisor Emlyn never failed to share his wisdom and a laugh. If it weren’t for Matt, Matt, and Steve, I’d have spent many more hours navigating physics, not to mention the Columbia and ATLAS bureaucracies. To all my friends from Columbia who suffered through QM and Stat Mech, I’m glad to have finished it with you.

Especially special thanks to Larry Lee and TJ Khoo, both of whom are brilliant, patient, and fun, while also great friends. Without Chris Rogan and Paul Jackson, the Recursive Jigsaw analysis would never have gotten off the ground, but I would also have had much less fun. The entire MET group deserves mention, but Silvia Resconi, Claire Lee, and Peter Loch each offered a unique perspective while being supportive and kind. The support of Laura Jeanty and Karolos Potamianos made the Pixel Lab interesting and fun.
Of friends I didn’t work with directly, but who I shared many pistes, beers, and laughs, I’m lucky to say I have too many to list. Special thanks go to Josh Hardenbrook, Brad Axen, Ryne Carbone, Matt LeBlanc, Tova Holmes, Quentin Buat, Kate Pachal, Karri DePetrillo, Emma Tolley, Jennifer Roloff, and Max Swiatlowski.

To Marisa, thank you for your unwavering support, encouragement, and love.
Dedication

To Amelie
and Merrill
Chapter 1

Introduction

Particle physics is a remarkably successful field of scientific inquiry. The ability to precisely predict the properties of an exceedingly wide range of physical phenomena, such as the description of the cosmic microwave background [1, 2], the understanding of the anomalous magnetic dipole moment of the electron [3, 4], and the measurement of the number of weakly-interacting neutrino flavors [5] is truly amazing.

The theory that has allowed this range of predictions is the Standard Model of particle physics (SM). The Standard Model combines the electroweak theory of Glashow, Weinberg, and Salam [6–8] with the theory of the strong interactions, as first envisioned by Gell-Mann and Zweig [9, 10]. This quantum field theory (QFT) contains a number of particles, whose interactions describe phenomena up to the TeV scale. These particles are manifestations of the fields of the Standard Model, after application of the Higgs Mechanism. The particle content of the SM consists only of six quarks, six leptons, four gauge bosons, and a scalar Higgs boson.

The Standard Model has some theoretical and experimental deficiencies. The SM contains 26 free parameters\(^1\). We would like to understand these free parameters in terms of a more fundamental theory.

The major theoretical concern of the Standard Model, as it pertains to this thesis, is the hierarchy problem [11–15]. The light mass of the Higgs boson (125 GeV) [16, 17] should be quadratically dependent on the scale of UV physics, due to the quantum

\[^1\]This is the Standard Model corrected to include neutrino masses. These parameters are the fermion masses (6 leptons, 6 quarks), CKM and PMNS mixing angles (8 angles, 2 CP-violating phases), W/Z/Higgs masses (3), the Higgs field expectation value, and the couplings of the strong, weak, and electromagnetic forces (3 \(\alpha_{\text{force}}\)).
corrections from high-energy physics processes. The most perplexing experimental issue is the existence of *dark matter*, as demonstrated by galactic rotation curves [18–24]. This data has shown there exists additional matter which has not yet been observed interacting with the particles of the Standard Model. There is no particle in the SM which can act as a candidate for dark matter.

Both of these major issues, as well as numerous others, can be solved by the introduction of *supersymmetry* (SUSY) [15, 25–37]. In supersymmetric theories, each SM particle has a so-called *superpartner*, or sparticle partner, differing from given SM particle by 1/2 in spin. These theories solve the hierarchy problem, since the quantum corrections induced from the superpartners exactly cancel those induced by the SM particles. In addition, these theories are usually constructed assuming R-parity, which can be thought of as the “charge” of supersymmetry, with SM particles having $R = 1$ and sparticles having $R = -1$. In collider experiments, since the incoming SM particles have total $R = 1$, the resulting sparticles are produced in pairs. This produces a rich phenomenology, which is characterized by significant hadronic activity and large missing transverse energy (E_T^{miss}), which provide significant discrimination against SM backgrounds [38].

Despite the power of searches for supersymmetry where E_T^{miss} is a primary discriminating variable, there has been significant interest in the use of other variables to discriminate against SM backgrounds. These include searches employing variables such as α_T, $M_{T,2}$, and the razor variables (M_R, R^2) [39–49]. In this thesis, we will present the first search for supersymmetry using Recursive Jigsaw Reconstruction (RJR) [50, 51]. RJR can be considered the conceptual successor of the razor variables. We impose a particular final state “decay tree” on an events, which roughly corresponds to a simplified Feynman diagram in decays containing weakly-interacting particles. We account for the missing degrees of freedom associated with weakly-interacting particles by a series of simplifying assumptions, which allow us
to calculate our variables of interest at each step in the decay tree. This allows an unprecedented understanding of the internal structure of the decay and additional variables to reject Standard Model backgrounds.

This thesis describes a search for the superpartners of the gluon and quarks, the gluino and squarks, in final states with zero leptons, with 13.3 fb$^{-1}$ of data using the ATLAS detector. We organize the thesis as follows. The theoretical foundations of the Standard Model and supersymmetry are described in Chapters 2 and 3. The Large Hadron Collider and the ATLAS detector are presented in Chapters 4 and 5. The reconstruction of physics objects is presented in Chapter 6. Chapter 7 provides a detailed description of Recursive Jigsaw Reconstruction and a description of the variables used for the particular search presented in this thesis. Chapter 8 presents the details of the analysis, including details of the dataset, object reconstruction, and selections used. In Chapter 9, the final results are presented; since there is no evidence for a supersymmetric signal in the analysis, we present model-independent limits on the new physics cross-sections and the final exclusion curves in simplified supersymmetric models.
Chapter 2

The Standard Model

2.1 Overview

The Standard Model (SM) is another name for the theory of the internal symmetry group $SU(3)_C \otimes SU(2)_L \otimes U(1)_Y$ and its associated set of parameters. The SM is the culmination of years of work in both theoretical and experimental particle physics. In this thesis, we take the view that theorists construct a model with the field content and symmetries as inputs, and write down the most general Lagrangian consistent with those symmetries. Assuming this model is compatible with nature (in particular, the predictions of the model are consistent with previous experiments), experimentalists are responsible for testing the parameters by measurements. The philosophy and notations are inspired by [52, 53].

2.2 Field Content

The Standard Model field content is

\begin{align*}
\text{Fermions} & : Q_L(3, 2)_{+1/3}, U_R(3, 1)_{+4/3}, D_R(3, 1)_{-2/3}, L_L(1, 2)_{-1}, E_R(1, 1)_{-2} \\
\text{Scalar (Higgs)} & : \phi(1, 2)_{+1} \\
\text{Vector Fields} & : G^\mu(8, 1)_0, W^\mu(1, 3)_0, B^\mu(1, 1)_0
\end{align*}

(2.1)

where the $(A, B)_Y$ notation represents the irreducible representation under $SU(3)$ and $SU(2)$, with Y being the electroweak hypercharge. Each of these fermion fields has an additional index, representing the three generation of fermions.
We observed that $Q_L, U_R,$ and D_R are triplets under $SU(3)_C$; these are the quark fields. The color group, $SU(3)_C$ is mediated by the gluon field $G^\mu(8,1)_0$, which has 8 degrees of freedom. The fermion fields $L_L(1,2)_{-1}$ and $E_R(1,1)_{-2}$ are singlets under $SU(3)_C$; we call them the lepton fields.

Next, we note the “left-handed” (“right-handed”) fermion fields, denoted by an L (R) subscript. The left-handed fields form doublets under $SU(2)_L$. These are mediated by the three degrees of freedom of the W fields $W^\mu(1,3)_0$. These fields only act on the left-handed particles of the Standard Model. This is the reflection of the chirality of the Standard Model. The left-handed and right-handed particles are treated differently by the electroweak forces. The right-handed fields, $U_R, D_R,$ and E_R, are singlets under $SU(2)_L$.

The $U(1)_Y$ symmetry is associated to the $B^\mu(1,1)_0$ boson with one degree of freedom. The charge Y is known as the electroweak hypercharge.

To better understand the phenomenology of the Standard Model, let us investigate each of the sectors of the Standard Model separately.

Electroweak sector

The electroweak sector refers to the $SU(2)_L \otimes U(1)_Y$ portion of the Standard Model gauge group. Following our philosophy of writing all gauge-invariant and renormalizable terms, the electroweak Lagrangian can be written as

$$
\mathcal{L} = W_\alpha^{\mu\nu} W_\mu^{\nu} + B^{\mu\nu} B_{\mu\nu} + (D^\mu \phi)^\dagger D_\mu \phi - \mu^2 \phi^\dagger \phi - \lambda (\phi^\dagger \phi)^2. \quad (2.2)
$$

where $W_\alpha^{\mu\nu}$ are the three ($\alpha = 1, 2, 3$) gauge bosons associated to the $SU(2)_L$ gauge group, $B^{\mu\nu}$ is the one gauge boson of the $U(1)_Y$ gauge group, and ϕ is the complex Higgs multiplet. The covariant derivative D^μ is given by

$$
D^\mu = \partial^\mu + \frac{ig}{2} W_\mu^{\alpha} \sigma_\alpha + \frac{ig'}{2} B^\mu. \quad (2.3)
$$
where $i\sigma_a$ are the Pauli matrices times the imaginary constant, which are the generators for $SU(2)_L$, and g and g' are the $SU(2)_L$ and $U(1)_Y$ coupling constants, respectively. The field strength tensors W^μ_ν and B^μ_ν are given by the commutator of the covariant derivative associated to each field

$$B^\mu_\nu = \partial^\mu B^\nu - \partial^\nu B^\mu$$

$$W^\mu_\nu = \partial^\mu W^\nu - \partial^\nu W^\mu - g\epsilon_{abc}W^\mu_\alpha W^\nu_\beta,$$ \hspace{1cm} i = 1, 2, 3

The terms in the Lagrangian Eq. (2.2) proportional to μ^2 and λ make up the “Higgs potential” [54]. We restrict $\lambda > 0$ to guarantee our potential is bounded from below, and we also require $\mu^2 < 0$, which gives us the standard “sombrero” potential shown in Fig. 2.1.
This potential has infinitely many minima at \(< \phi >= \sqrt{2m/\lambda}\). The ground state is \textit{spontaneously} broken by the choice of ground state, which induces a vacuum expectation value (VEV). Without loss of generality, we can choose the Higgs field \(\phi\) to point in the real direction, and write the Higgs field \(\phi\) in the following form:

\[
\phi = \frac{1}{\sqrt{2}} \exp\left(\frac{i}{v} \sigma \theta_a\right) \begin{pmatrix} 0 \\ v + h(x) \end{pmatrix}.
\] (2.5)

We choose a gauge to rotate away the dependence on \(\theta_a\), such that we can write simply

\[
\phi = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v + h(x) \end{pmatrix}.
\] (2.6)

Now, we see how the masses of the vector bosons are generated from the application of the Higgs mechanism. We plug Eq. (2.6) back into the electroweak Lagrangian, and only showing the relevant mass terms in the vacuum state where \(h(x) = 0\) see that (dropping the Lorentz indices):

\[
\mathcal{L}_M = \frac{1}{8} \left| \begin{pmatrix} gW_3 + g'B & g(W_1 - iW_2) \\ g(W_1 + iW_2) & -gW_3 + g'B \end{pmatrix} \begin{pmatrix} 0 \\ v \end{pmatrix} \right|^2
= \frac{g^2 v^2}{8} \left[W_1^2 + W_2^2 + (\frac{g'}{g} B - W_3)^2 \right]
\] (2.7)

Defining the \textit{Weinberg} angle \(\tan(\theta_W) = g'/g\) and the following \textit{physical} fields:

\[
W^\pm = \frac{1}{\sqrt{2}} (W_1 \mp iW_2)
\] (2.8)

\[
Z^0 = \cos \theta_W W_3 - \sin \theta_W B
\]

\[
A^0 = \sin \theta_W W_3 + \cos \theta_W B
\]

we can write the piece of the Lagrangian associated to the vector boson masses as

\[
\mathcal{L}_{MV} = \frac{1}{4} g^2 v^2 W^+ W^- + \frac{1}{8} (g^2 + g'^2) v^2 Z^0 Z^0.
\] (2.9)
We have the following values of the masses for the vector bosons:

\[m_W^2 = \frac{1}{4} v^2 g^2 \]
\[m_Z^2 = \frac{1}{4} v^2 (g^2 + g'^2) \]
\[m_A^2 = 0 \]

(2.10)

We thus see how the Higgs mechanism gives rise to the masses of the \(W^\pm \) and \(Z \) boson in the Standard Model. As expected, the mass of the photon is zero. The \(SU(2)_L \otimes U(1)_Y \) symmetry of the initially massless \(W_{1,2,3} \) and \(B \) fields is broken to the \(U(1)_{EM} \). Of the four degrees of freedom in the complex Higgs doublet, three are “eaten” to give mass to the \(W^\pm \) and \(Z^0 \), while the other degree of freedom is the Higgs particle, as discovered in 2012 by the ATLAS and CMS collaborations [16, 17].

Quantum Chromodynamics

Quantum chromodynamics (or the theory of the strong force) characterizes the behavior of colored particles, collectively known as partons. The partons of the Standard Model are the (fermionic) quarks, and the (bosonic) gluons. The strong force is governed by \(SU(3)_C \), an unbroken symmetry in the Standard Model, which implies the gluon remains massless. Defining the covariant derivative for QCD as

\[D^\mu = \partial^\mu + ig_s G^\mu_a L_a, a = 1, ..., 8 \]

(2.11)

where \(L_a \) are the generators of \(SU(3)_C \), and \(g_s \) is the coupling constant of the strong force. The QCD Lagrangian then is given by

\[\mathcal{L}_{QCD} = i \bar{\psi}_f D^\mu \gamma^\mu \psi_f - \frac{1}{4} G^\mu_\nu G^\mu_\nu \]

(2.12)

where the summation over \(f \) is for quarks families, and \(G^\mu_\nu \) is the gluon field strength tensor, given by

\[G^\mu_\nu_a = \partial^\mu G^\nu_a - \partial^\nu G^\mu_a - g_s f^{abc} G^\mu_b G^\nu_c, a, b, c = 1, ..., 8 \]

(2.13)
where f^{abc} are the structure constants of $SU(3)_C$, which are analogous to ϵ^{abc} for $SU(2)_L$. The kinetic term for the quarks is contained in the ∂_μ term, while the field strength term contains the interactions between the quarks and gluons, as well as the gluon self-interactions.

Written down in this simple form, the QCD Lagrangian does not seem much different from the QED Lagrangian, with the proper adjustments for the different group structures. The gluon is massless, like the photon, so one could naïvely expect an infinite range force, and it pays to understand why this is not the case. The reason for this fundamental difference is the gluon self-interactions arising in the field strength tensor term of the Lagrangian. This leads to the phenomena of \textit{color confinement}, which describes why we only observe color-neutral particles alone in nature. In contrast to the electromagnetic force, particles which interact via the strong force experience a \textit{greater} force as the distance between the particles increases. At long distances, the potential is given by $V(r) = -kr$. At some point, it is more energetically favorable to create additional partons out of the vacuum than continue pulling apart the existing partons, and the colored particles undergo \textit{fragmentation}. This leads to \textit{hadronization}. Bare quarks and gluons are actually observed as sprays of hadrons (primarily kaons and pions). These sprays are known as \textit{jets}, which are what are observed by experiments.

It is important to recognize the importance of understanding these QCD interactions in high-energy hadron colliders such as the LHC. Since protons are hadrons, proton-proton collisions such as those produced by the LHC are primarily governed by the processes of QCD. In particular, by far the most frequent process observed in LHC experiments is dijet production from gluon-gluon interactions; see Fig. 2.2). The interacting gluons are part of the \textit{sea} inside the proton; the simple $p = uud$ model does not apply. The main \textit{valence uud} quarks are constantly interacting via gluons, which can themselves radiate gluons or split into quarks, and so on. A more
Figure 2.2: Cross-sections of various Standard Model processes as measured by ATLAS
useful understanding is given by the colloquially-known bag model [55, 56], where the proton is seen as a “bag” of (in principle) infinitely many partons, each with energy \(E < \sqrt{s} = 6.5 \text{ TeV} \). One then collides this (proton) bag with another, and views the products of this very complicated collision, where calculations include many loops in nonperturbative QCD calculations.

Fortunately, we are generally saved by the QCD factorization theorems [57]. This allows one to understand the hard (i.e. short distance or high energy) \(2 \rightarrow 2 \) parton process using the tools of perturbative QCD, while making series of approximations known as a parton shower model to understand the additional corrections from nonperturbative QCD. We will discuss the reconstruction of jets by experiments in Ch. 6.

Fermions

We will now look more closely at the fermions in the Standard Model [58].

As noted earlier in Sec. 2.2, the fermions of the Standard Model can be first distinguished between those that interact via the strong force (quarks) and those which do not (leptons).

There are six leptons in the Standard Model, which can be placed into three generations.

\[
\begin{pmatrix}
e \\
\nu_e \\
\end{pmatrix}, \quad
\begin{pmatrix}
\mu \\
\nu_\mu \\
\end{pmatrix}, \quad
\begin{pmatrix}
\tau \\
\nu_\tau \\
\end{pmatrix}
\]

(2.14)

There is the electron (\(e \)), muon (\(\mu \)), and tau (\(\tau \)), each of which has an associated neutrino (\(\nu_e, \nu_\mu, \nu_\tau \)). Each of the so-called charged (“electron-like”) leptons has electromagnetic charge \(-1\), while the neutrinos all have \(q_{EM} = 0 \).

Often in an experimental context, lepton is used to denote the stable electron and metastable muon, due to their striking experimental signatures. Taus are often treated separately, due to their much shorter lifetime of \(\tau_\tau \sim 10^{-13} \text{ s} \). They decay
through hadrons or the other leptons, so often physics analyses at the LHC treat them as jets or leptons, as will be done in this thesis.

As the neutrinos are electrically neutral, nearly massless, and only interact via the weak force, it is quite difficult to observe them directly. Since LHC experiments rely overwhelmingly on electromagnetic interactions to observe particles, the presence of neutrinos is not observed directly. Neutrinos are instead observed by the conservation of four-momentum in the plane transverse to the proton-proton collisions, known as missing transverse energy.

There are six quarks in the Standard Model: up, down, charm, strange, top, and bottom. Quarks are similar organized into three generations:

$$\begin{pmatrix}
 u \\
 d
\end{pmatrix}, \begin{pmatrix}
 c \\
 s
\end{pmatrix}, \begin{pmatrix}
 t \\
 b
\end{pmatrix}$$ (2.15)

where we speak of “up-like” quarks and “down-like” quarks.

Each up-like quark has charge $q_{up} = 2/3$, while the down-like quarks have $q_{down} = -1/3$. At the high energies of the LHC, one often makes the distinction between the light quarks (u, d, c, s), the bottom quark, and top quark. In general, due to the hadronization process described above, the light quarks, with masses $m_q \lesssim 1.5 \text{ GeV}$ are indistinguishable by LHC experiments. Their hadronic decay products generally have long lifetimes and they are reconstructed as jets\(^1\). The bottom quark hadronizes primarily through the B-mesons, which generally travels a short distance before decaying to other hadrons. This allows one to distinguish decays via b-quarks from other jets. This procedure is known as b-tagging and will be discussed more in Ch. 5.

Due to its large mass, the top quark decays before it can hadronize. There are no bound states associated to the top quark. The top is of particular interest at

\(^{1}\text{In some contexts, charm quarks are also treated as a separate category, although it is quite difficult to distinguish charm quarks from the other light quarks at high energy colliders.}\)
the LHC; it has a striking signature through its most common decay mode $t \rightarrow Wb$. Decays via tops, especially $t\bar{t}$, are frequently an important signal decay mode, or an important background process.

Interactions in the Standard Model

We briefly overview the entirety of the fundamental interactions of the Standard Model. These can also be found in Fig. 2.3.

The electromagnetic force, mediated by the photon, interacts via a three-point
coupling with all charged particles in the Standard Model. The photon thus interacts with all the quarks, the charged leptons, and the charged W^\pm bosons.

The weak force is mediated by three particles: the W^\pm and the Z^0. The Z^0 can interact with all fermions via a three-point coupling. A real Z^0 can thus decay to a fermion-antifermion pair of all SM fermions except the top quark, due to its large mass. The W^\pm has two important three-point interactions with fermions. First, the W^\pm can interact with an up-like quark and a down-like quark; an important example in LHC experiments is $t \rightarrow Wb$. The coupling constants for these interactions are encoded in the unitary matrix known as the Cabibbo–Kobayashi–Maskawa (CKM) matrix [59, 60], and are generally known as flavor-changing interactions. Secondly, the W^\pm interacts with a charged lepton and its corresponding neutrino. In this case, the unitary matrix that corresponds to CKM matrix for quarks is the identity matrix, which forbids (fundamental) vertices such as $\mu \rightarrow We$. For leptons, instead this is a two-step process: $\mu \rightarrow \nu_\mu W \rightarrow \nu_\mu \bar{\nu}_e e$. Finally, there are the self-interactions of the weak gauge bosons. There are three-point and four-point interactions. All combinations are allowed which conserve electric charge.

The strong force is mediated by the gluon, which as discussed above also carries the strong color charge. There is the fundamental three-point interaction, where a quark radiates a gluon. Additionally, there are the three-point and four-point gluon self-interactions.

2.3 Deficiencies of the Standard Model

The Standard Model has been enormously successful. This relatively simple theory is capable of explaining a very wide range of phenomenon, which can be described as combinations of the nine diagrams shown in Fig. 2.3 at tree level. Unfortunately, there are some unexplained problems with the Standard Model. We cannot go through all
<table>
<thead>
<tr>
<th>m_e</th>
<th>Electron mass</th>
<th>511 keV</th>
</tr>
</thead>
<tbody>
<tr>
<td>m_μ</td>
<td>Muon mass</td>
<td>105.7 MeV</td>
</tr>
<tr>
<td>m_τ</td>
<td>Tau mass</td>
<td>1.78 GeV</td>
</tr>
<tr>
<td>m_u</td>
<td>Up quark mass</td>
<td>1.9 MeV ($m_{\overline{MS}} = 2\text{GeV}$)</td>
</tr>
<tr>
<td>m_d</td>
<td>Down quark mass</td>
<td>4.4 MeV ($m_{\overline{MS}} = 2\text{GeV}$)</td>
</tr>
<tr>
<td>m_s</td>
<td>Strange quark mass</td>
<td>87 MeV ($m_{\overline{MS}} = 2\text{GeV}$)</td>
</tr>
<tr>
<td>m_c</td>
<td>Charm quark mass</td>
<td>1.32 GeV ($m_{\overline{MS}} = m_c$)</td>
</tr>
<tr>
<td>m_b</td>
<td>Bottom quark mass</td>
<td>4.24 GeV ($m_{\overline{MS}} = m_b$)</td>
</tr>
<tr>
<td>m_t</td>
<td>Top quark mass</td>
<td>172.7 GeV (on-shell renormalization)</td>
</tr>
<tr>
<td>$\theta_{12,\text{CKM}}$</td>
<td>12-mixing angle</td>
<td>13.1°</td>
</tr>
<tr>
<td>$\theta_{23,\text{CKM}}$</td>
<td>23-mixing angle</td>
<td>2.4°</td>
</tr>
<tr>
<td>$\theta_{13,\text{CKM}}$</td>
<td>13-mixing angle</td>
<td>0.2°</td>
</tr>
<tr>
<td>δ,CKM</td>
<td>CP-violating Phase</td>
<td>0.995</td>
</tr>
<tr>
<td>g'</td>
<td>U(1) gauge coupling</td>
<td>0.357 ($m_{\overline{MS}} = m_Z$)</td>
</tr>
<tr>
<td>g</td>
<td>SU(2) gauge coupling</td>
<td>0.652 ($m_{\overline{MS}} = m_Z$)</td>
</tr>
<tr>
<td>g_s</td>
<td>SU(3) gauge coupling</td>
<td>1.221 ($m_{\overline{MS}} = m_Z$)</td>
</tr>
<tr>
<td>θ_{QCD}</td>
<td>QCD vacuum angle</td>
<td>~0</td>
</tr>
<tr>
<td>VEV</td>
<td>Higgs vacuum expectation value</td>
<td>246 GeV</td>
</tr>
<tr>
<td>m_H</td>
<td>Higgs mass</td>
<td>125 GeV</td>
</tr>
</tbody>
</table>

Table 2.1: Parameters of the Standard Model. For values dependent on the renormalization scheme, we use a combination of the on-shell normalization scheme [61–64] and modified minimal subtraction scheme with $m_{\overline{MS}}$ as indicated in the table [65].

of the issues in this thesis, but we will motivate the primary issues which naturally lead one to *supersymmetry*, as we will see in Ch. 3.

The Standard Model has many free parameters, shown in Table 2.1. In general, we prefer models with less free parameters. A great example of this fact, and the primary experimental evidence for EWSB, is the relationship between the couplings of the weak force and the masses of the gauge bosons of the weak force:

$$\rho \equiv \frac{m_W^2}{m_Z^2 \cos^2 \theta_W} \overset{?}{=} 1$$

(2.16)

where ? indicates that this is a testable prediction of the Standard Model (in particular, that the gauge bosons gain mass through EWSB). This relationship has been measured within experimental and theoretical predictions. We would like to produce additional such relationships, which could exist if the Standard Model is a low-energy approximation of some other theory.
An additional issue is the lack of *gauge coupling unification*. The couplings of any quantum field theory “run” as a function of the distance scales (or inversely, energy scales) of the theory. The idea is closely related to the unification of the electromagnetic and weak forces at the so-called *electroweak scale* of $O(100 \text{ GeV})$. One would hope this behavior was repeated between the electroweak forces and the strong force at some suitable energy scale. The Standard Model does not exhibit this behavior, as we can see in Fig. 2.4.

But, the most significant problem with the Standard Model is the *hierarchy problem*. In its most straightforward incarnation, the Higgs scalar field is subject to quantum corrections through loop diagrams, as shown in Fig. 2.5. For demonstration, we use the contributions from the top quark, since the top quark has the largest Higgs Yukawa coupling due to its large mass. In general, we should expect these corrections to quadratically dependent on the scale of the ultraviolet physics, Λ. Briefly assume there is no new physics before the Planck scale of gravity, $\Lambda_{\text{Planck}} = 10^{19} \text{ GeV}$. In this
Figure 2.5: The dominant quantum loop correction to the Higgs mass in the Standard Model case, we expect the corrections to the Higgs mass to be

$$\delta m_H^2 \approx (\frac{m_t}{8\pi^2} \langle \phi \rangle_{VEV})^2 \Lambda_{Planck}$$

To achieve the miraculous cancellation required to get the observed Higgs mass of 125 GeV, one needs to then set the bare Higgs mass m_0, our input to the Standard Model Lagrangian, itself to a precise value $\sim 10^{19} \text{ GeV}$. This extraordinary level of parameter finetuning is quite undesirable, and within the framework of the Standard Model alone, there is little that can be done to alleviate this issue.

An additional concern, of a different nature, is the lack of a dark matter candidate in the Standard Model. Dark matter was discovered by observing galactic rotation curves, which showed that much of the matter that interacts gravitationally is invisible to our (electromagnetic) telescopes [18–24]. The postulation of the existence of dark matter, which interacts at least through gravity, allows one to understand these galactic rotation curves. Unfortunately, no particle in the Standard Model could
possibly be the dark matter particle. The only candidate truly worth another look is the neutrino, but it has been shown that the neutrino content of the universe is simply too small to explain the galactic rotation curves [24, 66]. The experimental evidence from the galactic rotations curves thus show there must be additional physics beyond the Standard Model which is yet to be understood.

In the next chapter, we will see how these problems can be alleviated by the theory of supersymmetry.
This chapter introduces supersymmetry (SUSY) [15, 25–37]. We begin by discussing some general ingredients of supersymmetric theories. The next step is to discuss the particle content of the Minimally Supersymmetric Standard Model (MSSM). As its name implies, this theory contains the minimal additional particle content to make Standard Model supersymmetric. We then discuss the important phenomenological consequences of this theory, especially as it would be observed in experiments at the LHC. This will include a discussion of how the problems with the Standard Model described in Ch. 2 are naturally fixed by these theories.

3.1 Supersymmetric theories: from space to superspace

Coleman-Mandula “no-go” theorem

We begin the theoretical motivation for supersymmetry by citing the “no-go” theorem of Coleman and Mandula [67]. This theorem forbids spin-charge unification. It states that all quantum field theories which contain nontrivial interactions must be a direct product of the Poincaré group of Lorentz symmetries, the internal product of gauge symmetries, and the discrete symmetries of parity, charge conjugation, and time reversal. The assumptions which go into building the Coleman-Mandula theorem are quite restrictive, but there is one solution, which has become known
as *supersymmetry* [28, 68]. In particular, we must introduce a *spinorial* group generator \(Q \). Alternatively, and equivalently, this can be viewed as the addition of anti-commuting coordinates. Spacetime plus these new anti-commuting coordinates is called *superspace* [69]. We will not investigate this view in detail, but it is also a quite intuitive and beautiful way to construct supersymmetry [15].

Supersymmetry transformations

A *supersymmetric* transformation \(Q \) transforms a bosonic state into a fermionic state, and vice versa:

\[
Q |\text{Fermion}\rangle = |\text{Boson}\rangle \quad (3.1)
\]

\[
Q |\text{Boson}\rangle = |\text{Fermion}\rangle \quad (3.2)
\]

To ensure this relation holds, \(Q \) must be an anticommuting spinor. Additionally, since spinors are inherently complex, \(Q^\dagger \) must also be a generator of the supersymmetry transformation. Since \(Q \) and \(Q^\dagger \) are spinor objects (with \(s = 1/2 \)), we can see that supersymmetry must be a spacetime symmetry. The Haag-Lopuszanski-Sohnius extension [68] of the Coleman-Mandula theorem [67] is quite restrictive about the forms of such a symmetry. Here, we simply write the (anti-) commutation relations [15]:

\[
\{ Q_\alpha, Q_\alpha^\dagger \} = -2\sigma_\alpha^\dot{\alpha} P_\mu \quad (3.3)
\]

\[
\{ Q_\alpha, Q_\beta \} = \{ Q_\alpha^\dagger, Q_\beta^\dagger \} = 0
\]

\[
[P_\mu, Q_\alpha] = [P_\mu, Q_\alpha^\dagger] = 0
\]

Supermultiplets

In a supersymmetric theory, we organize single-particle states into irreducible representations of the supersymmetric algebra which are known as *supermultiplets*. Each
supermultiplet contains a fermion state $|F\rangle$ and a boson state $|B\rangle$. These two states are the known as *superpartners*. These are related by some combination of Q and Q^\dagger, up to a spacetime transformation. Q and Q^\dagger commute with the mass-squared operator $-P^2$ and the operators corresponding to the gauge transformations [15]: in particular, the gauge interactions of the Standard Model. In an unbroken supersymmetric theory, this means the states $|F\rangle$ and $|B\rangle$ have exactly the same mass, electromagnetic charge, electroweak isospin, and color charges. One can also prove [15] that each supermultiplet contains the exact same number of bosonic (n_B) and fermion (n_F) degrees of freedom. We now explore the possible types of supermultiplets one can find in a renormalizable supersymmetric theory.

Since each supermultiplet must contain a fermion state, the simplest type of supermultiplet contains a single Weyl fermion state ($n_F = 2$) which is paired with $n_B = 2$ scalar bosonic degrees of freedom. This is most conveniently constructed as single complex scalar field. We call this construction a *scalar supermultiplet* or *chiral supermultiplet*. The second name is indicative, as only chiral supermultiplets can contain fermions whose right-handed and left-handed components transform differently under the gauge interactions (as of course happens in the Standard Model).

The second type of supermultiplet we construct is known as a *gauge* supermultiplet. We take a spin-1 gauge boson (which must be massless due to the gauge symmetry, so $n_B = 2$) and pair this with a single massless Weyl spinor. The gauge bosons transform as the adjoint representation of their respective gauge groups. Their fermionic partners, which are known as gauginos, must also. In particular, the left-handed and right-handed components of the gaugino fermions have the same gauge transformation properties.

Excluding gravity, this is the entire list of supermultiplets which can participate in renormalizable interactions in what is known as $N = 1$ supersymmetry. This

\footnote{Choosing an $s = 3/2$ massless fermion leads to nonrenormalizable interactions.}
means there is only one copy of the supersymmetry generators Q and Q^\dagger. This is essentially the only “easy” phenomenological choice, since it is the only option in four dimensions which allows for the chiral fermions and parity violations to be built into the Standard Model. We will not look further into $N > 1$ supersymmetry in this thesis.

The primary goal, after understanding the possible structures of the multiplets above, is to fit the Standard Model particles into a multiplet, and therefore make predictions about their supersymmetric partners. We explore this in the next section.

3.2 Minimally Supersymmetric Standard Model

To construct what is known as the MSSM [15, 70–73], we need a few ingredients and assumptions. First, we match the Standard Model particles with their corresponding superpartners of the MSSM. We will also introduce the naming of the superpartners (also known as sparticles). We discuss a very common additional constraint imposed on the MSSM, known as R-parity. We also discuss the concept of soft supersymmetry breaking and how it manifests itself in the MSSM.

Chiral supermultiplets

The first thing we deduce is directly from Sec. 3.1. The bosonic superpartners associated to the quarks and leptons must be spin 0, since the quarks and leptons must be arranged in a chiral supermultiplet. This is essential, since the chiral supermultiplet is the only one which can distinguish between the left-handed and right-handed components of the Standard Model particles. The superpartners of the quarks and leptons are known as squarks and sleptons, or sfermions in aggregate. (for “scalar quarks”, “scalar leptons”, and “scalar fermion”). The “s-” prefix can also be added to the individual quarks i.e. selectron, sneutrino, and stop. The notation
is to add a \(\sim \) over the corresponding Standard Model particle i.e. \(\tilde{e} \), the selectron is the superpartner of the electron. The two-component Weyl spinors of the Standard Model must each have their own (complex scalar) partner i.e. \(e_L, e_R \) have two distinct partners: \(\tilde{e}_L, \tilde{e}_R \). As noted above, the gauge interactions of any of the sfermions are identical to those of their Standard Model partners.

Due to the scalar nature of the Higgs, it must lie in a chiral supermultiplet. To avoid gauge anomalies and ensure the correct Yukawa couplings to the quarks and leptons [15], we must add additional Higgs bosons to any supersymmetric theory. In the MSSM, we have two chiral supermultiplets. The SM (SUSY) parts of the multiplets are denoted \(H_u (\tilde{H}_u) \) and \(H_d (\tilde{H}_d) \). Writing out \(H_u \) and \(H_d \) explicitly:

\[
H_u = \begin{pmatrix}
H^+_u \\
H_0^u
\end{pmatrix} \quad \text{(3.6)}
\]

\[
H_d = \begin{pmatrix}
H_0^d \\
H^-_d
\end{pmatrix} \quad \text{(3.7)}
\]

we see that \(H_u \) looks very similar to the SM Higgs with \(Y = 1 \), and \(H_d \) is symmetric with \(+ \rightarrow - \) and \(Y = -1 \). The SM Higgs boson, \(h_0 \), is a linear superposition of the neutral components of these two doublets. The SUSY parts of the Higgs multiplets, \(\tilde{H}_u \) and \(\tilde{H}_d \), are each left-handed Weyl spinors. For generic spin-1/2 sparticles, we add the “-ino” suffix. We call the partners of the two Higgs bosons collectively the Higgsinos.

Gauge supermultiplets

The superpartners of the gauge bosons must all be in gauge supermultiplets since they contain a spin-1 particle. Collectively, we refer to the superpartners of the gauge bosons as the gauginos.

The first gauge supermultiplet contains the gluon, and its superpartner, which is known as the gluino, denoted \(\tilde{g} \). The gluon is of course the SM mediator of \(SU(3)_C \).
The gluino is also a colored particle, subject to $SU(3)_C$. From the SM before EWSB, we have the four gauge bosons of the electroweak symmetry group $SU(2)_L \otimes U(1)_Y$: $W^{1,2,3}$ and B^0. The superpartners of these particles are thus the *winos* $W^{\tilde{1},\tilde{2},\tilde{3}}$ and *bino* \tilde{B}^0, where each is placed in another gauge supermultiplet with its corresponding SM particle. After EWSB, without breaking supersymmetry, we would also have the *zino* Z^0 and photino $\tilde{\gamma}$. The entire particle content of the MSSM can be seen in Fig. 3.1.

At this point, it’s important to take a step back. Where are these particles? As stated above, supersymmetric theories require that the masses and all quantum numbers of the SM particle and its corresponding sparticle are the same. Of course, we have not observed a selectron, squark, or wino. The answer, as it often is, is that supersymmetry is *broken* by the vacuum state of nature [15].
Figure 3.2: Feynman diagram showing proton decay induced by the MSSM if one does not impose R-parity

R-parity

This section is a quick aside to the general story. R – *parity* refers to an additional discrete symmetry which is often imposed on supersymmetric models. For a given particle state, we define

$$ R = (-1)^{3(B-L)+2s} $$

(3.8)

where B, L is the baryon (lepton) number and s is the spin. The imposition of this symmetry forbids certain terms from the MSSM Lagrangian that would violate baryon and/or lepton number. This is required in order to prevent proton decay, as shown in Fig. 3.2.

In supersymmetric models, this is a \mathbb{Z}_2 symmetry, where SM particles have $R = 1$ and sparticles have $R = -1$. We will take R – *parity* as part of the definition of the MSSM. We will discuss later the *drastic* consequences of this symmetry on SUSY phenomenology.

Soft supersymmetry breaking

The fundamental idea of *soft* supersymmetry breaking [15, 36, 37, 74, 75] is that we would like to break supersymmetry without reintroducing the quadratic divergences

\(^2\)Proton decay can actually be prevented by allowing only one of the four potential R-parity violating terms to survive.
we discussed at the end of Chapter Ch. 2. We write the Lagrangian in a form:

\[\mathcal{L}_{\text{MSSM}} = \mathcal{L}_{\text{SUSY}} + \mathcal{L}_{\text{soft}} \]

(3.9)

In this sense, the symmetry breaking is “soft”, since we have separated out the completely symmetric terms from those soft terms which will not allow the quadratic divergences to the Higgs mass.

The explicitly allowed terms in the soft-breaking Lagrangian are [37]:

- Mass terms for the scalar components of the chiral supermultiplets
- Mass terms for the Weyl spinor components of the gauge supermultiplets
- Trilinear couplings of scalar components of chiral supermultiplets

In particular, using the field content described above for the MSSM, the softly-broken portion of the MSSM Lagrangian can be written

\[\mathcal{L}_{\text{soft}} = -\frac{1}{2} \left(M_3 \tilde{g} \tilde{g} + M_2 \tilde{W} \tilde{W} + M_1 \tilde{B} \tilde{B} + \text{c.c.} \right) \]

(3.10)

\[- \left(a_u \tilde{Q} H_u - \tilde{a}_d \tilde{Q} H_d - \tilde{c} a_e \tilde{L} H_d + \text{c.c.} \right) \]

(3.11)

\[- \tilde{Q}^\dagger m_Q^2 \tilde{Q} - \tilde{L}^\dagger m_L^2 \tilde{L} - \tilde{u} m_u^2 \tilde{u}^\dagger - \tilde{d} m_d^2 \tilde{d}^\dagger - \tilde{e} m_e^2 \tilde{e}^\dagger \]

(3.12)

\[- m_{H_u}^2 H_u^* H_u - m_{H_d}^2 H_d^* H_d - (b H_u H_d + \text{c.c.}) \]

(3.13)

where we have introduced the following notations:

1. \(M_3, M_2, M_1 \) are the gluino, wino, and bino masses.

2. \(a_u, a_d, a_e \) are complex \(3 \times 3 \) matrices in family space.

3. \(m_Q^2, m_u^2, m_d^2, m_L^2, m_e^2 \) are hermitian \(3 \times 3 \) matrices in family space.

4. \(m_{H_u}^2, m_{H_d}^2, b \) are the SUSY-breaking contributions to the Higgs potential.
We have written matrix terms without any sort of additional decoration to indicate their matrix nature, and we now show why. The first term Item 1 is the set of mass terms for the gluino, wino, and bino. The second term Item 2, containing \(a_u, a_d, a_e\), has strong constraints from experiments [76, 77]. We will assume that each \(a_i, i = u, d, e\) is proportional to the Yukawa coupling matrix: \(a_i = A_0 y_i\). The third term Item 3 can be similarly constrained by experiments [70, 77–84]. We will assume the elements of the fourth term Item 4 contributing to the Higgs potential as well as all of the Item 1 terms must be real, which limits the possible CP-violating interactions to those of the Standard Model. We thus only consider flavor-blind, CP-conserving interactions within the MSSM.

The important mixing for mass and gauge interaction eigenstates in the MSSM occurs within electroweak sector, in a process akin to EWSB in the Standard Model. The neutral portions of the Higgsinos doublets and the neutral gauginos \((\tilde{H}_u^0, \tilde{H}_d^0, \tilde{B}^0, \tilde{W}^0)\) of the gauge interaction basis mix to form what are known as the neutralinos of the mass basis:

\[
M_{\tilde{\chi}} = \begin{pmatrix}
M_1 & 0 & -c_\beta s_W m_Z & s_\beta s_W m_Z \\
0 & M_2 & c_\beta c_W m_Z & -s_\beta c_W m_Z \\
-c_\beta s_W m_Z & c_\beta c_W m_Z & 0 & -\mu \\
s_\beta s_W m_Z & -s_\beta c_W m_Z & -\mu & 0
\end{pmatrix}
\]
(3.14)

where \(s(c)\) are the sine and cosine of angles related to EWSB, which introduced masses to the gauginos and higgsinos. Diagonalization of this matrix gives the four neutralino mass states, listed without loss of generality in order of increasing mass: \(\tilde{\chi}_1^{0, -}\). The neutralinos, especially the lightest neutralino \(\tilde{\chi}_1^0\), are important ingredients in SUSY phenomenology.

The same process can be done for the electrically charged gauginos with the charged portions of the Higgsino doublets along with the charged winos \((\tilde{\chi}_u^+, \tilde{\chi}_d^+, \tilde{W}^+, \tilde{W}^-)\). This leads to the charginos, again in order of increasing mass:
\[\chi_{1,2} \]

3.3 Phenomenology

We are finally at the point where we can discuss the phenomenology of the MSSM, in particular as it would manifest at the energy scales of the LHC.

As noted above in Sec. 3.2, the assumption of \(R \)-parity has important consequences for MSSM phenomenology. The SM particles have \(R = 1 \), while the sparticles all have \(R = -1 \). Simply, this is the “charge” of supersymmetry. Since the particles of LHC collisions (\(pp \)) have total incoming \(R = 1 \), we expect that all sparticles will be produced in \emph{pairs}. An additional consequence of this symmetry is the fact that the lightest supersymmetric particle (LSP) is \emph{stable}. Off each branch of the Feynman diagram shown in Fig. 3.3, we have \(R = -1 \), and this can only decay to another sparticle and a SM particle. Once we reach the lightest sparticle in the decay, it is absolutely stable. This leads to the common signature \(E_T^{\text{miss}} \) for a generic SUSY signal.

For this thesis, we will be presenting an inclusive search for squarks and gluinos with zero leptons in the final state. This is a very interesting decay channel, due to the high cross-sections of \(\tilde{g}\tilde{g} \) and \(\tilde{q}\tilde{q} \) decays, as can be seen in Sec. 3.3 [85].
This is a direct consequence of the fact that these are the colored particles of the MSSM. Since the sparticles interact with the gauge groups of the SM in the same way as their SM partners, the colored sparticles, the squarks and gluinos, are produced and decay as governed by the color group $SU(3)_C$ with the strong coupling g_S. Gluino pair production is particularly copious, due to color factor corresponding to the color octet of $SU(3)_C$.

In the case of squark pair production, the most common decay mode of the squark in the MSSM is a decay directly to the LSP plus a single SM quark [15]. This means the basic search strategy for squark pair production is two jets from the final state quarks, plus missing transverse energy from the LSPs.

For gluino pair production, the most common decay is $\tilde{g} \rightarrow g \tilde{q}$, due to the large g_S coupling. The squark then decays as listed above. In this case, we generically search

Figure 3.4: SUSY production cross-sections as a function of sparticle mass at $\sqrt{s} = 13$ TeV [85]
for four jets and missing transverse energy from the LSPs.

In the context of experimental searches for SUSY, we often consider simplified models. These models make certain assumptions which allow easy comparisons of results by theorists and experimentalists. In the context of this thesis, the simplified models will make assumptions about the branching ratios described in the preceding paragraphs. In particular, we will often choose a model where the decay of interest occurs with 100% branching ratio. This is entirely for ease of interpretation, but it is important to recognize that these are more a useful comparison tool, especially for setting limits, than a strict statement about the potential masses of sought-after beyond the Standard Model particle.

3.4 How SUSY solves the problems with the Standard Model

We now return to the issues with the Standard Model as described in Sec. 2.3 to see how they are solved by supersymmetry.

Quadratic divergences to the Higgs mass

The quadratic divergences induced by the loop corrections to the Higgs mass, for example from the top Yukawa coupling, goes as

\[
\delta m_H^2 \approx \left(\frac{m_t}{8\pi^2 \langle \phi \rangle} \right)^2 \Lambda_{Planck}^2.
\] (3.15)
The miraculous thing about SUSY is each of these terms *automatically* comes with a term which exactly cancels this contribution [15]. The fermions and bosons have opposite signs in this loop diagram to all orders in perturbation theory, which completely solves the hierarchy problem. This is the strongest reason for supersymmetry.

Gauge coupling unification

An additional motivation for supersymmetry is seen by the gauge coupling unification at high energy scales. In the Standard Model, the gauge couplings fail to unify at high energies. In the MSSM and many other forms of supersymmetry, the gauge couplings unify at high energy, as can be seen in Fig. 3.6. This provides additional aesthetic motivation for supersymmetric theories.
As we discussed previously, the lack of any dark matter candidate in the Standard Model naturally leads to beyond the Standard Model theories. In the Standard Model, there is a natural dark matter candidate in the lightest supersymmetric particle \[15\]. The LSP would in dark matter experiments be called a \textit{weakly-interacting massive particle} (WIMP), which is a type of cold dark matter \[24, 86\]. These WIMPs would only interact through the weak force and gravity, which is exactly as a model like the MSSM predicts for the neutralino. In Fig. 3.7, we can see the current WIMP exclusions for a given mass. The range of allowed masses which have not been excluded for LSPs and WIMPs have significant overlap. This provides additional motivation outside of the context of theoretical details.

Dark matter

As we discussed previously, the lack of any dark matter candidate in the Standard Model naturally leads to beyond the Standard Model theories. In the Standard Model, there is a natural dark matter candidate in the lightest supersymmetric particle \[15\]. The LSP would in dark matter experiments be called a \textit{weakly-interacting massive particle} (WIMP), which is a type of cold dark matter \[24, 86\]. These WIMPs would only interact through the weak force and gravity, which is exactly as a model like the MSSM predicts for the neutralino. In Fig. 3.7, we can see the current WIMP exclusions for a given mass. The range of allowed masses which have not been excluded for LSPs and WIMPs have significant overlap. This provides additional motivation outside of the context of theoretical details.
3.5 Conclusions

Supersymmetry is the most well-motivated theory for physics beyond the Standard Model. It provides a solution to the hierarchy problem, leads to gauge coupling unification, and provides a dark matter candidate consistent with galactic rotation curves. As noted in this chapter, due to the light supersymmetric particles in the final state, most SUSY searches require a significant amount of missing transverse energy in combination with jets of high transverse momentum. However, there is some opportunity to do better than this, especially in final states where one has two weakly-interacting LSPs on opposite sides of some potentially complicated decay tree. We will see how this is done in Ch. 7.
Chapter 4

The Large Hadron Collider

The Large Hadron Collider (LHC) produces high-energy protons which collide at the center of multiple large experiments at CERN on the outskirts of Geneva, Switzerland [87]. The LHC produces the highest energy collisions in the world, with a design center-of-mass energy of $\sqrt{s} = 14$ TeV, which allows the experiments to investigate physics at higher energies than previous colliders. This chapter will summarize the key aspects of accelerator physics, especially with regards to discovering physics beyond the Standard Model. We will describe the CERN accelerator complex and the LHC.

4.1 Accelerator Physics

This section follows closely the presentation of [88].

Simple particle accelerators simply rely on the acceleration of charged particles in a static electric field. Given a field of strength E, charge q, and mass m, this is simply

$$ a = \frac{qE}{m}. \quad (4.1) $$

For a given particle with a given mass and charge, this is limited by the static electric field which can be produced, which in turn is limited by electrical breakdown at high voltages.

There are two complementary solutions to this issue. First, we use the radio frequency acceleration technique. We call the devices used for this RF cavities. The
cavities produce a time-varied electric field, which oscillate such that the charged particles passing through it are accelerated towards the design energy of the RF cavity. This oscillation forces the particles into bunches, since particles which are slightly off the central energy induced by the RF cavity are accelerated towards the design energy.

Second, one bends the particles in a magnetic field, which allows them to pass through the same RF cavity over and over. This second process is often limited by synchrotron radiation, which describes the radiation produced when a charged particle is accelerated. The power radiated is

\[P \sim \frac{1}{r^2} \left(\frac{E}{m} \right)^4 \]

where \(r \) is the radius of curvature and \(E, m \) is the energy (mass) of the charged particle. Given an energy which can be produced by a given set of RF cavities (which is not limited by the mass of the particle), one has two options to increase the actual collision energy: increase the radius of curvature or use a heavier particle. Practically speaking, the easiest options for particles in a collider are protons and electrons, since they are copious in nature and do not decay\(^1\). Given the dependence on mass, we can see why protons are used to reach the highest energies. The tradeoff for this is that protons are not point particles, and we thus we don’t know the exact incoming four-vectors of the protons. This is a reflection of the “bag model” discussed in Ch. 2, where each proton is actually a bag of incoming quarks and gluons, which individually contribute to the total proton energy.

The particle beam refers to the bunches combined. An important property of a beam of a particular energy \(E \), moving in a circle of radius \(r \) in uniform magnetic field \(B \), containing particles of momentum \(p \) is the beam rigidity:

\[R \equiv rB = \frac{p}{c}. \]

\(^1\)Muon colliders are a potential future option at high energies, since the relativistic \(\gamma \) factor gives them a relatively long lifetime in the lab frame.
The linear relation between \(r \) and \(p \), or alternatively \(B \) and \(p \) has important consequences for LHC physics. For hadron colliders, this is the limiting factor to go to higher energy scales. One needs a proportionally larger magnetic field to keep the beam accelerating in a circle.

Besides the rigidity of the beam, the most important quantities to characterize a beam are known as the (normalized) emittance \(\epsilon_N \) and the betatron function \(\beta \). These quantities determine the transverse size \(\sigma \) of a relativistic beam \(v \leq c \) beam:

\[
\sigma^2 = \beta^* \epsilon_N / \gamma_{\text{rel}} \tag{4.4}
\]

where \(\beta^* \) is the value of the betatron function at the collision point and \(\gamma_{\text{rel}} \) is the Lorentz factor.

These quantities determine the instantaneous luminosity \(L \) of a collider, which combined with the cross-section \(\sigma \) of a particular physics process, give the rate of the physics process:

\[
R = L \sigma. \tag{4.5}
\]

The instantaneous luminosity \(L \) is given by:

\[
L = \frac{f_{\text{rev}} N_b^2 F}{4\pi \sigma^2} = \frac{f_{\text{rev}} n N_b^2 \gamma_{\text{rel}} F}{4\pi \beta^* \epsilon_N}. \tag{4.6}
\]

Here we have introduced the frequency of revolutions \(f_{\text{rev}} \), the number of bunches \(n \), the number of protons per bunch \(N_b^2 \), and a geometric factor \(F \) related to the crossing angle of the beams.

The integrated luminosity \(\int L dt \) gives the total number of a particular physics process \(P \), with cross-section \(\sigma_P \).

\[
N_P = \sigma_P \int L dt. \tag{4.7}
\]

Due to this simple relation, one can also quantify the “amount of data delivered” by a collider simply by \(\int L dt \).
4.2 Accelerator Complex

The Large Hadron Collider is the last accelerator in a chain of accelerators which together form the CERN accelerator complex, shown in Fig. 4.1. The protons begin their journey to annihilation in a hydrogen source, where they are subsequently ionized. The first acceleration occurs in the Linac 2, a linear accelerator composed of RF cavities. The protons leave the Linac 2 at an energy of 50 MeV and enter the Proton Synchrotron Booster (PSB). The PSB contains four superimposed rings, which accelerate the protons to 1.4 GeV. The protons are then injected into the Proton Synchrotron (PS). This synchrotron increases the energy up to 25 GeV. After leaving the PS, the protons enter the Super Proton Synchrotron (SPS). This is the last step before entering the LHC ring, and the protons are accelerated to 450 GeV. From the SPS, the protons are injected into the beam pipes of the LHC. The process
to fill the LHC rings with proton bunches from start to finish typically takes about four minutes.

4.3 Large Hadron Collider

The Large Hadron Collider is the final step in the CERN accelerator complex, and produces the collisions analyzed in this thesis. From the point of view of experimentalists on the general-purpose ATLAS and CMS experiments, the main goal of the LHC is to deliver collisions at the highest possible energy, with the highest possible instantaneous luminosity. The LHC was installed in the existing 27 km tunnel used by the Large Electron Positron (LEP) collider [89]. This allowed the existing accelerator complex at CERN, described in the previous section, to be used as the injection system to prepare the protons up to 450 GeV. Many aspects of the LHC design were decided by this very constraint, and specified the options allowed to increase the energy or luminosity. In particular, the radius of the tunnel was already specified. From Eq. (4.3), this implies the momentum (or energy) of the beam is entirely determined by the magnetic field. Given the 27 km circumference of the LEP tunnel, one can calculate the required magnetic field to reach the 7 TeV per proton design energy of the LHC with Eq. (4.3):

\[
\begin{align*}
 r &= C/2\pi = 4.3 \text{ km} \\
 \Rightarrow B &= \frac{p}{rc} = 5 \text{ T}
\end{align*}
\]

In fact, the LHC consists of eight 528 m straight portions consisting of RF cavities, used to accelerate the particles, and eight circular portions which bend the protons around the LHC ring. These circular portions actually have a slightly smaller radius of curvature \(r = 2804 \text{ m} \), and require \(B = 8.33 \text{ T} \). To produce this large field, superconducting magnets are used.
Magnets

There are many magnets used by the LHC machine, but the most important are the 1232 dipole magnets. A schematic is shown in Fig. 4.2 and a photograph is present in Fig. 4.3.

The magnets are made of Niobium and Titanium. The maximum field strength is 10 T when cooled to 1.9 Kelvin. The magnets are cooled by superfluid helium, which is supplied by a large cryogenic system. Due to heating between the eight helium refrigerators and the beampipe, the helium is cooled in the refrigerators to 1.8 K.

A failure in the cooling system can cause what is known as a quench. If the temperature goes above the critical superconducting temperature, the metal loses its superconducting properties, which leads to a large resistance in the metal. This leads to rapid temperature increases, and can cause extensive damages if not controlled.

The dipole magnets are 16.5 meters long with a diameter of 0.57 meters. There
are two individual beam pipes inside each magnet, which allows the dipoles to house the beams traveling in both directions around the LHC ring. They curve slightly, at an angle of 5.1 mrad, which carefully matches the curvature of the ring. The beampipes inside of the magnets are held in high vacuum to avoid stray interactions with the beam.

4.4 Dataset Delivered by the LHC

In this thesis, we analyze the data delivered by the LHC to ATLAS in the 2015 and 2016 datasets. The beam parameters relevant to this dataset are available in Table 4.1.

The peak instantaneous luminosity delivered in 2015 (2016) was \(L = 5.2 (11) \, \text{cm}^{-2}\text{s}^{-1} \times 10^{33} \). One can note that the instantaneous luminosity delivered in the 2016 dataset exceeds the design luminosity of the LHC. The total integrated
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Injection</th>
<th>Extraction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy (GeV)</td>
<td>450</td>
<td>7000</td>
</tr>
<tr>
<td>Rigidity (T-m)</td>
<td>3.8</td>
<td>23353</td>
</tr>
<tr>
<td>Bunch spacing (ns)</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>Design Luminosity (cm$^{-2}$s$^{-1}$ × 1044)</td>
<td>-</td>
<td>1.0</td>
</tr>
<tr>
<td>Bunches per proton beam</td>
<td>2808</td>
<td>2808</td>
</tr>
<tr>
<td>Protons per bunch</td>
<td>1.15 e11</td>
<td>1.15 e11</td>
</tr>
<tr>
<td>Beam lifetime (hr)</td>
<td>-</td>
<td>10</td>
</tr>
<tr>
<td>Normalized Emittance ϵ_N (mm µrad)</td>
<td>3.3</td>
<td>3.75</td>
</tr>
<tr>
<td>Betatron function at collision point β^* (cm)</td>
<td>-</td>
<td>55</td>
</tr>
</tbody>
</table>

Table 4.1: Beam parameters of the Large Hadron Collider.

luminosity delivered was 13.3 fb$^{-1}$. In Fig. 4.4, we display the integrated luminosity per day for 2015 and 2016.

Pileup

Pileup is the term for the additional proton-proton interactions which occur during each bunch crossing of the LHC. At the beginning of the LHC physics program, there had not been a collider which averaged more than a single interaction per bunch crossing. In the LHC, each bunch crossing (or *event*) generally contains multiple proton-proton interactions. An simulated event with many *vertices* can be seen in Fig. 4.5. The so-called *primary vertex* (or *hard scatter vertex*) refers to the vertex which has the highest Σp_T^2. The summation occurs over the *tracks* in the detector.

We distinguish between *in-time* pileup and *out-of-time* pileup. In-time pileup refers to the additional proton-proton interactions which occur in the event. Out-of-time pileup refers to effects related to proton-proton interactions from previous bunch crossings.

We quantify in-time pileup by the number of “primary”2 vertices in a particular event. To quantify the out-of-time pileup, we use the average number of interactions

2The primary vertex is as defined above, but we unfortunately use the same name here.
Figure 4.4: Integrated Luminosity delivered by the LHC and collected by ATLAS in the 2015 and 2016 datasets.
Figure 4.5: Simulated event with many pileup vertices per bunch crossing $\langle \mu \rangle$. In Fig. 4.6, we show the distribution of μ for the dataset used in this thesis.
Figure 4.6: Mean number of interactions per bunch crossing in the 2015 and 2016 datasets
Chapter 5

The ATLAS detector

The dataset analyzed in this thesis was taken by the ATLAS detector [90], which is located at the “Point 1” cavern of the LHC, just across the street from the main CERN campus. The much-maligned acronym stands for A Toroidal LHC Apparatus. ATLAS is a massive cylindrical detector, with a radius of 12.5 m and a length of 44 m, with nearly hermetic coverage around the collision point. Each of the many subdetectors plays a role in measuring the energy, momentum, and type of the particles produced in collisions delivered by the LHC. These subdetectors are immersed in a hybrid solenoid-toroid magnet system which allows for precise measurements of particle momenta. The central solenoid magnet contains a magnetic field of 2 T. A schematic of the detector is shown in Fig. 5.1.

The inner detector (ID) lies closest to the collision point, and contains three separate subdetectors. It provides pseudorapidity\(^1\) coverage of \(|\eta| < 2.5\) for charged particles. The tracks are reconstructed from the inner detector hits are used to reconstruct the primary vertices and to determine the momenta of charged particles. The ATLAS calorimeter consists of two types of subdetectors, known collectively as the electromagnetic and hadronic calorimeters. These detectors stop particles

\(^1\)ATLAS uses a right-handed Cartesian coordinate system. The origin is defined by the nominal beam interaction point. The positive-\(z\) direction is defined by the incoming beam travelling counterclockwise around the LHC. The positive-\(x\) direction points towards the center of the LHC ring from the origin, and the positive-\(y\) direction points upwards towards the sky. For particles of transverse (in the \(x - y\) plane) momentum \(p_T = \sqrt{p_x^2 + p_y^2}\) and energy \(E\), it is generally most convenient fully describe this particle’s kinematics as measured by the detector in the \((p_T, \phi, \eta, E)\) basis. The angle \(\phi = \arctan(p_y/p_x)\) is the standard azimuthal angle, and \(\eta = \ln \tan(\theta/2)\) is known as the pseudorapidity, and defined based on the standard polar angle \(\theta = \arccos(p_z/p_T)\). For locations of detector elements, both \((r, \phi, \eta)\) and \((z, \phi, \eta)\) can be useful.
and measure their energy deposition. The calorimeters provide coverage out to pseudorapidity of $|\eta| < 4.9$. The muon spectrometer is aptly named, as it measures muons, which are the only particles which generally reach the outer portions of the detector. In this region, we have the large tracking systems of the muon spectrometer, which provide precise measurements of muon momenta. The muon spectrometer has pseudorapidity coverage of $|\eta| < 2.7$.

5.1 Magnets

ATLAS contains multiple magnetic systems. Primarily, we are concerned with the solenoid, used by the inner detector, and the toroids located outside of the ATLAS calorimeter. A schematic is shown in Fig. 5.2. These magnetic fields are used to bend charged particles, which subsequently allows one to measure their momentum.

The ATLAS central solenoid is a 2.3 m diameter, 5.3 m long solenoid at the center of the ATLAS detector. It produces a uniform magnetic field of 2 T. An important
design constraint for the central solenoid was the decision to place it in between the inner detector and the calorimeters. To avoid excessive energy deposition which could affect calorimeter measurements, the central solenoid must be as transparent as possible.\footnote{This is also one of the biggest functional differences between ATLAS and CMS. In CMS, the solenoid is outside of the calorimeters.}

The toroid system consists of eight air-core superconducting barrel loops, which give ATLAS its distinctive shape. There are also two endcap air-core magnets. These produce a magnetic field in a region of approximately 26 m in length and 10 m of

Figure 5.2: The ATLAS magnet system. Copyright CERN
radius. The magnetic field in this region is non-uniform.

5.2 Inner Detector

The ATLAS inner detector consists of three separate tracking detectors, which are known as, in order of increasing distance from the interaction point, the Pixel Detector, Semiconductor Tracker (SCT), and the Transition Radiation Tracker (TRT). When charged particles pass through these tracking layers, they produce hits, which using the known 2 T magnetic field, allows the reconstruction of tracks. Tracks are used as inputs for reconstruction of many higher-level physics objects, such as electrons, muons, photons, and E^miss_T. Accurate track reconstruction is thus crucial for precise measurements of charged particles.
The ATLAS pixel detector consists of four layers of silicon “pixels” [91]. This refers to the segmentation of the active medium into pixels, which provide precise 3D hit locations. The layers are known as the “Insertable” B-Layer (IBL), the B-Layer (or Layer-0), Layer-1, and Layer-2, in order of increasing distance from the interaction point. These layers are close to the interaction point, and therefore experience significant radiation exposure.

Layer-1, Layer-2, and Layer-3 were installed with the initial construction of ATLAS. They contain front-end integrated electronics (FEI3s) bump-bonded to 1744 silicon modules. Each module is 250 μm in thickness and contains 47232 pixels. These pixels have planar sizes of 50 x 400 μm² or 50 x 600 μm², to provide highly accurate location information. The FEI3s are mounted on long rectangular structures known as staves, which encircle the beam pipe. A small tilt to each stave allows full coverage in φ. These layers are at radii of 50.5 mm, 88.5 mm, and 122.5 mm from
the interaction point.

The IBL was added to ATLAS after Run-1 in 2012 at a radius of 33 mm from the interaction point [92]. The IBL was required to preserve the integrity of the pixel detector as radiation damage leads to inoperative pixels in the other layers. The IBL consists of 448 FEI4 chips, arranged onto 14 staves. Each FEI4 has 26880 pixels, of planar size 50 x 250 µm. This smaller granularity was required due to the smaller distance to the interaction point.

In total, a charged particle passing through the inner detector is expected to leave four hits in the pixel detector.

Semiconductor Tracker

The SCT is a silicon strip detector directly beyond Layer-2 of the pixel detector [93]. The dual-sensors of the SCT contain 2 x 768 individual strips. Each strip has area 6.4 cm². The SCT dual-sensor is double-layered, at a relative angle of 40 mrad.
Together, these layers provide the necessary 3D information for track reconstruction. There are four of these double-layers, at radii of 284 mm, 355 mm, 427 mm, and 498 mm. These double-layers provide hits comparable to those of the pixel detector. The SCT provides an four additional hits to reconstruct tracks for each charged particle.

Transition Radiation Tracker

The Transition Radiation Tracker is the next detector radially outward from the SCT. It contains straw drift tubes. Each tube contains a tungsten gold-plated wire of 32 μm diameter held under high voltage (-1530 V) with the edge of the Kapton-aluminum tube. They are filled with a gas mixture of primarily xenon that is ionized when a charged particle passes through the tube. The ions are collected by the “drift” due to the voltage inside the tubes, which is read out by the electronics. Due to the dielectric difference between the gas and tubes, transition radiation is induced.
This is important for distinguishing electrons from their predominant background of minimum ionizing particles. Generally, electrons have a much larger Lorentz factor than minimum ionizing particles, which leads to additional transition radiation. This is used to discriminate electrons from background in electron reconstruction.

5.3 Calorimetry

The calorimetry of the ATLAS detector also includes multiple subdetectors which allow precise measurements of the electrons, photons, and hadrons produced in collisions delivered by the LHC. Calorimeters stop particles in their material and measure the energy deposition. This energy is deposited as a cascade of particles induce from interactions with the detector material known as a shower. ATLAS uses sampling calorimeters, alternating a dense absorbing material to induce showers with an active layer to measure energy depositions by the induced showers. Since some energy is deposited into the absorption layers as well, the energy depositions must be

Figure 5.7: The ATLAS calorimeter. Copyright CERN
Electromagnetic objects (electrons and photons) and hadrons have different interaction properties. We use different types of calorimeters to accurately measure these classes of objects, which we call *electromagnetic* and *hadronic* calorimeters. ATLAS contains multiple separate calorimeters: the liquid argon (LAr) electromagnetic barrel calorimeter, the Tile barrel hadronic calorimeter, the LAr endcap electromagnetic calorimeter, the LAr endcap hadronic calorimeter, and the LAr Forward Calorimeter (FCal). Combined, these provide full coverage up to $|\eta| < 4.9$. They are shown in Fig. 5.7.
Electromagnetic Calorimeters

The electromagnetic calorimeters of the ATLAS detector consist of the barrel and endcap LAr calorimeters. These are arranged into an “accordion” shape, shown in Fig. 5.8, which allows full coverage in φ and significant coverage in η while still allowing support structures for detector operation. The accordion is made of layers with liquid argon (active detection material) and lead (absorber) to induce electromagnetic showers. The LAr EM calorimeters are each more than 20 radiation lengths deep, which provides the high stopping power necessary to properly measure the electromagnetic showers.

The barrel component of the LAr EM calorimeter extends from the center of the detector out to |η| < 1.475. The calorimeter has a presampler, which measures the energy of any EM shower induced before the calorimeter. This has segmentation of Δη = 0.025, Δφ = 0.01 There are three “standard” layers in the barrel, which have decreasing segmentation into calorimeter cells as one travels radially outward from the interaction point. The first layer has segmentation of Δη = 0.003, Δφ = 0.1, and is quite thin with a depth of 4 radiation lengths. It provides precise η and φ measurements for incoming EM objects. The second layer is the deepest at 16 radiation lengths, with a segmentation of Δη = 0.025, Δφ = 0.025. It is primarily responsible for stopping the incoming EM particles, which dictates its large relative thickness, and measures most of the energy of the incoming particles. The third layer is only 2 radiation lengths deep, with a rough segmentation of Δη = 0.05, Δφ = 0.025. The deposition in this layer is primarily used to distinguish hadrons interacting electromagnetically and entering the hadronic calorimeter from the strictly EM objects which are stopped in the second layer.

The barrel EM calorimeter has a similar overall structure, but extends from 1.4 < |η| < 3.2. The η segmentation is smaller in the endcap than the barrel, while the φ segmentation is the same. In total, the EM calorimeters contain about 190000...
individual calorimeter cells.

Hadronic Calorimeters

The hadronic calorimetry of ATLAS sits directly outside the EM calorimetry. It contains three subdetectors: the barrel Tile calorimeter, the endcap LAr calorimeter, and the Forward LAr Calorimeter. Similar to the EM calorimeters, these are sampling calorimeters that alternate steel (dense material) with an active layer (plastic scintillator).

The barrel Tile calorimeter extends out to $|\eta| < 1.7$. It has three layers, which combined provide excellent stopping power for hadrons at a depth of about 10 interactions lengths. This is critical to avoid excess hadronic punchthrough to the muon spectrometer beyond the hadronic calorimeters. The first layer has a depth of 1.5 interaction lengths. The second layer is again the thickest at a depth of 4.1 interaction lengths. Most of the energy of incoming particles is deposited in the second
layer. Both the first and second layer have segmentation of $\Delta \eta = 0.1, \Delta \phi = 0.1$. Generally, one does not need as fine granularity in the hadronic calorimeter, since the energy depositions in the hadronic calorimeters will be summed into the composite objects as jets. The third layer has a thickness of 1.8 interaction lengths, with a segmentation of $\Delta \eta = 0.2, \Delta \phi = 0.1$. The use of multiple layers gives information about the induced hadronic shower as it propagates through the detector material.

The endcap LAr hadronic calorimeter is a sampling calorimeter which covers the region $1.5 < |\eta| < 3.2$. Liquid argon is the the active material and it uses a copper absorber. Unlike the other sampling calorimeters in ATLAS, it does not use the accordion shape. Instead, it is a flat detector perpendicular to the interaction point. The segmentation varies with η, ranging from cells of size $\Delta \eta = 0.1, \Delta \phi = 0.1$ in the center region to $\Delta \eta = 0.2, \Delta \phi = 0.2$ in the forward region.

The forward LAr calorimeter is the last subdetector of the ATLAS calorimetry. Of those subdetectors which are used for standard reconstruction techniques, the FCal sits at the most extreme values of $3.1 < |\eta| < 4.9$. The FCal itself is made of three subdetectors: the electromagnetic FCal1 and hadronic FCal2 and FCal3. The absorber in FCal1 is copper, with a liquid argon active medium. FCal2 and FCal3 also use a liquid argon active medium, with a tungsten absorber.

5.4 Muon Spectrometer

The muon spectrometer sits outside the hadronic calorimetry, with pseudorapidity coverage out to $|\eta| < 2.7$. The MS is a huge detector, with some detector elements existing as far as 11 m in radius from the interaction point. This system is used almost exclusively to measure the momenta of muons. These systems provide a rough measurement, which is used in triggering (described in Sec. 5.5), and a precise measurement to be used in offline event reconstruction. The MS produces tracks in a
Figure 5.10: The ATLAS muon spectrometer. Copyright CERN

Figure 5.11: A schematic in z/η showing the location of the subdetectors of the muon spectrometer. Copyright CERN
similar way to the ID. The hits in each subdetector are recorded and then tracks are produced from these hits. Muon spectrometer tracks are largely independent of the ID tracks due to the independent solenoidal and toroidal magnet systems used in the ID and MS respectively. The MS consists of four separate subdetectors: the barrel region is covered by the Resistive Plate Chambers (RPCs) and Monitored Drift Tubes (MDTs) while the endcaps are covered by MDTs, Thin Gap Chambers (TGCs), and Cathode Strip Chambers (CSCs).

Monitored Drift Tubes

The MDT system is the largest individual subdetector of the MS. MDTs provide precision measurements of muon momenta as well as fast measurements used for triggering. There are 1088 MDT chambers providing coverage out to pseudorapidity $|\eta| < 2.7$. Each consists of an aluminum tube containing an argon-CO$_2$ gas mixture. In the center of each tube, 50 μm diameter tungsten-rhenium wire are held at a voltage of 3080 V. A muon entering the tube will induce ionization in the gas, which will “drift” towards the wire due to the voltage. One measures this ionization as a current in the wire. The current comes with a time measurement related to how long it takes the ionization to drift to the wire.

These tubes are layered in a pattern shown in Fig. 5.12. Combining the measurements from the tubes in each layer gives good position resolution. The system consists of three subsystems of these layers, at 5 m, 7 m, and 9 m from the interaction point. The innermost layer is directly outside the hadronic calorimeter. The combination of these three measurements gives precise momenta measurements for muons.
Figure 5.12: Schematic of a Muon Drift Tube chamber. Copyright CERN
Resistive Plate Chambers

The RPC system is alternated with the MDT system in the barrel. The first two layers of RPC detectors surround the second MDT layer while the third is outside the final MDT layer. The RPC system covers pseudorapidity $|\eta| < 1.05$. Each RPC consists of two parallel plates at a distance of 2 mm surrounding a $C_2H_2F_4$ mixture. The electric field between these plates is 4.9 kV/mm. Just as in the MDTs, an incoming muon ionizes the gas, and the deposited ionization is collected by the detector (in this case on the plates). It is quite fast, but with a relatively poor spatial resolution of 1 cm. Still, it can provide reasonable ϕ resolution due to its large distance from the interaction point. This is most useful in triggering, where the timing requirements are quite severe. The RPCs also complement the MDTs by providing a measurement of the non-bending coordinate.

Cathode Strip Chambers

The CSCs are used in place of MDTs in the first layer of the endcaps. This region, at $2.0 < |\eta| < 2.7$, has higher particle multiplicity at close distance to the interaction point from low-energy photons and neutrons. The MDTs are not equipped to deal with
the high particle rate in this region, so the CSCs were designed to deal with this deficiency.

Each CSC consists of multiwire proportional chambers, oriented radially outward from the interaction point. These chambers overlap partially in ϕ. The wires contain a gas mixture of argon and CO$_2$, which is ionized when muons enter. The detectors operate with a voltage of 1900 V, with much lower drift times than the MDTs. They provide less hits than MDTs, but faster drift times lower uptime and reduce the amount of detector overload.

The CSCs are arranged into four planes on the wheels of the muon spectrometer, as seen in Fig. 5.13. There are 32 CSCs in total, with 16 on each side of the detector in η.

Figure 5.14: Photo of a muon Big Wheel, consisting of Thin Gap Chambers. Copyright CERN
Thin Gap Chambers

The TGCs serve the purpose of the RPCs in the endcap at pseudorapidity of $1.05 < |\eta| < 2.4$, by providing fast measurements used for triggering. They are multiwire proportional chambers similar to the CSCs. The fast readouts necessary for triggering are provided by a high electric field and a small wire-to-wire distance of 1.8 mm. These detectors provide both η and ϕ information, allowing the trigger to use as much information as possible when selecting events.

5.5 Trigger System

The data rate delivered by the LHC is staggering [94]. In the 2016 dataset, the collision rate was 40 MHz, meaning a **bunch spacing** of 25 ns. In each event, there are many proton-proton collisions. Most of the collisions are uninteresting, such as elastic scattering of protons, or even inelastic scattering leading to low-energy dijet events. These low-energy events have have been studied in detail in previous experiments.

Even if one is genuinely interested in these events, it’s **impossible** to save all of the information available in each event. If all events were written “to tape” (as the jargon goes), ATLAS would store terabytes of data per second. We are limited to only about 1000 Hz readout by computing processing time and storage space. We thus implement a **trigger** which provides fast inspection of events to drastically reduce the data rate from the 40 MHz provided by the LHC to the 1000 Hz we can write to tape for further analysis.

The ATLAS trigger system consists of a two-level trigger, known as the Level-1 trigger (L1 trigger) and the High-Level Trigger (HLT)\(^3\). Trigger selections are organized into **trigger chains**, where events passing a particular L1 trigger are passed

\(^3\)In Run-1, ATLAS ran with a three-level trigger system. The L1 was essentially as today. The HLT consisted of two separate systems known as the L2 trigger and the Event Filter (EF). This was changed to the simpler system used today during the shutdown between Run-1 and Run-2.
to a corresponding HLT trigger. For example, one would require a particular high-p_T muon at L1, with additional quality requirements at HLT. One can also use HLT triggers as prerequisites for each other, as is done in some triggers requiring both jets and E_T^{miss}.

Level-1 Trigger

The L1 trigger is hardware-based, and provides the very fast rejection needed to quickly select events of interest. The L1 trigger uses only what is known as prompt data to quickly identify interesting events. Only the calorimeters and the triggering detectors (RPCs and TGCs) of the MS are fast enough to be considered at L1, since the tracking reconstruction algorithms used by the ID and the more precise MS detectors are very slow. This allows quick identification of events with the most interesting physical objects: large missing transverse momentum and high-p_T electrons, muons, and jets.

L1 trigger processing is done locally. This means that events are selected without considering the entire available event. Energy deposits over some threshold are reconstructed as *regions of interest* (RoIs). These RoIs are then compared using pattern recognition hardware to “expected” patterns for the given RoIs. Events with RoIs matching these expected patterns are handed to the HLT through the Central Trigger Processor. This step lowers the data rate down to about 75 kHz.

High-Level Trigger

After passing the L1 trigger, events are passed to the HLT, which takes the incoming data rate from \sim75 kHz down to the \sim1 kHz that can be written to tape. The HLT performs much like a simplified offline reconstruction, using many common quality and analysis cuts to eliminate uninteresting events. This is done by using computing farms located close to the detector, which process events in parallel. Individually,
each event which enters the computing farms takes about 4 seconds to reconstruct. However, some events take significantly longer to reconstruct, which necessitates careful monitoring of the HLT to ensure smooth operation.

HLT triggers are targeted to a particular physics process, such as a E^miss_T trigger, single muon trigger, or multijet trigger. The collection of all triggers is known as the trigger menu. Since many low-energy particles are produced in collisions, it is necessary to set a trigger threshold on the object of interest. Due to the changing luminosity conditions of the LHC, these thresholds change constantly. The most common strategy is to increase the trigger thresholds with increasing instantaneous luminosity. This allows an approximately constant number of events to be written for further analysis. Triggers which have rates higher than those designated by the menu are prescaled. A prescaled trigger only records every nth event which passes the trigger requirements, where n is the prescale value. One wishes to investigate all data events passing some set of analysis cuts, so often one uses the “lowest threshold unprescaled trigger”. Turn-on curves allow one to select the needed offline analysis cut to ensure the trigger is fully efficient. An example turn-on curve for the E^miss_T triggers used in the signal region of this analysis is shown in Fig. 5.15.

The full set of the lowest threshold unprescaled triggers considered here can be found in Table 5.1. These are the lowest unprescaled triggers associated to the SUSY signal models and Standard Model backgrounds considered in this thesis. More information can be found in [94].
<table>
<thead>
<tr>
<th>Physics Object</th>
<th>Trigger</th>
<th>p_T Threshold (GeV)</th>
<th>Level-1 Seed</th>
<th>Requirements</th>
<th>Rate (Hz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2015 Data</td>
<td>E_T^{miss}</td>
<td>HLT_xe70</td>
<td>70</td>
<td>L1_XE50</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Muon</td>
<td>HLT_mu24_i_loose</td>
<td>24</td>
<td>L1_MU15</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>Muon</td>
<td>HLT_mu50</td>
<td>50</td>
<td>L1_MU15</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>Electron</td>
<td>HLT_e24_lhmedium_i_loose</td>
<td>24</td>
<td>L1_EM20VH</td>
<td>130</td>
</tr>
<tr>
<td></td>
<td>Electron</td>
<td>HLT_e60_lhmedium</td>
<td>60</td>
<td>L1_EM20VH</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>Electron</td>
<td>HLT_e120_lh_loose</td>
<td>120</td>
<td>L1_EM20VH</td>
<td><10</td>
</tr>
<tr>
<td></td>
<td>Photon</td>
<td>HLT_g120_loose</td>
<td>120</td>
<td>L1_EM20VH</td>
<td>20</td>
</tr>
<tr>
<td>2016 Data</td>
<td>E_T^{miss}</td>
<td>HLT_xe100_mht_L1XE50</td>
<td>100</td>
<td>L1_XE50</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Muon</td>
<td>HLT_mu24_i_var_medium</td>
<td>24</td>
<td>L1_MU20</td>
<td>120</td>
</tr>
<tr>
<td></td>
<td>Muon</td>
<td>HLT_mu50</td>
<td>50</td>
<td>L1_MU20</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Electron</td>
<td>HLT_e24_lhtight_nod0</td>
<td>24</td>
<td>L1_EM22VHI</td>
<td>110</td>
</tr>
<tr>
<td></td>
<td>Electron</td>
<td>HLT_e60_lhmedium_nod0</td>
<td>60</td>
<td>L1_EM22VHI</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Electron</td>
<td>HLT_e140_lh_loose_nod0</td>
<td>140</td>
<td>L1_EM22VHI</td>
<td><10</td>
</tr>
<tr>
<td></td>
<td>Photon</td>
<td>HLT_g140_loose</td>
<td>140</td>
<td>L1_EM22VHI</td>
<td></td>
</tr>
</tbody>
</table>

Table 5.1: High-Level Triggers used in this thesis. Descriptions of loose, medium, tight, and isolated can be found in [94]. The d_0 cut refers to a quality cut on the vertex position, which was removed from many triggers in 2016 to increase sensitivity to displaced vertex signals. For most triggers, the increased thresholds in 2015 compared to 2016 were designed to keep the rate approximately equal.
Figure 5.15: Turn-on curves for a variety of E_T^{miss} triggers
Chapter 6

Object Reconstruction

This chapter describes the physics object reconstruction algorithms used within ATLAS. We make the distinction between the “primitive” objects which are reconstructed from the detector signals from the “composite” physics objects we use in measurements and searches for new physics.

6.1 Primitive Object Reconstruction

The primitive objects reconstructed by ATLAS are tracks and (calorimeter) clusters. These are reconstructed directly from tracking hits and calorimeter energy deposits into cells. Tracks can be further divided into inner detector and muon spectrometer tracks. Calorimeter clusters can be divided into sliding-window clusters and topological clusters (topoclusters).

Inner Detector Tracks

Inner detector tracks are reconstructed from hits in the inner detector [95, 96] These hits indicate that a charged particle has passed through the detector material. Due to the 2 T solenoid in the inner detector, the hits associated with any individual particle will be curved. The amount of curvature determines the momentum of the particle. In any given event, there is upwards of 10^4 hits, making it impossible to do any sort of combinatorics to reconstruct tracks. There are two algorithms used by ATLAS track reconstruction, known as inside-out and outside-in.
ATLAS first employs the inside-out algorithm. One assumes the track begins at the interaction point. Moving out from the interaction point, one creates track seeds. Track seeds are proto-tracks constructed from three hits. These hits can be distributed as three pixel hits, two pixel hits and one SCT hit, or three SCT hits. One extrapolates the track and uses a combinatorial Kalman filter [95], which adds the rest of the pixel and SCT hits to the seeds. This is done seed by seed, so it avoids the combinatorial complexity involved with checking all hits with all seeds. At this point, the algorithm applies an additional filter to avoid ambiguities from nearby tracks. The TRT hits are added to the seeds using the same method. After this procedure, all hits are associated to a track.

The next step is to determine the correct kinematics of the track. This is done by applying a fitting algorithm which outputs the best-fit track parameters by minimizing the track distance from hits, weighted by each hit’s resolution. These parameters are \((d_0, z_0, \eta, \phi, q/p)\) where \(d_0 (z_0)\) is the transverse (longitudinal) impact parameter and \(q/p\) is the charge over the track momenta. This set of parameters uniquely defines the measurement of the trajectory of the charged particle associated to the track. An illustration of a track with these parameters is shown in Fig. 6.1.

The other track reconstruction algorithm is the outside-in algorithm. As the name implies, we start from the outside of the inner detector, in the TRT, and extend the tracks in toward the interaction point. One begins by seeding from TRT hits, and extending the track back towards the center of the detector. The same fitting procedure is used as in the inside-out algorithm to find the optimal track parameters. This algorithm is particularly important for finding tracks which originate from interactions with the detector material, especially the SCT. For tracks from primary vertices, this often finds the same tracks as the inside-out algorithm, providing an important check on the consistency of the tracking procedure.

In the high luminosity environment of the LHC, even the tracks reconstructed
Figure 6.1: The parameters associated to a track

from precision detectors such as those of ATLAS inner detector can sometimes lead to fake tracks from simple combinatoric chance. Several quality checks are imposed after track fitting which reduce this background. Seven silicon (pixel + SCT) hits are required for all tracks. No more than two holes are allowed in the pixel detector. Holes are expected measurements from the track that are missing in the pixel detector. Finally, tracks with poor fit quality, as measured by χ^2/n.d.f., are also rejected. Due to the high quality of the silicon measurements in the pixel detector and SCT, these requirements give good track reconstruction efficiency, as seen in Fig. 6.2 for simulated events [97].
Figure 6.2: Track reconstruction efficiency as a function of track p_T and η. The efficiency is defined as the number of reconstructed tracks divided by the number of generated charged particles.

Sliding-window clusters

The sliding-window algorithm is a way to combine calorimeter cells into composite objects (clusters) to be used as inputs for other algorithms [98]. Sliding-window clusters are the primary inputs to electron and photon reconstruction, as described below. The electromagnetic calorimeter has high granularity, with a cell size of $(\eta, \phi) = (.025, .025)$ in the coarsest second layer throughout most of the calorimeter. The “window” consists of 3 by 5 cells in the (η, ϕ) space. All layers are added on this same 2D space. One translates this window over the space and seeds a cluster whenever the energy sum of the cells is maximized. If the seed energy is greater than 2.5 GeV, this seed is called a sliding-window cluster. This choice was motivated to optimize the reconstruction efficiency of proto-electrons and proto-photons while rejecting fakes from electronic noise and additional particles from pileup vertices.
Topological clusters

Topoclusters are the output of the algorithms to combine hadronic and electromagnetic calorimeter cells in a way which extracts signal from a background of significant electronic noise [99]. They are the primary input to the algorithms which reconstruct jets.

Topological clusters are reconstructed from calorimeter cells in the following way. First, one maps all cells onto a single $\eta - \phi$ plane so one can speak of neighboring cells. Two cells are considered neighboring if they are in the same layer and directly adjacent, or if they are in adjacent layers and overlap in $\eta - \phi$ space. The significance ξ_{cell} of a cell during a given event is

$$\xi_{\text{cell}} = \frac{E_{\text{cell}}}{\sigma_{\text{noise,cell}}}$$ \hspace{1cm} (6.1)$$

where $\sigma_{\text{noise,cell}}$ is measured for each cell in ATLAS and E_{cell} measures the current energy level of the cell. One thinks of this as the measurement of the energy over threshold for the cell.

Topocluster seeds are defined as calorimeter cells which have a significance $\xi_{\text{cell}} > 4$. These are the inputs to the algorithm. One iteratively tests all cells adjacent to these seeds for $\xi_{\text{cell}} > 2$. Each cells passing this selection is then added to the topocluster, and the procedure is repeated on this set of cells. When the algorithm reaches the point where there are no additional adjacent cells with $\xi_{\text{cell}} > 2$, every positive-energy cell adjacent to the current proto-cluster is added. The collection of summed cells is a topocluster. An example of this procedure for a simulation dijet event is shown in Fig. 6.3.

There are two calibrations used for clusters [100]. These are known as the electromagnetic (EM) scale [101] and the local cluster weighting (LCW) scale [99]. The EM scale is the energy read directly out of the calorimeters as described. This scale is appropriate for electromagnetic processes. The LCW scale applies additional
Figure 6.3: Example of topoclustering on a simulated dijet event
scaling to the clusters based on the shower development. The cluster energy can be corrected for calorimeter noncompensation and the differences in the hadronic and electromagnetic calorimeters’ responses. This scale provides additional corrections that improve the accuracy of hadronic energy measurements. This thesis only uses the EM scale corrections. LCW scaling requires additional measurements that only became available with additional data. Due to the jet calibration procedure that we will describe below, it is also a relatively complicated procedure to rederive the “correct” jet energy.

Muon Spectrometer Tracks

Muon spectrometer tracks are fit using the same algorithms as the ID tracks, but different subdetectors. The tracks are seeded by hits in the MDTs or CSCs. After seeding in the MDTs and CSCs, the hits from all subsystems are refit as the final MS track. These tracks are used as inputs to the muon reconstruction, as we will see below.

6.2 Physics Object Reconstruction and Quality Identification

There are essentially six objects used in ATLAS searches for new physics: electrons, photons, muons, τ-jets, jets, and E_T^{miss}. The reconstruction of these objects is described here. In this thesis, τ lepton jets are not treated differently from other hadronic jets, and we will not consider their reconstruction algorithms. A very convenient summary plot is shown in Fig. 6.4.

One often wishes to understand “how certain” we are that a particular object is truly the underlying physics object. In ATLAS, we often generically consider, in
order, *very loose*, *loose*, *medium*, and *tight* objects\(^1\). These are ordered in terms of decreasing object efficiency, or equivalently, decreasing numbers of fake objects. We will also describe briefly the classification of objects into these categories.

In this thesis, since we present a search for new physics in an all hadronic final state, we will provide additional details about jet and \(E_T^{\text{miss}}\) reconstruction.

\(^1\) These are not all used for all objects, but it's conceptually useful to think of these different categories.
Electrons and Photons

Reconstruction

The reconstruction of electrons and photons (often for brevity called “electromagnetic objects”) is very similar [98, 102, 103]. This is because the reconstruction begins with the energy deposit in the calorimeter in the form of an electromagnetic shower. For any incoming e/γ, many more electrons and photons are produced in the shower. The measurement in the calorimeter is similar for these two objects.

One begins the reconstruction of electromagnetic objects from the sliding-window clusters are reconstructed from the EM calorimeter. These $E > 2.5$ GeV clusters the the primary seed for electrons and photons. One then looks for all ID tracks within $\Delta R < 0.3$, where $\Delta R = \sqrt{\Delta \eta^2 + \Delta \phi^2}$. We “match” the track and cluster if they are within $\Delta \phi < 0.2$ in the direction of track curvature, or $\Delta \phi < 0.05$ in the direction opposite the track curvature. Those track-cluster seeds with tracks pointing to the primary vertex are reconstructed as electrons.

For photons, we have two options to consider, known as converted and unconverted photons. Due to the high energy of the LHC collisions, typical photons have energy $\lesssim 1$ GeV. At this scale, photons interact almost exclusively via pair-production in the presence of the detector material, as shown in Fig. 6.5 [58]. If the track-cluster seed has a track which does not point at the primary vertex, we reconstruct this object as a converted photon. This happens since the photon travels a distance before decay into two electrons, and we observe the tracks coming from this secondary vertex. Those clusters which do not have any associated tracks are reconstructed as an unconverted photon.

The final step in electromagnetic object reconstruction is the final energy value. This process is different between electrons and photons due to their differing signatures in the EM calorimeter. In the barrel, electrons energies are assigned as
Figure 6.5: Photon total cross sections as a function of energy in carbon and lead, showing the contributions of different processes [58]
the sum of the 3 clusters in \(\eta \) and 7 clusters in \(\phi \) to account for the electron curving in the \(\phi \) direction. Barrel photons are assigned the energy sum of (3, 5) clusters in \((\eta, \phi)\) space. In the endcap, the effect of the magnetic field on the electrons is smaller, and there is a coarser granularity. Both objects sum the (5, 5) clusters for their final energy value.

Quality Identification

Electrons have a number of important backgrounds. Fake electrons come primarily from secondary vertices in hadron decays or misidentified hadronic jets. To reduce these backgrounds, quality requirements are imposed on electron candidates. Loose electrons have requirements imposed on the shower shapes in the electromagnetic calorimeter and on the quality of the associated ID track. There is also a requirement that there is a small energy deposition in the hadronic calorimeter behind the electron, to avoid jets being misidentified as electrons. Medium and tight electrons have increasingly stronger requirements on these variables, and additional requirements on the isolation (as measured by \(\Delta R \)) and matching of the ID track momentum and the calorimeter energy deposit.

Photons are relatively straightforward to measure, since there are few background processes [104]. The primary is pion decays to two photons, which can cause a jet to be misidentified as photon. Loose photons have requirements on the shower shape and hadronic leakage. Tight photons have tighter shower shape cuts, especially on the high granularity first layer of the EM calorimeter. The efficiency for unconverted tight photons as a function of \(p_T \) is shown in Fig. 6.6.
Muons

Reconstruction

Muons are reconstructed using measurements from all levels of the ATLAS detector [105]. They leave a ID track, a small, characteristic deposition in the EM calorimeter, and a track in the muon spectrometer. The primary reconstruction technique produces a so-called combined muon. “Combined” means using a combination of the ID and MS tracks to produce the final reconstructed muon kinematics. This is done by refitting the hits associated to both tracks, and using this refit track for the muon kinematics.

Quality Identification

Several additional criteria are used to assure muon measurements are free of significant background contributions, especially from pion and kaon decays to muons.
Muons produced via these decay processes are often characterized by a “kink”. Candidate muons with a poor fit quality, characterized by $\chi^2/n.d.f.$, are thus rejected. Additionally, the absolute difference in momentum measurements between the ID and MS can be used to discriminate from backgrounds, since the other decay products from hadron decays carry away some amount of the initial hadron momentum. This is measured by

$$\rho' = \frac{|p_T^{\text{ID}} - p_T^{\text{MS}}|}{p_T^{\text{Combined}}}.$$ \hfill (6.2)

Additionally, there is a requirement on the q/p significance, defined as

$$S_{q/p} = \frac{|(q/p)^{\text{ID}} - (q/p)^{\text{MS}}|}{\sqrt{\sigma^2_{\text{ID}} + \sigma^2_{\text{MS}}}}.$$ \hfill (6.3)

The $\sigma_{\text{ID,MS}}$ in the denominator of Eq. (6.3) are the uncertainties on the corresponding quantity from the numerator. Finally, cuts are placed on the number of hits in the various detector elements.

Subsequently tighter cuts on these variables allow one to define the different muon identification criteria. Loose muons have the highest reconstruction efficiency, but the highest number of fake muons, since there are no requirements on the number of subdetector hits and the loosest requirements on the suite of quality variables. Medium muons consist of Loose muons with tighter cuts on the quality variables. They also require more than three MDT hits in at least two MDT layers. These are the default used by ATLAS analyses. Tight muons have stronger cuts than those of the medium selection, reducing the reconstruction efficiency. The reconstruction efficiency as a function of p_T can be seen for Medium muons in Fig. 6.7.

Jets

Jets are composite objects corresponding to many physical particles [58, 106, 107]. This is a striking difference from the earlier particles. Fortunately, we normally (and in this thesis) only need information about the original particle produced in the
primary collision. In the SM, this corresponds to quarks and gluons. Due to the hadronization process, free quarks and gluons spontaneously hadronize and produce a hadronic shower, which we call a jet. These showers can be measured by the EM and hadronic calorimeters, and the charged portions can be measured in the ID. The first step is to combine these measurements into a composite object representing the underlying physical parton. This is done via jet algorithms.

Jet Algorithms

It might seem straightforward to combine the underlying physical particles into a jet. There are three important characteristics required for any jet reconstruction algorithm to be used by ATLAS.

- Collinear safety - if any particle with four-vector p is replaced by two particles of p_1, p_2 with $p = p_1 + p_2$, the subsequent jet should not change
• Radioactive (infrared) safety - if any particle with four-vector p radiates a particle of energy $\alpha \to 0$, the subsequent jet should not change

• Fast - the jet algorithm should be “fast enough” to be usable by ATLAS computing resources

The first two requirements can be seen in terms of requirements on soft gluon emission. Since partons emit arbitrarily soft gluons freely, jet algorithms should not be affected by soft gluon emission. The final requirement is of course a practical limitation.

The algorithms in use by ATLAS (and CMS) which satisfies these requirements are collectively known as the k_T algorithms [108-110]. These algorithms iteratively combine the “closest” objects, defined using the following distance measures:

$$ d_{ij} = \min(k_{T,i}^{2p}, k_{T,j}^{2p}) \frac{\Delta \xi_j}{R^2} $$

$$ d_{iB} = k_{Ti}^{2p} $$

In Eq. (6.4), $k_{T,i}$ is the transverse momentum of i-th jet constituent and $\Delta \xi_j$ is the angular distance ΔR between the constituents. Both R and p are adjustable parameters: R is known as the (jet) cone size and p regulates the power of the energy versus the geometrical scales. The algorithm sequence, for a given set of objects i with four-vector k:

1. Find the minimum distance in the set of all d_{ij} and d_{iB}.

2. If the distance is one of the d_{ij}, combine the input pair of object i, j and return to (1). If the distance is one of the d_{iB}, remove the object from the list, call it a jet, and return to (1).

This process ends when all objects i have been added to a jet.

Any choice of (p, R) is collinear and radiation safe. In essence, the choice is to optimize based on speed and the potential for new physics discoveries. In ATLAS,
we make the choice of $p = -1$ which is also known as the \textit{anti-k_T} algorithm. The choice of $R = 0.4$ is used for the distance parameter of the jets.

The primary “nice” quality of this algorithm can be seen with the following example. Consider three inputs to an anti-k_T algorithm, all with $\eta = 0$:

- Object 1: $(p_T, \phi) = (30 \text{ GeV}, 0)$
- Object 2: $(p_T, \phi) = (20 \text{ GeV}, -0.2)$
- Object 3: $(p_T, \phi) = (10 \text{ GeV}, 0.2)$
- Object 4: $(p_T, \phi) = (1 \text{ GeV}, 0.5)$

In the case shown, it seems natural to first combine the “bigger” objects 1 and 2. These then pick up the extra small object 3, and object 4 is not included in the jet. This is what is done by the anti-k_T algorithm. The (normal) k_T algorithm with $p = 1$ instead combines the smallest objects, 3 and 4, first. Object 1 and 2 combine to form their own jet, instead of these jets picking up object 3. This behavior is not ideal due to effects from pileup, as we will see in the next section.

Jet Reconstruction

In ATLAS, jets are reconstructed using multiple different objects as inputs, including tracks, “truth” objects, calorimeter clusters, and \textit{particle flow objects} (PFOs). For physics analyses, ATLAS primarily uses jets reconstructed from calorimeter clusters, but we will describe the others here, as they are often used for systematic uncertainties.

Calorimeter jets are reconstructed using topoclusters with the anti-k_T algorithm with $R = 0.4$. The jet reconstruction algorithm is run on the collection of all topoclusters reconstructed as in Sec. 6.1. Both EM and LCW scale clusters are used in the ATLAS reconstruction software and produce two sets of jets for analysis.
As stated above, this thesis presents an analysis using jets reconstructed using EM scale clusters, which we refer to as *EM jets*.

Tracks can be used as inputs to jet reconstruction algorithms. Jets reconstructed from tracks are known as *track jets*. Since the ID tracks do not measure neutral objects, these jets underestimate the true jet energy. However, these are still useful for checks and derivations of systematic uncertainties.

Truth jets are reconstructed from *truth* particles. In this case, truth is jargon for simulation. In simulation, the actual simulated particles are available and used as inputs to the jet reconstruction algorithms. Similarly to track jets, these are not useful in and of themselves, but are used in conjunction with studies of reconstructed jets.

The last object used as inputs to jet reconstruction algorithms are *particle flow objects* (PFOs). These are used extensively as the primary input to jet particle reconstruction algorithms by the CMS collaboration [111]. Particle flow objects are reconstructed by associating tracks and clusters through a combination of angular distance measures and detector response measurements to create a composite object which contains information from both the ID and the calorimeters. For calorimeter clusters which do not have any associated ID track, the cluster is simply the PFO. The natural association between tracks and clusters provides easy pileup subtraction since tracks are easily associated to the primary vertex. As pileup has increased, the utility of using PFOs as inputs to jet reconstruction has increased as well.

Jet Calibration

Jets as described in the last section are still *uncalibrated*. Even correcting the cluster energies using the LCW does not fully correct the jet energy, due to particles losing energy in the calorimeters. This is corrected using the *jet energy scale* (JES). The JES is a series of calibrations which on average restore the correct truth jet energy
for a given reconstructed jet. The steps to derive the JES are shown in Fig. 6.8 and described here. Additional details can be found in [107].

The first step is the origin correction. This adjusts the jet to point at the primary vertex. Next, is the jet-area based pileup correction. This step subtracts the “average” pileup as measured by the energy density ρ outside of the jets and assumes this is a good approximation for the pileup inside the jet. One removes energy $\Delta E = \rho \times A_{\text{jet}}$ in this step. The residual pileup correction applies a final offset correction by parametrizing the change in jet energy as a function of the number of primary vertices N_{PV} and the average number of interactions μ.

The next step is the most important single correction, known as the AbsoluteEtaJES. Due to the use of noncompensation and sampling calorimeters in ATLAS, the measured energy of a jet is a fraction of the true energy of the outgoing parton. Additionally, due to the use of different technologies and calorimeters throughout the detector, there are directional biases induced by these effects. The correction bins a multiplicative factor in p_T and η which scales the reconstructed jets to corresponding truth jet p_T. This step does not entirely correct the jets, since it is entirely a simulation-based approach.

The final steps are known as the global sequential calibration (GSC) and the residual in-situ calibration. The GSC uses information about the jet showering shape to apply additional corrections based on the expected shape of gluon or quark jets. The final step is the residual in-situ calibration, which is only applied to data. This step uses well-measured objects recoiling off a jet to provide a final correction to the jets in data. In the low p_T region ($20 \text{ GeV} \leq p_{T,\text{jet}} \leq 200 \text{ GeV}$), $Z \rightarrow ll$ events are used as a reference object. In the p_T region ($100 \text{ GeV} \leq p_{T,\text{jet}} \leq 600 \text{ GeV}$), the reference object is a photon, while in the high p_T region ($p_{T,\text{jet}} \geq 200 \text{ GeV}$), the high p_T jet is compared to multiple smaller p_T jets. The reference object is the group of multijets. After the application of the residual in-situ calibration, the data and MC
Figure 6.8: The steps used by ATLAS to calibrate jets

scales are identical up to corresponding uncertainties. The combined JES uncertainty as a function of p_T is shown in Fig. 6.9.
Jet Vertex Tagger

The jet vertex tagger (JVT) technique is used to separate pileup jets from those associated to the hard primary vertex [114]. The technique for doing so first involves ghost association [115]. Ghost association runs the anti-k_T jet clustering algorithm on a combined collection of the topoclusters and tracks. The tracks momenta are set to zero\(^2\), with only the directional information included. As discussed above, the anti-k_T algorithm is “big to small”; tracks are associated to the “biggest” jet near them in (η, ϕ). This method uniquely associates each track to a jet, without changing the final jet kinematics.

The JVT technique uses a combination of track variables to determine the likelihood that the jet originated at the primary vertex. For jets which have associated

\(^2\)Not exactly zero, since zero momentum tracks wouldn’t have a well-defined (η, ϕ) coordinate, but set to a value obeying $p_T, track \ll 400$ MeV = $p_{track, min}$. This is the minimum momentum for a track to reach the ATLAS inner detector.
tracks from ghost association, this value ranges from 0 (likely pileup jet) to 1 (likely hard scatter jet). Jets without associated tracks are assigned $JVT = -1$. The working point of $JVT > 0.59$ is used for jets in this thesis.

B-jets

Jets originating from bottom quarks (b-jets) can be tagged by the ATLAS detector [116, 117]. B-hadrons, which have a comparatively long lifetime compared to hadrons consisting of lighter quarks, can travel a macroscopic distance inside the ATLAS detector. The high-precision tracking detectors identify the secondary vertices from these decays and the jet matched to that vertex is called a b-jet. The MV2c10 algorithm [116, 117], based on boosted decision trees, identifies these jets using a combination of variables sensitive to the difference between light-quark and b-quark jets. The efficiency of this tagger is 77%, with a rejection factor of 134 for light-quarks and 6 for charm jets.

Missing Transverse Momentum

Missing transverse momentum E_T^{miss} [118] is a key observable in searches for new physics, especially in SUSY searches [119, 120]. However, E_T^{miss} is not a uniquely defined object when considered from the detector perspective (as compared to the Feynman diagram), and it is useful to understand the choices that affect the performance of this observable in searches for new physics.

E_T^{miss} Definitions

Hard objects refers to all physical objects defined in the previous sections. The E_T^{miss} reconstruction procedure uses these hard objects and the *soft term* to provide a value and direction of the missing transverse momentum. The E_T^{miss} components
are calculated as:

\[E_{\text{miss},x(y)} = E_{\text{miss},e}^{x(y)} + E_{\text{miss},\gamma}^{x(y)} + E_{\text{miss},\text{jets}}^{x(y)} + E_{\text{miss},\mu}^{x(y)} + E_{\text{miss, soft}}^{x(y)}, \]

where each value \(E_{\text{miss},i}^{x(y)} \) is the negative vectorial sum of the calibrated objects defined in the previous sections.

For purposes of \(E_{\text{T}}^{\text{miss}} \) reconstruction, we must assign an overlap removal ordering. This is to avoid double counting of the underlying primitive objects (clusters and tracks) which are inputs to the reconstruction of the physics objects. We resolve this in the following order: electrons, photons, jets and muons. This is motivated by the performance of the reconstruction of these objects in the calorimeters.

The soft term \(E_{\text{miss, soft}}^{x(y)} \) contains all of the primitive objects which are not associated to any of the reconstructed physics objects. We need to choose which primitive object to use. The primary choices which have been used within ATLAS are the calorimeter-based soft term (CST) and the track-based soft term (TST) [118]. Based on the soft term choice, we then call \(E_{\text{T}}^{\text{miss}} \) built with a CST (TST) soft term simply CST (TST) \(E_{\text{T}}^{\text{miss}} \). Another choice of soft term, which will become increasingly useful as pileup continues to increase, is particle flow \(E_{\text{T}}^{\text{miss}} \) (PFlow \(E_{\text{T}}^{\text{miss}} \)). In this case, the soft term is reconstructed from all particle flow objects not associated to a hard object.

The CST \(E_{\text{T}}^{\text{miss}} \) was used for much of the early ATLAS data-taking. CST \(E_{\text{T}}^{\text{miss}} \) is built from the calibrated hard objects, combined with the calorimeter clusters which are not assigned to any of those hard objects. In the absence of pileup, it provides the best answer for the “true” \(E_{\text{T}}^{\text{miss}} \) in a given event, due to the impressive hermeticity of the calorimeters. Unfortunately, the calorimeters do not know from where their energy deposition came, and thus CST is susceptible to drastically reduced performance with increasing pileup.

TST \(E_{\text{T}}^{\text{miss}} \) is the standard for ATLAS searches as currently performed by ATLAS. TST \(E_{\text{T}}^{\text{miss}} \) is reconstructed using the calibrated hard objects and a soft term from
the tracks which are not assigned to any of those hard objects. In particular, due
to the track-vertex association efficiency, one chooses tracks which only come from
the primary vertex. This reduces the pileup contributions to the E_{T}^{miss} measurement.
However, since the ID tracking system is unable to detect neutral objects, the TST
E_{T}^{miss} is “wrong”. In most searches for new physics, the soft E_{T}^{miss} is generally a small
fraction of the total E_{T}^{miss}, and thus this bias is not particularly hurtful.

PFlow E_{T}^{miss} uses the PFOs described above to build the E_{T}^{miss}. The PFOs which
are assigned to hard objects are calibrated, and the PFOs which are not assigned
to any hard object are added to the soft term. In this context, it is convenient to
distinguish between “charged” and “neutral” PFOs. Charged PFOs can be seen as
a topocluster which has an associated track, while neutral PFOs do not. A charged
PFO is essentially a topocluster which is matched with the primary vertex. The
neutral PFOs have the same status as the original topoclusters. Thus a “full” PFlow
E_{T}^{miss} should have performance somewhere between TST E_{T}^{miss} and CST E_{T}^{miss}.

A charged PFlow E_{T}^{miss} should be the same as TST.

Measuring E_{T}^{miss} Performance: event selection

The question is now straightforward: how do we compare these different algorithms?
We compare these algorithms in $Z \rightarrow \ell \ell + \text{jets}$ and $W \rightarrow \ell \nu + \text{jets}$ events. Due to
the presence of leptons, these events are well-measured “standard candles”. Here
we present the results in early 2015 data with $Z \rightarrow \mu \mu$ and $W \rightarrow e \nu$ events, as
shown in [121, 122]. This result was important to assure the integrity of the E_{T}^{miss}
measurements at the higher energy and pileup environment of Run-2.

The $Z \rightarrow \ell \ell$ selection is used to measure the intrinsic E_{T}^{miss} resolution of the
detector. Neutrinos only occur in these events from heavy-flavor decays inside of jets,
and thus $Z \rightarrow \ell \ell$ events have very low E_{T}^{miss}. This provides an ideal event topology

3Naively, due to approximate isospin symmetry, about 2/3 of the hadrons will be charged and
1/3 will be neutral.
to understand the modeling of $E_{\text{T}}^{\text{miss}}$ mismeasurement. Candidate $Z \rightarrow \mu\mu$ events are first required to pass a muon or electron trigger, as described in Table 5.1. Offline, the selection of $Z \rightarrow \mu\mu$ events requires exactly two medium muons. The muons are required to have opposite charge and $p_T > 25$ GeV, and mass of the dimuon system is required to be consistent with the Z mass $|m_{\mu\mu} - m_Z| < 25$ GeV.

$W \rightarrow \ell\nu$ events are an important topology to evaluate the $E_{\text{T}}^{\text{miss}}$ modelling in events with real $E_{\text{T}}^{\text{miss}}$. This $E_{\text{T}}^{\text{miss}}$ is from the neutrino, which is not detected. The $E_{\text{T}}^{\text{miss}}$ in these events has a characteristic distribution with a peak at $\frac{1}{2}m_W$. The selection of $W \rightarrow e\nu$ events begins with the selection of exactly one electron of medium quality. A selection on TST $E_{\text{T}}^{\text{miss}} > 25$ GeV drastically reduces the background from multijet events where the jet fakes an electron. The transverse mass is used to select the $W \rightarrow e\nu$ events:

$$m_T = \sqrt{2p_T^{\ell}E_{\text{T}}^{\text{miss}}(1 - \cos \Delta \phi)},$$

(6.6)

where $\Delta \phi$ is the difference in the ϕ between the $E_{\text{T}}^{\text{miss}}$ and the electron. m_T is required to be greater than 50 GeV.

There are two main ingredients to investigate: the $E_{\text{T}}^{\text{miss}}$ resolution and the $E_{\text{T}}^{\text{miss}}$ scale.

Measuring $E_{\text{T}}^{\text{miss}}$ Performance in early 2015 data

To compare these algorithms we use the $E_{\text{T}}^{\text{miss}}$ resolution, $E_{\text{T}}^{\text{miss}}$ scale, and linearity. Distributions of TST $E_{\text{T}}^{\text{miss}}$, $E_{\text{T}}^{\text{miss}}$, and $E_{\text{T}}^{\text{miss}}$ from early 2015 data taking are shown in Fig. 6.10.

The $E_{\text{T}}^{\text{miss}}$ resolution is an important variable due to the fact that the bulk of the distributions associated to $E_{\text{T}}^{\text{miss}}$ are Gaussian distributed [118]. However, to properly measure the tails of this distribution, especially when considering non-calorimeter based soft terms, it is important to use the root-mean square as the proper measure of the resolution. This is strictly larger than resolution as measured using a fit to
a Gaussian, due to the long tails from i.e. track mismeasurements. The resolution is measured with respect to two separate variables: $\sum E_T$ and N_{PV}. $\sum E_T$ is an important measure of the “total event activity”. It is defined as

$$\sum E_T = \sum p_T^e + \sum p_T^\gamma + \sum p_T^{jets} + \sum p_T^\mu + \sum p_T^{soft}. \tag{6.7}$$

The measurement as a function of N_{PV} is useful to understand the degradation of E_T^{miss} performance with increasing pileup. Fig. 6.11 shows the TST E_T^{miss} resolution in the early 2015 data compared with simulation. The degradation of the TST E_T^{miss} performance is shown as a function of pileup N_{PV} and total event activity $\sum E_T$. We see that the degradation is significant as a function of these variables, but simulation describes the data well.

Another important metric is the E_T^{miss} scale. This indicates how well we measure the magnitude of the E_T^{miss}, as CST E_T^{miss} contains additional particles from pileup, while soft neutral particles\(^4\) are ignored by TST E_T^{miss}. To determine this in data, we again use $Z \rightarrow \mu\mu$ events, where the $Z \rightarrow \mu\mu$ system is treated as a well-measured reference object. The component of E_T^{miss} which is in the same direction as the reconstructed $Z \rightarrow \mu\mu$ system is sensitive to potential biases in the detector response. The unit vector A_Z of the Z system is defined as

$$A_Z = \frac{\vec{p}_T^{\ell^+} + \vec{p}_T^{\ell^-}}{|\vec{p}_T^{\ell^+} + \vec{p}_T^{\ell^-}|}, \tag{6.8}$$

where $\vec{p}_T^{\ell^+}$ and $\vec{p}_T^{\ell^-}$ are the transverse momenta of the leptons from the Z boson decay. The relevant scale metric is the mean value of the \vec{E}_T^{miss} projected onto A_Z: $\langle \vec{E}_T^{miss} \cdot A_Z \rangle$. In Fig. 6.12, the scale is shown for the early 2015 dataset. The negative bias, which is maximized at about 5 GeV, is a reflection of two separate effects. The soft neutral particles are missed by the tracking system, and thus ignored in TST E_T^{miss}. Missed particles due to the limited ID acceptance can also affect the scale.

\(^4\)“Soft” here means those particles which are not hard enough to be reconstructed as their own particle, using the reconstruction algorithms above.
For events with real E_T^{miss}, one can also look at the linearity in simulation. This is defined as

$$\text{linearity} = \langle \frac{E_T^{\text{miss}} - E_T^{\text{miss,Truth}}}{E_T^{\text{miss,Truth}}} \rangle$$

$E_T^{\text{miss,Truth}}$ refers to “truth” particles as defined before, or the magnitude of the vector sum of all noninteracting particles. The linearity is expected to be zero if the E_T^{miss} is reconstructed at the correct scale.

Particle Flow Performance

As described above, the resolution, scale, and linearity are metrics to understand the performance of the different E_T^{miss} algorithms. In this section, we present comparisons of the different algorithms, including particle flow, in simulation and using a data sample from 2015 of 80 pb$^{-1}$. In these plots, “MET,PFlow,TST” refers to charged PFlow E_T^{miss}, while the other algorithms are as described above.

Figs. 6.14 and 6.15 show the resolution and scale in simulated $Z \rightarrow \mu\mu$ events. The resolution curves follow the expected behavior discussed before. Due to the high pileup in 2015 run conditions, the CST E_T^{miss} resolution is poor, and further degrades with increasing pileup and event activity. The “regular” PFlow E_T^{miss} shows reduces pileup and event activity dependence as compared to the CST. PFlow E_T^{miss} can be seen as a hybrid of TST E_T^{miss} and CST E_T^{miss}. The charged PFOs ($\sim 2/3$) are pileup suppressed, while the neutral PFOs (or topoclusters) are not. Both charged PFlow and TST E_T^{miss} show only a small residual dependence on N_{PV} and $\sum E_T$, since they have fully pileup suppressed inputs through track associations.

The scale plots are shown for $Z+\text{jets}$ events and Z events with no jets. For the nonsuppressed CST, the scale continues to worsen with increasing p_T^Z. The standard PFlow algorithm performs the second worst in the region of high p_T^Z, but is the best at low p_T^Z. We note the improved scale of the charged PFlow E_T^{miss} compared to the TST E_T^{miss}. Considering the resolution is essentially identical, the PFlow algorithm is better.
Figure 6.10: TST E_{x}^{miss}, E_{y}^{miss}, and E_{T}^{miss} distributions of early $\sqrt{s} = 13$ TeV data compared with simulation after the $Z \rightarrow \mu\mu$ selection. The data sample consists of 6 pb$^{-1}$.
Figure 6.11: Resolution of TST E_T^{miss} of early $\sqrt{s} = 13$ TeV data compared with simulation after the $Z \rightarrow \mu\mu$ selection. The data sample consists of 6 pb$^{-1}$.

Figure 6.12: Scale of TST E_T^{miss} of early $\sqrt{s} = 13$ TeV data compared with simulation after the $Z \rightarrow \mu\mu$ selection. The data sample consists of 6 pb$^{-1}$.

picking up the contributions from additional neutral particles. In events with no jets, the soft term is essentially the only indication of the E_T^{miss} mismeasurement, since the muons will be well-measured. In this case, the pileup effects cancel, on average, due to the U(1)$_\phi$ symmetry of the ATLAS detector, and CST performs rather well compared to the more complicated track-based algorithms. The full PFlow algorithm performs best, since it provides a small amount of pileup suppression on the neutral components from CST.

The resolution and linearity are shown in simulated $W \rightarrow e\nu$ events in Fig. 6.13. The resolution in $W \rightarrow e\nu$ events shows a similar qualitative behavior to $Z \rightarrow$
μμ events. The CST \(E_T^{\text{miss}} \) has the worst performance, with charged PFlow \(E_T^{\text{miss}} \) performing best. The surprise here is the scale associated to TST \(E_T^{\text{miss}} \) has the strongest performance throughout the space parameterized by \(E_T^{\text{miss,Truth}} \), except for one bin at \(40 \text{ GeV} < E_T^{\text{miss,Truth}} < 50 \text{ GeV} \). The scale in these events is best measured using a track-based soft term.

The resolution also investigated in real data passing the \(Z \rightarrow \mu\mu \) selection described above. A comparison of the \(E_T^{\text{miss}} \) between real data and simulation for each algorithm is presented in Fig. 6.16. The resolution as a function of \(\sum E_T \) and \(N_{PV} \) is shown in Fig. 6.17 for this dataset. Overall, the real dataset shows the same general features as the simulation dataset in terms of algorithm performance. However, the performance of all algorithms seems to be significantly worse in data. This is likely due to simplifications made in the simulation: soft interactions which are not simulated have a significant effect on an event level variable such as the \(E_T^{\text{miss}} \) resolution.
Figure 6.14: Comparison of E_T^{miss} resolution using different E_T^{miss} algorithms with simulated $Z \rightarrow \mu\mu$ events

Figure 6.15: Comparison of E_T^{miss} scale using different E_T^{miss} algorithms with simulated $Z \rightarrow \mu\mu$ events
Figure 6.16: Comparison of E_T^{miss} distributions using different E_T^{miss} algorithms with a data sample of 80 pb$^{-1}$ after the $Z \rightarrow \mu\mu$ selection

Figure 6.17: Comparison of E_T^{miss} resolution using different E_T^{miss} algorithms with a data sample of 80 pb$^{-1}$ after the $Z \rightarrow \mu\mu$ selection
Chapter 7

Recursive Jigsaw Reconstruction

Recursive Jigsaw Reconstruction (RJR) [50, 51] is a novel algorithm used for the analysis presented in this thesis. RJR is the conceptual successor to the razor technique [123, 124], which has been used successfully in many new physics searches [39, 40, 42, 43, 49, 125]. In this chapter, we will first present the razor technique, and describe the razor variables. We will then present the RJR algorithm. After the description of the algorithm, we will describe the precise RJR variables used in the analysis.

7.1 Razor variables

Motivation

We consider SUSY models where gluinos and squarks are pair-produced. Pair-production is a consequence of the R-parity imposed in many SUSY models. R-parity violation is highly constrained by limits on proton decay [15], and is often assumed in SUSY model building. The Feynman diagrams considered are shown in Fig. 7.1.

The consequences of this Z_2 symmetry are drastic [15]. To understand the utility of the razor variables, the stability of the lightest supersymmetric particle is important. In many SUSY models, including the ones considered in this thesis, this is the lightest neutralino $\tilde{\chi}_1^0$. The consequence is on either branch of a SUSY decay process, where we begin with sparticle pair production, we have a final state particle which is not detected. Generically, this leads to E_T^{miss}. Selections based on
Figure 7.1: Feynman diagrams for the SUSY signals considered in this thesis
E_T^{miss} are very good at reducing backgrounds, for example from QCD processes.

However, there are limitations to searches based on E_T^{miss}. Due to jet mismeasurements, instrumental failures, finite detector acceptance, nongaussian tails in the detector response, and production of neutrinos inside of jets, there are many sources of “fake” E_T^{miss} which do correspond to Standard Model neutrinos or new physics objects such as an LSP. An additional limitation is the complete lack of longitudinal information. As events from QCD backgrounds tend to have higher boosts along the z-direction than signal events, this neglects an important discriminator for use in searches for SUSY. Finally, E_T^{miss} is only one object, which is a measurement for two separate LSPs. If one could factorize this information somehow, this would provide additional information to potentially discriminate against backgrounds. The razor variables (M_R^R, R^2) are more robust than E_T^{miss}-based variables against sources of fake E_T^{miss} as well as providing additional longitudinal information which can be used to discriminate against backgrounds [123, 124].

Derivation of the razor variables

To derive the razor variables (M_R^R, R^2), we start with a generic situation of the pair production of heavy sparticles each with mass m_{Heavy}^1. Each sparticle decays to a number of observable objects (in this thesis, jets), and an unobservable $\tilde{\chi}^0_1$ of mass $m_{\tilde{\chi}^0_1}$. We will combine all of the jets into a megajet; this process will be described below. For now, we assume the massive sparticles each decay to one large megajet and the $\tilde{\chi}^0_1$. We begin by analyzing the decay in the “rough-approximation”, or in modern parlance, razor frame $(R$-frame). This is the frame where the sparticle is at rest. Note by construction, there are two razor frames corresponding to each sparticle. The complete set of frames considered in the case of the razor variables is shown in the following.

1The razor variables have undergone confusing notational changes over the years. We will be self-consistent, but the notation used here may be different from references.
Fig. 7.2.

In the R-frame, the decay is straightforward to analyze. Applying conservation of four-momenta, with a massless megajet and orienting ourselves so the decay occurs along the decay axis:

Before decay : $(m_{\text{Heavy}}, 0)$

After decay : $(m_{\tilde{\chi}^0_1}, p^R_{\chi^0_1}) - (0, E^R_{1,2})$

\[
m^2_{\text{Heavy}} = m^2_{\tilde{\chi}^0_1} - p^R_{\chi^0_1} E^R_{1,2} = m^2_{\chi^0_1} + 2m_{\text{Heavy}} E^R_{1,2} \quad (7.1)
\]

\[
E^R_{1,2} = \frac{m^2_{\text{Heavy}} - m^2_{\chi^0_1}}{2m_{\text{Heavy}}}
\]

Now note that this derivation is identical in each R-frame since the sparticle masses are equal, and we define a characteristic mass M_R:

\[
E^R_1 = E^R_2 = \frac{m^2_{\text{Heavy}} - m^2_{\chi^0_1}}{2m_{\text{Heavy}}} \quad (7.2)
\]

\[
M_R = 2 \times E^R_1 = 2 \times E^R_2 = \frac{m^2_{\text{Heavy}} - m^2_{\chi^0_1}}{m_{\text{Heavy}}}
\]

For cases where $m_{\text{Heavy}} \gg m_{\chi^0_1}$, M_R is an estimator of m_{Heavy}. This scenario happens in the SM, such as in $t\bar{t}$ and WW events, where the χ^0_1 is instead a neutrino.
The question now is how to use this simple derivation in the lab frame, where we actually conduct our measurements. There are two related issues: how to combine the jets into the megajets, and how to “transform” (or boost) to the \(R \)-frame.

To construct the megajets, the procedure is the following. For a given set of jets \(j_i, i = 0, ..., n_{\text{jet}} \), we construct all combinations of their four-momenta such that there is at least one jet inside each megajet. Among this set of possible megajets \(\{ J_{1,2} \} \), we make the following unique choice for the megajets. We minimize the following quantity:

\[
 m_{J_1}^2 + m_{J_2}^2.
\]

In modern parlance, this is known as a jigsaw. This is a choice. In this case, we assumed the megajets were massless in Eq. (7.2), so this chooses the set of megajets which most closely match our assumption.

We now describe how we translate our megajet kinematics, measured in the lab frame, to the \(R \)-frame. This is a two-step procedure. We perform two boosts: a longitudinal boost \(\beta_L \) and a transverse boost \(\beta_T \). Schematically,

\[
 J_1^R \overset{\beta_T}{\rightarrow} J_1^{CM} \overset{\beta_L}{\rightarrow} J_1^{\text{lab}} \quad (7.4)
\]

\[
 J_2^R \overset{-\beta_T}{\rightarrow} J_2^{CM} \overset{\beta_L}{\rightarrow} J_2^{\text{lab}} \quad (7.5)
\]

The \(J_{1,2}^{\text{lab}} \) correspond directly to those in the megajet construction. We drop the “lab” designation for the rest of the discussion. The question is how to compute the magnitudes of these boosts, given the missing degrees of freedom.

For the transverse boost \(\beta_T \), recall the two megajets have equal energies in their \(R \)-frame by construction. This constraint can be reexpressed as a constraint on the magnitude of this boost, in terms of the boost velocity \(\beta_L \) and corresponding Lorentz
factor γ_L [123, 124].

$$\beta_T = \frac{\gamma_L(E_1 - E_2) - \gamma_L\beta_L(p_{1,z} - p_{2,z})}{\beta_T \cdot \left(p_{1,T} + p_{2,T}\right)} \quad (7.7)$$

where we have denoted the lab frame four-vectors as $p_i = (E_i, p_{i,T}, p_{i,z})$. We now make the choice for the direction of the transverse boost β_T:

$$\hat{\beta}_T = \frac{p_{1,T}^\perp + p_{2,T}^\perp}{|p_{1,T}^\perp + p_{2,T}^\perp|}. \quad (7.8)$$

This choice corresponds to aligning the transverse boost direction with the vectorial sum of the two megajets’ transverse directions.

For the longitudinal boost, we choose β_L along the z-direction, with magnitude:

$$\beta_L = \frac{p_{1,z} + p_{2,z}}{E_1 + E_2}. \quad (7.9)$$

Viewed in terms of the original parton-parton interactions, this is the choice which “on average” gives $p_{z,CM} = 0$, as we would expect. This is a well-motivated choice due to the total z symmetry.

We now have intuitive guesses for both boosts, which allow us write our original characteristic mass M_R in terms of the lab frame variables, by application of these two Lorentz boosts to the energies of Eq. (7.2):

$$M_R^2 \xrightarrow{\beta_T} M_{R,CM}^2 \xrightarrow{\beta_L} M_{R,lab}^2 = (E_1 + E_2)^2 - (p_{1,z} + p_{1,z})^2 \quad (7.10)$$

Finally, we define an additional mass variable, which include the missing transverse energy E_T^{miss}. Importantly, note that we did not use the E_T^{miss} in the definition of M_R, which depends only on the energies of the megajets. Backgrounds with no invisible particles (such as multijet events) must have J_1 and J_2 back to back. Thus, we define the transverse mass:

$$(M_R^T)^2 = \frac{1}{2} \left[E_T^{\text{miss}}(p_{1,T} + p_{2,T}) - \vec{E}_T^{\text{miss}} \cdot \left(p_{1,T}^\perp + p_{2,T}^\perp\right) \right]. \quad (7.11)$$
This definition can be seen as assigning half of the \vec{E}_T^{miss} to “be associated to” each megajet. Generally, we have $M^T_R < M_R$, so we define a dimensionless ratio (“the razor”):

$$R^2 = \left(\frac{M^T_R}{M_R} \right)^2$$

(7.12)

For signal events, we expect R^2 to peak around $R^2 \sim 1/4$. M_R and M^T_R are two measurements of the same scale (m_{Heavy}), with an additional geometric factor for M^T_R due to the fact that it is a purely transverse quantity. Backgrounds without real E_T^{miss} are expected to have $R \sim 0$.

7.2 Recursive Jigsaw Reconstruction

Recursive Jigsaw Reconstruction is an algorithm allowing the imposition of a decay tree interpretation of a particular event [50, 51]. The idea is to construct the underlying kinematic variables (the masses and decay angles) on an event-by-event level. This is done “recursively” through a decay tree which corresponds, sometimes approximately, to the Feynman diagram for the signal process of interest. After each step of the recursive procedure, the objects are “placed” into one bucket (or branch) of the decay tree, and the process is repeated on each frame we have imposed. The imposition of these decay trees is done by a jigsaw rule: a procedure to resolve combinatoric or kinematic ambiguities while traversing the decay tree. This procedure is performed by the RestFrames software packages [126]

In events where all objects are fully reconstructed and distinguishable, this is straightforward, as we have access to the entire set of four-momenta to fully reconstruct the target masses and decay angles. Events which contain E_T^{miss} are more difficult, due to the loss of information: the potential for multiple mismeasured or unmeasureable objects, such as neutrinos or the LSP in SUSY searches. There can also be combinatoric ambiguities in deciding how to group indistinguishable objects
of the same type. Specifically here, we will be concerned with the jigsaw rule to associate jets to a particular branch of a decay tree. The jigsaw rules we impose will remove these ambiguities. First, we will describe the decay trees, and then describe the jigsaw rules we will use. Finally, we will describe the variables used in the all-hadronic SUSY search presented in this thesis.

Decay Trees

The decay trees imposed in this thesis are shown in Fig. 7.3. Leaving temporarily the question of “how” we apply the jigsaw rules, let us compare these trees to the signal processes of interest. In particular, we want to compare the Feynman diagrams of Fig. 7.1 with the decay trees of Fig. 7.3. The decay tree in Fig. 7.4(a) corresponds exactly to that expected from squark pair production, and matches closely with the principles of the razor approach. We first apply a jigsaw rule, indicated by a line, to the kinematics of the objects in the lab frame. This outputs the kinematics of our event in the parent-parent (PP) frame, or in the razor terminology, the CM frame. That is, the kinematics of this frame are an estimator for the kinematics in the center of mass frame of the squark pair production system. We apply another jigsaw, which splits the objects in the PP frame into two new frames, known as the P_a and P_b systems. These are equivalent to the razor frames, and represent proxy frames where each squark is at rest. In P_a (P_b), the decay is symmetric between the visible V_a (V_b) objects and the invisible system I_a (I_b). To generate the estimator of the kinematics of the V_a, V_b, I_a, and I_b systems in the P_a and P_b systems, we apply another jigsaw rule to split the total E_T^{miss} between P_a and P_b. For the case of squark pair production, this is the expected decay tree, and we stop the recursive calculation at that level.

In the case of gluino pair production, we expect two additional jets, and we can perform an additional boost in each of P_a and P_b, to what we call the C_a and C_b frames. The decay tree is shown in Fig. 7.4(b). In this case we apply a jigsaw at the
level of P_a (P_b) which separates a single visible object V_{1a} (V_{2a}) from the child frame C_a (C_b). This child frame represents the hypothesized squark after the decay $\tilde{g} \rightarrow g\tilde{q}$, which then decays as in the squark case.

The third decay tree is the compressed decay tree. Compressed refers to signal models which have a small splitting between the mass of the sparticle and the χ^0_1. The sparticle decay products in compressed models (i.e. the jets and E_T^{miss}) do not generally have large scale [50]. Instead, the strategy is generally to look for large-scale
initial state radiation (ISR) which is recoiling off the pair-produced sparticles. In the case where the LSPs receive no momentum from the sparticle decays, the following approximation holds:

\[E_T^{\text{miss}} \sim -p_T^{\text{ISR}} \times \frac{m_{\tilde{\chi}^0_1}}{m_{\text{sparticle}}} \]

(7.13)

where \(p_T^{\text{ISR}} \) is the transverse momentum associated to the ISR system.

RJR offers a natural and straightforward way to exploit this feature in events containing ISR. One imposes the simple decay tree in Fig. 7.4(c) with associated jigsaw rules. With suitable jigsaw rules, this decay tree “picks out” the large \(p_T \) ISR system, recoiling off the \(E_T^{\text{miss}} \) and additional radiation from the sparticle decays. This provides a convenient set of variables to understand compressed scenarios.

There is one other decay tree, shown in Fig. 7.4(d). This is special, as it is only used for the purpose of QCD rejection, and does not directly map to a sparticle decay chain. Due to the large production cross-sections of QCD events, even very rare jet mismeasurements can lead to significant \(E_T^{\text{miss}} \) which can enter the signal region. To reduce these backgrounds, one usually rejects events which contain jets which are “too close” by some distance metric to the \(E_T^{\text{miss}} \) in the event. Generally, in the past, the distance metric has been defined as simply the angular distance \(\Delta R \).

The self-assembling tree can be seen as defining a distance metric which depends on the magnitudes of the \(E_T^{\text{miss}} \) and jets rather than simply their distance in angular space. Depending on the exact kinematics, the one or two closest jets are found, and we label them \(E_T^{\text{miss}} \) siblings.

In this section, we have seen how one imposes particular decay trees on an event relevant to the hypothesized sparticle decay chain. This explains why we call this procedure “recursive”: the procedure can be iterated through as many steps of a decay tree as necessary, and each application of a jigsaw rule is dependent on the kinematic variables produced in the last step. The question is: what are these jigsaw rules?
Jigsaw Rules

Jigsaw rules are the fundamental step that allow the recursive definitions of the variables of interest. The rules we imposed must fully defined kinematic variables at each step in a decay tree. The only possible solution to fully define the event kinematics in terms of the frames of the hypothesized decays is the imposition of external constraints to eliminate additional degrees of freedom. In principle, these need not have any particular physical motivation. Instead, the jigsaw rules are a way to resolve the mathematical ambiguities to fully reconstruct the full decay chain kinematics. However, most practical jigsaw rules also have some reasonable physical motivation, which we also elucidate.

In the original razor point of view, some jigsaw rules can be seen as the definitions of the boosts which relate the different frames of interest, while other rules allow one to combine multiple objects and place them into a particular hemisphere (in previous terminology, a megajet). We call the first type kinematic jigsaw rules and the second combinatoric jigsaw rules. As we stressed before, the jigsaw rules are a choice: as long as a particular jigsaw rule allows the definition of variables at each step in a decay tree, it is “as valid” as any other rule.

Practically speaking, we use only a small subset of possible jigsaw rules. The combinatoric jigsaw rule has already been introduced as megajet construction above. The minimization of

$$m_{J_1}^2 + m_{J_2}^2.$$ \hspace{1cm} (7.14)

is a jigsaw rule to deal with the combinatoric ambiguity implicit in which jets go in which hemisphere. This is the jigsaw rule used in the decay trees when going from one frame to two frames such as \(PP \rightarrow P_a, P_b\).

We will use three other jigsaw rules, which are all kinematic jigsaw rules. One has already been used in the razor technique. The minimization of \(\beta_L\) is used as the
jigsaw rule in the first step of each decay tree: the lab frame to the PP/CM frame. This is equivalent to the imposition of longitudinal boost invariance, as we expect on average $p_{z,PP\ CM} = 0$. One defines a unique longitudinal boost by imposition of this external constraint, as we did in Eq. (7.9).

The final two jigsaw rules used in this thesis were not used in the razor technique. We describe them here.

The next kinematic ambiguity is the total mass of the invisible system M_I. We guess this to be:

$$M^2_I = M^2_{V} - 4M_{V_{a}}M_{V_{b}}. \quad (7.15)$$

As we stated above, there is no need to “justify” the jigsaw rules, as they are in some ways a mathematical trick to fully resolve the event kinematics. The symmetry of the production mechanism, where we have two decay products V_i and I_i produced from the decay of the same heavy sparticle, is explicit with this jigsaw choice.

The final jigsaw rule is used to resolve the “amount” of E_T^{miss} that “belongs” to each hemisphere, and therefore how to impose the transverse boost onto each of i.e. P_a and P_b from PP. Equivalently, it can be seen as the resolution of the kinematics of the I_a and I_b objects in the squark and gluino pair production decay trees. Recall that at this point, we already approximated the boost of the PP frame. The choice we use is to minimize the masses P_a and P_b, while simultaneously constraining $P_a = P_b$.

There is a straightforward physical interpretation of this choice. In the signal models we are considering, P_a and P_b are the estimated frames of the squark or gluino pair-produced as a heavy resonance. We then of course expect, and thus use it as our constraint, that:

$$M_{P_a} = M_{P_b} \quad (7.16)$$

The imposition of the decay trees, with ambiguities resolved through the jigsaw rules, give a full set of boosts relating the frames of each decay tree. In each frame,
we have estimates for the frame mass and decay angles, which can be used in searches for new physics. In the next section, we describe the variables that are used to search for squarks and gluinos decaying hadronically in more detail.

7.3 Variables used in the search for zero lepton SUSY

We describe here the variables used in the RJR search described in [51]. These were reconstructed using the RJR algorithm as implemented by the RestFrames packages [126]. In these frames, the momenta of all objects placed into that branch of the decay tree are available (after application of the approximated boost), and in principle we can calculate any variable of interest such as invariant masses or the angles between these objects. The truly useful set of variables are highly dependent on the signal process, and we leave their discussion to the subsequent sections. It is useful to understand the philosophy employed in the construction of these variables.

In general, we can split variables useful for searches for new physics into two categories: *scaleful* and *scaleless* variables. In this search, we will use a set of scaleful variables called the H variables. The scaleless variables will consists of ratios and angles. In general, we want restrict the number of scaleful cuts we apply, for two reasons. Different scaleful variables are often highly correlated, and this of course limits the utility of additional cuts. Additionally, selections based on many scaleful variables often overoptimize for particular signal model of interest, especially as related to the mass difference chosen between the sparticle and the LSP. To avoid this, each decay tree will only use two scale variables, one which quantifies the overall mass scale of the event, and another which acts as a measure of the event balance.
Squark and gluino variables

Taking our general philosophy to a particular case, we here describe the variables used by the squark and gluino searches. We use a set of scale variables which we will call the H variables, and a set of angles and ratios.

As we have described above, the RJR algorithm gives us access to the masses of each frame of interest. It may seem natural that these variables would be the most useful for discrimination of the signal from background processes. However, these masses, such as the invariant mass of the PP system M_{PP}, can be significantly affected by the additional jets in the events. In backgrounds with significant jet activity such as Z+jets and W+jets events, these masses can have large values which complicate discrimination from the signal processes. Instead, we use the H variables, as they show resilience to this effect, and provide stronger discrimination from the SM backgrounds. They take their name from the commonly used variable H_T, which is the scalar sum of the visible momentum. From the RJR technique, we can evaluate these variables in the non-lab frame and include longitudinal information. They are also constructed with aggregate momenta using a similar mass minimization procedure as we have already described.

We label these variables as $H_{n,m}^F$. They are evaluated in the frame F, where $F \in \{ \text{lab}, \, PP, \, P_a, \, P_b \}$. When the discussion applies to both P_a and P_b, we will write P_i. The subscripts n and m denote the number of visible and invisible vectors considered, respectively. When there are more vectors available than n or m, we add up vectors using the hemisphere jigsaw rule until there are n (m) objects\(^2\). In the opposite case, where n or m is greater than the number of available objects, one

\(^2\)Recall that these vectors are constructed by the imposition of the decay tree with the relevant jigsaw rules.
simply considers the available objects. The $H_{n,m}^F$ variables are then defined as

$$H_{n,m}^F = \sum_i^n |p_{\text{vis},i}^F| + \sum_j^m |p_{\text{inv},j}^F|.$$

(7.17)

It may not be clear that these variables encode independent information. Fundamentally, this is just an expression of the triangle inequality $\sum |\vec{p}| \geq |\sum \vec{p}|$. One can also define purely transverse of these variables, which we will denote $H_{T,n,m}^F$. We can then see how the H variables are extensions of the normal H_T variable, as

$$H_T = H_{T,\infty,0}.$$

(7.18)

Although the H variables are interesting in their own right, the true power of the RJR technique comes from the construction of scaleless variables. The scaleless ratios and angles are in fact measured in the “right” frame, where right here means an approximation of the correct frame. This provides a less correlated set of variables than those measured in the lab frame, due to the corrections to the disparticle or sparticle system boosts from the RJR technique.

To search for noncompressed squark pair production, we use the following set of RJR variables:

- $H_{1,1}^{PP}$ - scale variable useful for discrimination against QCD backgrounds and used in a similar way to E_T^{miss}

- $H_{T,2,1}^{PP}$ - scale variable providing information on the overall mass scale of the event for squark pair production. We will often call this the full scale variable.

- $H_{T,1,1}^{PP}/H_{2,1}^{PP}$ - ratio used to reject imbalanced events where the scale variable is dominated by one high p_T jet or high E_T^{miss}

- $p_{PP,z}^{\text{LAB}}/(p_{PP,z}^{\text{LAB}} + H_{T,2,1}^{PP})$ - ratio which prevents significant boosts in the $z-$direction. $p_{PP,z}^{\text{LAB}}$ measures of the total boost of the PP system from the lab frame.
- \(\frac{p_{T,2}^{PP}}{H_{T,2,1}^{PP}} \) - ratio to force the second leading jet in the \(PP \) frame to carry a significant portion of the total scalar sum of the total momenta in that frame. This requirement is another balance requirement, on the total \(p_T \) of that second jet in the \(PP \) frame.

Note there is an implicit requirement that each hemisphere has at least one jet (to even reconstruct the \(P_a \) and \(P_b \) frames), thus we implicitly require two or more jets, as we expect for squark pair production. The other important thing to note is that all of the ratios use the full scale variable as the denominator. This is sensible, as we expect all of these effects to be scaled with the full scale variable \(H_{T,2,1}^{PP} \). We will see a similar behavior for the gluino regions, with a new full scale variable.

To search for noncompressed gluino pair production, we use the following set of RJR variables. Due to the increased complexity of the four-jet event topology, there are additional variables we can exploit:

- \(H_{1,1}^{PP} \) - same as squark pair production variable

- \(H_{T,4,1}^{PP} \) - scale variable providing information on the overall mass scale of the event for gluino pair production. As before, we often call this the full scale variable. Since this variable allows the jets to be separated in the \(PP \) frame, it is more appropriate for gluino pair production.

- \(\frac{H_{T,1,1}^{PP}}{H_{T,4,1}^{PP}} \) - ratio to reject imbalanced events where the scale variable is dominated by one high \(p_T \) jet or high \(E_T^{\text{miss}} \)

- \(\frac{H_{T,4,1}^{PP}}{H_{T,4,1}^{PP}} \) - ratio measuring the fraction of the total scalar sum of the momentum in the transverse plane. Decay products from gluino pair production are expected to be fairly central

- \(\frac{p_{PP,z}^{LAB}}{(p_{PP,z}^{LAB} + H_{T,4,1}^{PP})} \) - ratio to reject events with significant boosts in the \(z \)-direction
• \(\min(p_{T,j2_i}/H_{T,2,1_i}) \) - ratio to require the second leading jet in both squark-like hemispheres \(C_a \) and \(C_b \) to contain a significant portion of that frame’s momenta. This is similar to the \(p_{T,j2}/H_{T,2,1} \) squark decay tree discriminator, but applied to both hemispheres \(C_a \) and \(C_b \), where \(i = a, b \).

• \(\max(H_{P,1_i}/H_{P,2_i}, 0) \) - ratio requiring one jet in each of the \(P \) not encompass too much of the total momentum available in that frame. This ratio is generally a very loose cut.

Compressed variables

As we saw above, the decay tree imposed for compressed spectra is simpler. We do not attempt to fully reconstruct the details of the system recoiling off the ISR system, but use a straightforward set of variables in this case. One additional simplification is that all variables are force to be transverse in this case, by simply excluding the \(\eta/z \) information of the objects as inputs to RJR. We still use the philosophy of limiting our scaleful variables to just two. The compressed scenario uses the following set of RJR variables:

• \(p_{CM}^{T,S} \) - scale variable that is the magnitude of the total transverse momenta of all jets associated to the ISR system, as evaluated in the CM frame

• \(R_{ISR} \equiv p_{CM}^I \cdot p_{CM}^{T,S}/p_{CM}^{T,S} \) - this ratio is our measurement for the ratio of the LSP mass to the compressed sparticle mass. In compressed cases, this should be large, as this estimates the amount of the total CM \(\rightarrow S \) boost carried by the invisible system.

• \(M_{T,S} \) - the transverse mass of the S system

• \(N^V_{jet} \) - the number of jets associated to the visible system V
• $\Delta \phi_{ISR,I}$ - the opening angle between the ISR system and the invisible system measured in the lab frame. As the invisible system is expected to carry much of the total S system momentum, this should be large, as we expect the ISR system to recoil directly opposite the I system.

Anti-QCD variables

For the self-assembling tree, we construct two variables, which we combine to form a single variable which rejects QCD events. In this case, we use the mass minimization jigsaw, with a fully transverse version of the event (i.e. we set all jet z/η components to 0). This jigsaw defines the distance metric, and provides us with one or two jets known as the E_T^{miss} siblings. We define p_{miss}^s as the sum of these jets, and define the following quantities.

We calculate a ratio observable which examines the relative magnitude of the sibling vector p_{miss}^s and E_T^{miss}, and an angle relating p_{miss}^s and E_T^{miss}:

$$R(p_{\text{miss}}^s, E_T^{\text{miss}}) \equiv \frac{\vec{p}_{\text{miss}}^s \cdot \vec{E}_T^{\text{miss}}}{\vec{p}_{\text{miss}}^s \cdot \vec{E}_T^{\text{miss}} + |\vec{E}_T^{\text{miss}}|}$$ \hspace{1cm} (7.19)$$

$$\cos \theta(p_{\text{miss}}^s, E_T^{\text{miss}}) \equiv \frac{(p_{\text{miss}}^s + \vec{E}_T^{\text{miss}}) \cdot (p_{\text{miss}}^s + \vec{E}_T^{\text{miss}})}{|p_{\text{miss}}^s| + |\vec{E}_T^{\text{miss}}|}$$ \hspace{1cm} (7.20)$$

These observables are highly correlated, but taking the following fractional difference provides strong discrimination between SUSY signal and QCD background events:

$$\Delta_{\text{QCD}} \equiv \frac{1 + \cos \theta(p_{\text{miss}}^s, E_T^{\text{miss}}) - 2R(p_{\text{miss}}^s, E_T^{\text{miss}})}{1 + \cos \theta(p_{\text{miss}}^s, E_T^{\text{miss}}) + 2R(p_{\text{miss}}^s, E_T^{\text{miss}})}.$$ \hspace{1cm} (7.21)$$

A cut on $\Delta_{\text{QCD}} > 0$ provides strong rejection of QCD events, while SUSY signal events generally survive this selection.

7.4 Conclusions

The RJR suite of variables will provide sensitivity to a wide variety of squark and gluino production scenarios. We will see in the next chapter that this set of variables
described above provide strong sensitivity to a wide range of simplified models of squark and gluino pair production, by use of a variety of signal selections, in the next chapter. We note however, this set of variables is not unique, and the RJR technique can be used for a large variety of final states. The search presented here is the first to use RJR, but a different suite of variables could be used for other decay modes, and it will be exciting to see how the technique can be exploited in future searches.
Chapter 8

A search for squarks and gluinos in all hadronic final states with Recursive Jigsaw Reconstruction

This section presents the details of the first search employing RJR variables as discriminating variables, detailed in [51]. We will describe the simulation samples used, and then define the selections where we search for new SUSY phenomena, which we call the signal regions (SRs) Afterwards, we describe the background estimation techniques. Finally, we discuss the treatment of systematic uncertainties.

8.1 Simulation samples

We discussed the collision data sample provided by the LHC for the analysis in this thesis. We analyze a dataset of 13.3 fb$^{-1}$ of collision data, at $\sqrt{s} = 13$ TeV. To select events in data, we use the trigger system, and use the lowest unprescaled trigger which is available for a particular Standard Model background. We now discuss the simulation samples used for this search.

Simulated data is fundamentally important to the ATLAS physics program. Calibrations, measurements, and searches use Monte Carlo (MC) simulations to compare with collision data. In this thesis, MC samples are used to optimize the signal region selections, assist in background estimation, and assess the sensitivity to specific SUSY signal models. The details of Monte Carlo production, accuracy, and utility are far beyond the scope of this thesis, but we provide a short description here.

The first step is MC generation. A program is run which does a matrix-element
calculation which produces a set of outgoing particles from the parton interactions. The output particles are interfaced with the parton decays, showering, and hadronization processes. This can be done by the same program or another tool altogether. This produces a set of truth particles with their corresponding kinematics. A summary of the generators for each sample is shown in Table 8.1.

The signal samples are produced using simplified models. Simplified models employ an effective Lagrangian which introduces the smallest possible set of new particles, with only one production process and one decay channel with 100\% branching ratio. The squarks are generated in pairs, where each squark decays directly to a jet and the LSP. Gluinos are also pair produced, where each gluino decays directly to a squark and jet, and the squark subsequently decays to another jet and the LSP. Signal samples are produced in a grid of sparticle and \(\tilde{\chi}^0_1 \) mass, where each signal sample is generated with a particular \((m_{\text{particle}}, m_{\tilde{\chi}^0_1})\). The grid refers to this set of possible mass splittings. This allows us to probe a variety of signal models in the grid of possible mass splittings. These samples are generated with MADGRAPH interfaced with PYTHIA8. The generated squark samples cover the grid with squark masses ranging from 200 GeV to 2000 GeV and \(\tilde{\chi}^0_1 \) masses up to 1100 GeV. The gluino samples cover the grid as well, with gluino masses of 200 GeV to 2600 GeV and \(\tilde{\chi}^0_1 \) masses from 0 GeV up to 1600 GeV. The grids are well-populated, with about 200 samples in the space of masses considered, and a higher density of samples at smaller mass splittings.

For each major background, we employ a baseline sample and alternative sample, which we will use later to derive uncertainties on the theoretical cross-sections. The choice of generators for each background is itself a quite broad topic, which we avoid discussing here; details can be found in [130].

Boson events are generated with SHERPA: \(Z + \text{jets} \), \(W + \text{jets} \), diboson, and photon events. These are interfaced with the SHERPA’s parton showering
Table 8.1: The Standard Model background Monte Carlo simulation samples used in this thesis. The generators, the order in α_s of cross-section calculations used for yield normalization, PDF sets, parton showers and tunes used for the underlying event are shown. Alternative generators are only used for the major backgrounds.

<table>
<thead>
<tr>
<th>Physics process</th>
<th>Generator</th>
<th>Alternative generator</th>
<th>Cross-section normalization</th>
<th>PDF set</th>
<th>Parton shower</th>
<th>Tune</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\bar{q}_L \bar{q}_L$</td>
<td>MG5_aMC@NLO 2.2.3</td>
<td>-</td>
<td>NLO</td>
<td>NNPDF2.3LO</td>
<td>Pythia 8.186</td>
<td>A14</td>
</tr>
<tr>
<td>$\bar{g}_L \bar{g}_L$</td>
<td>MG5_aMC@NLO 2.2.3</td>
<td>-</td>
<td>NLO</td>
<td>NNPDF2.3LO</td>
<td>Pythia 8.186</td>
<td>A14</td>
</tr>
<tr>
<td>$W(\rightarrow \ell\nu) +$ jets</td>
<td>Sherpa 2.2.0</td>
<td>Madgraph</td>
<td>NNLO</td>
<td>NNPDF3.0NNLO</td>
<td>Sherpa</td>
<td>Sherpa default</td>
</tr>
<tr>
<td>$Z(\gamma\gamma \rightarrow \ell\bar{\ell}) +$ jets</td>
<td>Sherpa 2.2.0</td>
<td>Madgraph</td>
<td>NNLO</td>
<td>NNPDF3.0NNLO</td>
<td>Sherpa</td>
<td>Sherpa default</td>
</tr>
<tr>
<td>$\gamma +$ jets</td>
<td>Sherpa 2.1.1</td>
<td>-</td>
<td>LO</td>
<td>CT10</td>
<td>Sherpa</td>
<td>Sherpa default</td>
</tr>
<tr>
<td>$t\bar{t}$</td>
<td>Powheg.Box v2</td>
<td>Mc@NLO</td>
<td>NNLO+NNLL</td>
<td>CT10</td>
<td>Pythia 6.428</td>
<td>Perugia2012</td>
</tr>
<tr>
<td>Single top (Wt-channel)</td>
<td>Powheg.Box v2</td>
<td>Mc@NLO</td>
<td>NNLO+NNLL</td>
<td>CT10</td>
<td>Pythia 6.428</td>
<td>Perugia2012</td>
</tr>
<tr>
<td>Single top (s-channel)</td>
<td>Powheg.Box v2</td>
<td>Mc@NLO</td>
<td>NLO</td>
<td>CT10</td>
<td>Pythia 6.428</td>
<td>Perugia2012</td>
</tr>
<tr>
<td>$t\bar{t} + W/Z/WW$</td>
<td>MG5_aMC@NLO 2.2.3</td>
<td>-</td>
<td>NLO</td>
<td>NNPDF2.3LO</td>
<td>Pythia 8.186</td>
<td>A14</td>
</tr>
<tr>
<td>WW, WZ, ZZ</td>
<td>Sherpa 2.1.1</td>
<td>-</td>
<td>NLO</td>
<td>CT10</td>
<td>Sherpa</td>
<td>Sherpa default</td>
</tr>
<tr>
<td>Multijet</td>
<td>Pythia 8.186</td>
<td>-</td>
<td>LO</td>
<td>NNPDF2.3LO</td>
<td>Pythia 8.186</td>
<td>A14</td>
</tr>
</tbody>
</table>

model [132]. The alternative samples of $Z+$jets and $W+$jets events are generated with Madgraph [128] interfaced with Pythia8 [129]. Single top and $t\bar{t}$ events are generated with PowhegBox [133] interfaced with itself and the alternative samples are generated with Mc@NLO [134] interfaced with Herwig++ [135]. QCD events are generated with Pythia8 [129] interfaced with itself. Events with $t\bar{t}$ in association with a gauge boson are generated in MG5_aMC@NLO [134] interfaced with Pythia8 [129].

After generation of the truth level particles using the various generators interfaced with their parton showering models, we perform simulation. The detector response to the truth particles is simulated, and simulated hits are produced. This procedure ensures “as close as possible” treatment of simulation and collision data. In ATLAS, this is done using Geant4 [136]. This toolkit outputs simulated detector signals, on which we run the exact same reconstruction algorithms as collision data. This produces simulation datasets for the considered signal models and each background in the analysis.
8.2 Event selection

This section describes the selection of the signal region events. We begin by describing the preselection, which is used to remove problematic events and reduce the dataset to a manageable size. We then describe the signal region strategy, and present the signal regions used in the analysis.

Preselection

The preselection is used to reduce the dataset. It is used before any other selections, for both the signal region selections and the background estimation selections. The preselection is shown in Table 8.2.

The cuts [1] and [2] are cleaning requirements which remove problematic events. The Good Runs List [137] is a centrally-maintained list of data runs which have been determined to be “good for physics”. This determination is made by analysis of the various subdetectors, and monitoring of their status. Event cleaning vetoes events which could be affected by noncollision background, noise bursts, or cosmic rays.

The rest of the preselection cuts select events using scale variables used by previous searches, which reduce the dataset to a manageable size. Signal models with sensitivity to lower values of these scaleful variables are excluded [138, 139]. The final cut on m_{eff}, the scalar sum of the p_T of all jets and the E_T^{miss}, provides the largest dataset size reduction. This is the final discriminating variable used in the complementary search to this analysis, which is also presented in [51].

Signal regions

We define a set of signal regions using the RJR variables of Sec. 7.3. These signal regions are split into three general categories: squark pair production SRs, gluino pair production SRs, and compressed production SRs. Within these general SRs, we have
Table 8.2: Preselection for the various event topologies used in the analysis. $p_T(j_1)$ ($p_T(j_2)$) refers to the leading (second-leading) jet, ordered by p_T.

A schematic of the signal region strategy is shown in Fig. 8.1. This type of plane is how most $R-$parity conserving SUSY searches are organized in both ATLAS and CMS. The horizontal axis is the mass of the sparticle considered. In the case of this thesis, this will the squark or gluino mass. On the vertical axis, we place the LSP mass. Thus, the grid of simplified signal models populate this plane. Our search occurs in this two-parameter space. Each signal region targets some portion of this plane. A new iteration of a search will use a set of signal regions which have sensitivity just beyond those of the previous exclusions. The choice of how many signal regions to use to cover this plane is in many ways a matter of judgment, as it is important to avoid under/over-fitting to the signal models of interest. To take the extreme examples, one signal region will obscure the different phenomena in signal events...
Figure 8.1: Schematic leading the development of the SUSY signal regions in this thesis. A variant of this schematic is used for most SUSY searches on ATLAS and CMS.

with large versus small mass splittings, leading to underfitting. Binning as finely as possible\(^1\) leads to overfitting to the fluctuations present in the signal and background events passing the signal region selections. In this thesis, we use six squark signal regions, six gluino signal regions, and five compressed regions.

We have described the useful variables of a RJR-based hadronic search in the previous chapter. The question is how to choose the optimal cuts for a given set of signal models, which are grouped in the mass splitting space. A brute force scan over the cut values to maximize the significance \(Z_{\text{Bi}}\) [140] is performed, using a guess of integrated luminosity with a fixed systematic uncertainty scenario, which is motivated by previous analyses [138, 139]. The squark (gluino) signal regions were optimized

\(^1\)This can be defined as having a signal region for each simulated signal sample. There are \(~200\) simulated signal samples produced in the plane for the squark and gluino simplified models.
with a fixed 10% (20%) systematic uncertainty. A figure showing an example of this selection tuning procedure is shown in Fig. 8.2.

The signal region definitions are shown in Tables 8.3 to 8.5. In all cases, the signal region selections contain a combination of scaleful and scaleless cuts. Emphasis on cuts on scaleful variables provides stronger sensitivity to larger mass splittings, while additional sensitivity to smaller mass splittings is found using stronger cuts on scaleless variables. One envisions walking from SR1 (with tight scaleless cuts and loose scaleful cuts) in Fig. 8.1 towards SR3 by loosening the scaleless cuts and tightening the scaleful cuts. We will see this strategy at work in each set of signal regions.

The compressed selections are split into five regions (SRC1-5), and due to
the simplified nature of the compressed decay tree, has sensitivity in both the
gluino and squark planes. The compressed regions target mass splittings with
\(m_{\text{sparticle}} - m_{\text{LSP}} \lesssim 200 \text{ GeV} \). For the compressed region, \(M_{T,S} \), our estimator for the
total invariant mass of the disparticle system, is the primary scaleful variable. The
general strategy of tightening scale cuts while loosening scaleless cuts can be seen with
this set of signal regions. SRC1 targets the most compressed scenarios, with mass
splittings of less than 25 GeV, and it has the loosest \(M_{T,S} \) cut. In contrast, it has the
tightest cuts on \(R_{\text{ISR}} \), the ratio of the LSP mass to the sparticle mass, and \(\Delta \phi_{\text{ISR,I}} \),
the opening angle between the invisible system and the ISR system, of the compressed
signal regions. SRC4 and SRC5 target mass splittings of \(\sim 200 \text{ GeV} \), and are coupled
with the loosest scaleless cuts on \(R_{\text{ISR}} \) and \(\Delta \phi_{\text{ISR,I}} \). We also note that SRC4 and
SRC5 have differing cuts on \(N_{\text{jet}}^{V} \), the number of jets which are not associated to the
ISR system, since these SRs are closest in phase space to the noncompressed regions.
This can be seen as the “crossover” in the sparticle-LSP plane where the differences
between squark and gluino production begin to manifest themselves.

The squark regions (for noncompressed spectra) are organized into six signal
regions. These are labeled by a numeral 1-3 and letter a/b. SRs sharing a common
numeral i.e. SRS1a and SRS1b share a common set of scaleless cuts, while differing
in the main scale variable \(H^{PP}_{T,2,1} \). The two SRs for each set of scaleless cuts, only
differing in the main scale variable, can be seen as providing sensitivity to a range of
luminosity scenarios\(^2\). The scaleless cuts are loosened as we tighten the scaleful cuts,
moving across the table from SRS1a to SRS3b. This provides strong sensitivity to
signal models with intermediate mass splittings with SRS1a to large mass splittings
with SR3b.

The gluino signal regions are organized entirely analogously to the squark signal

\(^2\)These SRs were defined before the entire collision dataset was produced, and thus needed to
be robust to a range of delivered integrated luminosity.
regions. There are six gluino signal regions, again labeled via a numeral 1-3 and letter a/b. Those SRs sharing a common numeral have a common set of scaleless cuts, but differ in their main scale variable $H_{T,4,1}^{PP}$. The SRs follow the scaleless versus scaleful strategy, with SRG1 having the loosest scaleful cuts coupled with the strongest scaleless cuts, and the converse being true in SRG3. As in the squark case, this strategy provides strong expected sensitivity throughout the gluino-LSP plane.
<table>
<thead>
<tr>
<th>Requirement</th>
<th>Signal Region</th>
<th>C1</th>
<th>C2</th>
<th>C3</th>
<th>C4</th>
<th>C5</th>
</tr>
</thead>
<tbody>
<tr>
<td>(R_{ISR} \geq)</td>
<td></td>
<td>0.9</td>
<td>0.8</td>
<td>0.75</td>
<td>0.70</td>
<td></td>
</tr>
<tr>
<td>(\Delta \phi_{ISR, i} \geq)</td>
<td></td>
<td>3.1</td>
<td>3.07</td>
<td>2.95</td>
<td>2.95</td>
<td>2.95</td>
</tr>
<tr>
<td>(\Delta \phi(jet_{1,2}, E^{miss}T){min})</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.4</td>
<td>0.4</td>
</tr>
<tr>
<td>(M_{TS} \text{[GeV]} \geq)</td>
<td></td>
<td>100</td>
<td>100</td>
<td>200</td>
<td>500</td>
<td>500</td>
</tr>
<tr>
<td>(p_{TS}^{CM} \text{[GeV]} \geq)</td>
<td></td>
<td>800</td>
<td>800</td>
<td>600</td>
<td>600</td>
<td>600</td>
</tr>
<tr>
<td>(N_{jet} \geq)</td>
<td></td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

Table 8.5: Event selection for compressed signal regions

8.3 Background estimation

We describe here the method of background estimation. In this thesis, we detail a “cut-and-count” analysis. In this type of analysis, we must ensure the Standard Model background event yields are correct in the regions of phase space considered in the analysis. In order to do this, we define a set of control regions which are free of SUSY contamination based on the previously excluded analysis. We define a transfer factor (TF) for each control region, which is defined as the ratio of the expected number of events from simulation in the signal region to the expected number from simulation of events in the control region. Multiplying the TF by the observed number of events in the control region gives the estimate of the number of background events in the given signal region. To be explicit, each signal region SR has a corresponding set of control regions, where each control region is targeted towards a particular background process.

More precisely, for a given signal region, we are attempting to estimate \(N_{data}^{SR} \), the number of events entering the signal region corresponding to a particular background process. We define a corresponding control region of high purity for that particular background process. We observe a number of events \(N_{CR}^{data,obs} \) which pass the control region selection. Defining \(N_{MC}^{SR} \) (\(N_{CR}^{MC} \)) as the number of events in simulation passing
the SR (CR) event selection, our estimate of $N_{\text{SR}}^{\text{data}}$ can be written as:

$$N_{\text{SR}}^{\text{data,est}} = N_{\text{CR}}^{\text{data,obs}} \times \text{TF}_{\text{CR}} \equiv N_{\text{CR}}^{\text{data,obs}} \times \left(\frac{N_{\text{MC}}^{\text{SR}}}{N_{\text{MC}}^{\text{CR}}} \right)$$ \hspace{1cm} (8.1)

The two ingredients to our estimation of $N_{\text{SR}}^{\text{data,obs}}$ are the observed number of control region events $N_{\text{CR}}^{\text{data,obs}}$ and the transfer factor taken from simulation.

It is illuminating to rewrite Eq. (8.1):

$$N_{\text{SR}}^{\text{data,est}} = N_{\text{SR}}^{\text{MC}} \times \left(\frac{N_{\text{CR}}^{\text{data,obs}}}{N_{\text{MC}}^{\text{CR}}} \right) \equiv N_{\text{SR}}^{\text{MC}} \times \mu_{\text{CR}}.$$ \hspace{1cm} (8.2)

In this form, the correction to SM background event yield is explicit. The ratio $\frac{N_{\text{CR}}^{\text{data,obs}}}{N_{\text{MC}}^{\text{CR}}}$, which we call μ_{CR}, is the scale which corrects for our ignorance of the normalization of the particular SM background. The assumption of this method is that the overall shape of the distribution should not change as one extrapolates to the signal region.

The CR definitions are motivated and designed according to two (generally competing) requirements:

1. Statistical uncertainties due to low numbers of events passing the control region selections

2. Systematic uncertainties on the extrapolation from the CR to the SR. These are minimized by creating control regions which are as similar as possible to the signal regions without risking signal contamination while ensuring high purity in the targeted SM background.

In principle, one can also apply data-driven corrections to the TF obtained for each CR.

In order to validate the transfer factors obtained from MC, we also develop a series of validation regions (VRs). These regions are generally designed to be “in between” the control region and signal region selections in phase space, and thus provide a
check on the extrapolation from the control regions into the signal regions. Despite their closeness in phase space to the signal regions, they are also designed to have low signal contamination.

We perform this estimation procedure simultaneously across all control regions. Note Eq. (8.1) can also be used to measure the contamination of a control region with another background, as determined by another control region.

Maximum likelihood fit

To properly account for the systematic uncertainties and simultaneously fit the control regions, we employ a maximum-likelihood fit as described in [141]. The likelihood function \(L \) is the product of the Poisson distributions governing the likelihood in each of the signal regions and the corresponding control regions. We begin by considering our event counts \(b \) in a signal region with its corresponding control regions. The systematic uncertainties are included as a set of nuisance parameters \(\theta \).

The full likelihood function can be written [141]:

\[
L(n|\mu, b) = P_{SR} \times P_{CR} \times C_{syst} \\
= P(n_S|\lambda_S(\mu_S, b, \theta)) \times \prod_{i\in CR} P(n_i|\lambda_i(\mu, b, \theta)) \times C_{syst}(\theta^0, \theta)
\]

where \(P(n_i|\lambda_i(\mu, b, \theta)) \) is a Poisson distribution conditioned on the event counts \(n_i \) in the \(i \)-th CR with mean parameter \(\lambda_i(\mu, b, \theta) \). The term \(C_{syst}(\theta^0, \theta) \) is the probability density function with central values \(\theta^0 \) which are varied with the nuisance parameters \(\theta \). We model these as Gaussian distributions with unit width and mean zero:

\[
C_{syst}(\theta^0, \theta) = \prod_{s\in S} G(\mu = \theta_s, \sigma = 1),
\]

where \(S \) is the set of systematic uncertainties.

The terms \(\lambda_j \) for any region \(j \) can be expressed as

\[
\lambda_j(\mu, b, \theta) = \sum_b \mu_b b_j \prod_{s\in S} (1 + \Delta_{j,b,s} \theta_s)
\]
The term μ_b is the normalization factor associated to the background b with event count b_j in the region j. The terms Δ inside the product represent scale factors freeing the model to account for the systematic uncertainties θ_s.

The process now is to maximize this likelihood function, given the free parameters μ_b and the parameters Δ associated to the systematics as nuisance parameters. This is done using the HistFitter package [141]. The normalization scale factors μ_b are the primary output of this maximization, and are in fact the control regions’ raison d’être. We say the normalization parameters are found such that the likelihood is maximized. The nuisance parameters are also determined by this procedure, but do not have a straightforward interpretation.

The final expected background prediction after the fit in region r is given by

$$N_{r,\text{total background}} = \sum_b \mu_b N_{b,\text{MC}}$$ \hspace{1cm} (8.7)

We next describe the control regions used in the analysis.

Control Regions

The primary backgrounds in this analysis are Z+jets, W+jets, $t\bar{t}$, and QCD events. There is also a minor background from diboson events which is taken directly from simulation with an ad-hoc uncertainty of 50%. We describe the strategy to estimate these various backgrounds here. A summary table is shown in Table 8.6. All distributions shown use the scaling factors μ_B from the background fits. Control region distributions are shown for one squark, gluino, and compressed signal region, with the rest found in Appendix A.

Events with a Z boson decaying to neutrinos in association with jets are the primary irreducible background in the analysis. These events have true E_T^{miss} from the decaying neutrinos, and can have large values of the RJR scaleful variables described in Sec. 7.3. Naïvely, one might expect us to use $Z \to \ell\ell$ as the control process, as
Table 8.6: Definitions of the control regions used to estimate the Standard Model background entering the signal regions. The kinematic selections are chosen as closely as possible to the signal regions. They are loosened as described in the text.

Z → ℓℓ events are well-measured. Unfortunately, the Z → ℓℓ branching ratio is about half of Z → νν, which necessitates loosening the control region selection significantly. This leads to unacceptably large systematic uncertainties in the transfer factor.

Instead, photon events are used as the control region for the Z → νν events. We label this photon control region as CRγ. The photon is required to have p_T > 150 GeV to ensure the trigger is fully efficient. The kinematic properties of photon events strongly resemble those of Z events when the boson p_T is significantly above the mass of the Z boson. In this regime, the neutral bosons are both scaleless, and can be treated interchangeably, up to the differences in coupling strengths. Additionally, the cross-section for γ+jets events is significantly larger than Z+jets events above the Z mass. These features are shown in Fig. 8.3 in simulated truth events. In truth events, one clearly sees the effect of the Z mass below ∼100 GeV, with a flattening of the ratio above ∼300 GeV.

The CRγ kinematic selection is slightly looser in the scaleful variables for the noncompressed regions for sufficient control region statistics. This is chosen to be H^{PP}_1 > 900 GeV (H^{PP}_1 > 550 GeV) for the squark (gluino) regions to minimize the corresponding statistical and systematic uncertainties.

One additional correction scale factor is applied to γ+jets events before calculating the transfer factors. This is known as the κ method, which is used to determine the
disagreement arising from the use of a LO generator for photon events vs. a NLO generator for $Z+$jets events, which can reduce the theoretical uncertainties. One can see this as a measurement of the k-factor for the LO $\gamma+$jets sample. We define two very loose control regions, CRZVL and CRγVL. CRZVL requires two leptons with an invariant mass within 25 GeV of the Z mass. We add the p_T of the leptons into the E_T^{miss}, as done in CRγ, and require $200 \text{ GeV} < E_T^{\text{miss}} < 300 \text{ GeV}$. CR$\gamma$VL uses the same E_T^{miss} requirement, with the photon included in the E_T^{miss} calculation. With the data event counts in these regions $N_{CR\gamma VL}^{\gamma+\text{jets, data}}$ and $N_{CRZVL}^{Z\rightarrow\ell\ell+\text{jets, data}}$ and the predictions

Figure 8.3: Boson p_T ratio as a function of true boson p_T
from simulation $N_{CR\gamma VL}^{\gamma+\text{jets,MC}}$ and $N_{CRZVL}^{Z\rightarrow\ell\ell+\text{jets,MC}}$, we define

$$\kappa \equiv \left(\frac{N_{CR\gamma VL}^{\gamma+\text{jets,\ data}}}{N_{CRZVL}^{Z\rightarrow\ell\ell+\text{jets,\ data}}} \right) / \left(\frac{N_{CR\gamma VL}^{\gamma+\text{jets,MC}}}{N_{CRZVL}^{Z\rightarrow\ell\ell+\text{jets,MC}}} \right)$$ \tag{8.8}$$

Additional details can be found in [51, 138, 139]. The correction factor is $\kappa = 1.39 \pm 0.05$. The uncertainty is derived from the calculation of κ with the E_T^{miss} requirements for CRZVL and CRγVL changed.

Distributions of CRγ in squark, gluino, and compressed regions are shown in Figs. A.1, A.2 and 8.4. These figures show the high purity of the photon control region for each signal region.

Event with a W boson decaying leptonically via $W \rightarrow \ell \nu$ can also enter the signal region. The $W+\text{jets}$ events passing the event selection either have a hadronically-decaying τ, with a neutrino supplying E_T^{miss}, or a muon or electron is misidentified as a jet or missed completely due to the limited detector acceptance. To model the $W+\text{jets}$ background, we use a sample of one-lepton events with a veto on b-jets, which we label CRW. The lepton is required to have $p_T > 27$ GeV to guarantee a fully efficient trigger. We treat this single lepton as a jet for purposes of the RJR variable calculations. We apply a kinematic selection on the transverse mass:

$$m_T = \sqrt{2p_{T,\ell}E_T^{\text{miss}}(1 - \cos \phi_{\ell}E_{\phi}^{\text{miss}})},$$ \tag{8.9}$$

around the W mass of 30 GeV < m_T < 100 GeV. Checks in simulation shows that these requirements give a sample of high purity $W \rightarrow \ell \nu$ background. Due to low statistics using the kinematic cuts imposed in the signal regions, the control region kinematic cuts are slightly loosened with respect to the signal region cuts. They are loosened in a way that inside each class of signal regions (SRS, SRG, SRC) the same CRW is used. We use the loosest cut for each variable among any signal region in the selection of CRW. For example, the control region CRW for SRS1a uses the following kinematic selections after the one lepton, b-veto selection is imposed:
Comparing this set of selections with the signal regions Table 8.3, these are loosest cuts among all squark signal regions. This leads to a tolerable increase in the systematic uncertainty from the extrapolation from the CR to the SR when compared to the resulting statistical uncertainty.

Distributions of CRW in squark, gluino, and compressed regions are shown in Figs. A.3, A.4 and 8.5. There is high purity in $W+\text{jets}$ events in the control region corresponding to all signal regions.

Top events are also an important background, for the same reasons as the $W+\text{jets}$ background, due to the dominant top decay channel of $t \rightarrow Wb$. For a top event to be selected by the analysis criteria, we expect a similar process to that of the $W+\text{jets}$ background. The W decays via a τ lepton which decays hadronically or the W decays via a muon or electron which is misidentified as a jet or falls outside the detector acceptance. Hadronic or all dileptonic $t\bar{t}$ events are less troublesome, as hadronic $t\bar{t}$ events generally have low E_T^{miss} (and $H_{1,1}^{PP}$) and will not pass the kinematic selections, while dileptonic $t\bar{t}$ events have a lower cross-section and good reconstruction efficiency from the two leptons. We are thus primarily concerned with semileptonic $t\bar{t}$ events with E_T^{miss} from the neutrino. To model this background, we use the same selection as the W selection, but require that one of the jets chosen by
the analysis has at least one b-tag. This selection has high purity, as we expect the $t\bar{t}$ background to have two b-jets. With the 70% b-tagging efficiency working point [116, 117], ignoring (small) correlations between the two b-tags, we expect to tag one of the b-jets greater than 90% of the time. We use the same loosening scheme as we described for CRW. Using the SRS1a example in Sec. 8.3, we implement the same kinematic cuts applied as in CRW, but with the required b-jet instead of a b-jet veto.

Distributions of CRT in squark, gluino, and compressed regions are shown in Figs. A.5, A.6 and 8.6. There is high purity in top events in the control region corresponding to all signal regions.

QCD events are another important background. QCD backgrounds are difficult, for a few reasons. The large cross-section for QCD events means that even very rare extreme mismeasurements can be seen in our signal regions. However, as these events are very rare, simulation fails to be a particularly useful input for background estimation, as the details of these extraordinary events are poorly modeled. Instead, we apply a cut which ensures zero QCD events in the signal regions. To produce a sample enriched in QCD, which we call CRQ, we invert the Δ_{QCD} and $H_{1,1}^{PP}$ cut from the corresponding signal region. This means instead of requiring these values over the signal region cut, we require them to be under the signal region cut. These two cuts provide the strongest rejection of QCD, so inverting them provides a sample enriched in QCD events. This analysis uses the jet smearing method, as described in [142].

Distributions of CRQ in squark, gluino, and compressed regions are shown in Figs. A.7, A.8 and 8.7. There is high purity in QCD events in the control region corresponding to all signal regions.

Diboson events can also pass the signal region selection criteria. This background is estimated directly from simulation. Due to the low cross-section of electroweak processes, this background is not significant in the signal regions. We assign a large ad-hoc 50% systematic on the cross-section, and do not attempt to define a control
Figure 8.4: Scale variable distributions for the photon control regions for SRC1, SRG1a, and SRS1a

region for this background.

Validation Regions

As discussed in general terms above, we define a set of validations regions. They validate the modeling of the backgrounds as we move closer to the SRs. We define at least one validation region for each major background.

For the most important background $Z \rightarrow \nu \nu$, we use a series of validation regions. The primary validation region, which we label as VRZ, is defined by selecting lepton pairs of opposite sign and identical flavor which lie with 25 GeV of the Z boson mass.
Figure 8.5: Scale variable distributions for the W control regions for SRC1, SRG1a, and SRS1a.

This selection has high purity for $Z \rightarrow \ell \ell$ events as seen in simulation. We treat the two leptons as contributions to the E_T^{miss} (as we did with the photon in CRγ).

This selection uses the same kinematic cuts as the signal region. We also define two VRs using the same event selection but looser kinematic cuts, which we label VRZa and VRZb. VRZa has a loosened selection on $H_{1,1}^{PP}$. VRZb is looser in the primary scaleful variable ($H_{T,2,1}^{PP}$ or $H_{T,4,1}^{PP}$). These two validation regions allow us to test the modeling of each of these variables individually.

For the compressed regions, these Z validation region were found lacking. The leptons are highly boosted in the compressed case, and the lepton acceptance was
Figure 8.6: Scale variable distributions for the top control regions for SRC1, SRG1a, and SRS1a

quite low due to lepton isolation requirements in ΔR. Instead, two fully hadronic validation region were developed for the compressed regions. The first, VRZc has identical requirements to the signal regions except we require $\Delta \phi_{ISR,1}$ to be smaller than the value of the corresponding signal region. From simulation, this region at least 50% pure in Z events, which was considered enough to validate the Z modeling considering the extreme portion of phase space. For additional validation region statistics, we also developed VRZca, which again uses the loosest set of cuts from each signal region. Note this means that each compressed signal region has an identical VRZca.
Figure 8.7: Scale variable distributions for the QCD control regions for SRC1, SRG1a, and SRS1a

The top and W validation regions use the same event selection as the corresponding control regions with stronger cuts on the scaleful variables. For example, in SRS3a, VRT has the following kinematic selection, with a b-tag required:
The cuts on the scaleless cuts shown are identical to those in Sec. 8.3, but the selections on scaleful cuts $H_{1,1}^{PP}$ and $H_{2,1}^{PP}$ are restored to those of the signal region, as shown in Table 8.3. Thus, these regions have a kinematic selection between the corresponding CRT and the signal region selection. To provide additional validation, we also define auxiliary VRs which loosen the cuts on the scale variables. VRTa (VRWa) as VRT (VRW) loosens the selection on $H_{1,1}^{PP}$ to that off the control region, while still requiring the cut on the primary scale variable. The opposite logic is required for VRTb and VRWb: the primary scale variable cut is loosened, while still requiring the $H_{1,1}^{PP}$ selection of the signal region.

The final set of validation regions are those defined to check the QCD background. VRQ is defined to be identical to the corresponding CRQ, but again we use the full SR region cuts for the scaleful variables. This ensures the QCD validation region is between the signal region and the corresponding control region. We also define the auxiliary validation regions VRQa and VRQb for the noncompressed signal regions. In this case, we reimpose one of the two inverted cuts in VRQ with respect to the signal regions, to make each one closer to the SRs. In VRQa (VRQb), we reimpose the $H_{1,1}^{PP}$ (Δ_{QCD}). These allow us to understand the modeling of these two variables separately.
For the compressed case, we again define a separate validation region, due to
the special kinematics probed. We construct a validation region which is the same
as CRQ, with \(0.5 < R_{\text{ISR}} < R_{\text{ISR,SR}} \), where \(R_{\text{ISR,SR}} \) is the cut on \(R_{\text{ISR}} \) in the
corresponding SR. Again, this can be seen as probing “in between” the CR and
SR in phase space.

The results of this validation can be seen in Fig. 8.8. Each bin is the \textit{pull} of the
validation region corresponding to a particular signal region. This is defined

\[
\text{Pull} = \frac{N_{\text{obs}} - N_{\text{pred}}}{\sigma_{\text{tot}}} \tag{8.10}
\]

where \(\sigma_{\text{tot}} \) is the total uncertainty folding in all systematic uncertainties.

In the case that the backgrounds are properly estimated in the validation regions,
the pulls will form a Gaussian distribution with a mean of 0 and standard deviation
of 1. In our case, we see that most pulls are negative, with fewer positive pulls. This
indicates we have conservatively measured the Standard Model backgrounds.

\section*{Systematic Uncertainties}

There are four general categories of uncertainties: theoretical generator uncertainties,
uncertainties on the CR to SR extrapolations, uncertainties on the data-driven
transfer factor corrections, and object reconstruction uncertainties. We discuss each
of these categories here. A summary of the uncertainties is available in Table 8.7.

The theoretical generator uncertainties are evaluated by using alternative sim-
ulation samples. In the case of the \(Z + \) jets and \(W + \) jets backgrounds, the related
theoretical uncertainties are estimated by varying the renormalization, factorization,
and resummation scales by two, and decreasing the nominal CKKW matching scale by
5 GeV and 10 GeV respectively. In the case of \(t \bar{t} \) production, we compare the nominal
\textsc{Powheg-Box} generator with \textsc{MG5_aMC@NLO}, as well as comparing different
Figure 8.8: Summary of the validation region pulls. Dashes indicate the validation region is not applicable to the given signal region.

<table>
<thead>
<tr>
<th>Systematic Description</th>
<th>Uncertainty Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MC statistics</td>
<td>Simulation statistics in the signal region</td>
</tr>
<tr>
<td>Theory Z</td>
<td>Theoretical on Z cross-section</td>
</tr>
<tr>
<td>Theory W</td>
<td>Theoretical on W cross-section</td>
</tr>
<tr>
<td>Theory Top</td>
<td>Theoretical on t cross-section, radiation and fragmentation tune</td>
</tr>
<tr>
<td>Theory Diboson</td>
<td>Flat theoretical on diboson cross-section</td>
</tr>
<tr>
<td>$\Delta \mu_{Z,+jets}$</td>
<td>CRY extrapolation to SR</td>
</tr>
<tr>
<td>$\Delta \mu_{W,+jets}$</td>
<td>CRW extrapolation to SR</td>
</tr>
<tr>
<td>$\Delta \mu_{Top}$</td>
<td>CRT extrapolation to SR</td>
</tr>
<tr>
<td>$\Delta \mu_{Multijet}$</td>
<td>CRQ extrapolation to SR</td>
</tr>
<tr>
<td>CRγ corr. factor κ</td>
<td>κ factor</td>
</tr>
<tr>
<td>Multijet method</td>
<td>Jet smearing uncertainty</td>
</tr>
<tr>
<td>Jet/MET</td>
<td>Jet/MET uncertainties</td>
</tr>
</tbody>
</table>

Table 8.7: Description of the systematic uncertainties in the analysis.
radiation and generator tunes. As stated above, we account for the uncertainty on the small diboson background by imposition of a flat 50% uncertainty.

The uncertainties on the normalization factors $\mu_{\text{background}}$ are listed in Table 8.7 as $\Delta \mu_{\text{background}}$. In previous analyses [138, 139], these uncertainties have often been dominant, especially $\Delta \mu_{Z,+jets}$, as these uncertainties represent our misunderstanding of the total event yields of the Standard Model backgrounds in the signal regions. The statistical uncertainty from the control region is generally the most important component of these uncertainties.

There are two uncertainties from the data-driven corrections to the transfer factors. The first is the uncertainty on κ, which we derived by varying the E_T^{miss} requirements of the auxiliary CRZVL and CRγVL control regions. The other is the uncertainty assigned to the jet smearing method, which is derived using the method in [142].

The final set of uncertainties are those related to object reconstruction. In a hadronic search, the important uncertainties are those assigned to the jet energy and E_T^{miss}. The uncertainties on the lepton reconstruction and b-tagging uncertainties were found to be negligible in all SRs. The measurement of the jet energy scale (JES) uncertainty is described in [112, 113, 143, 144]. After a procedure to decorrelate the dozens of JES uncertainties, we form a representation of three strongly reduced nuisance parameters which capture the uncertainty correlations without a significant loss of information. These three uncertainties are included in the total Jet/MET uncertainty.

The jet energy resolution uncertainty is estimated using the methods discussed in [113, 145]. This uncertainty accounts for the differences between the jet energy resolution between data and simulation. We include this uncertainty a component of total Jet/MET uncertainty.

The E_T^{miss} soft term uncertainties are described in [121, 122, 146]. The uncertainty
on the E_T^{miss} soft term resolution is parameterized into a component parallel to direction of the rest of the event (the sum of the hard objects p_T) and a component perpendicular to this direction. We also derive an uncertainty on the E_T^{miss} soft term scale. We measure this uncertainty by comparing the E_T^{miss} response between simulation and data These uncertainties are also included in the total Jet/MET uncertainty.

8.4 Fitting procedures

The maximum likelihood fit described in Sec. 8.3 can be used with a variety of event count inputs. We use three separate fit classes, which we call background-only, model-independent, and model-dependent fits. In terms of the likelihood function inputs, these can be seen as including a different list of event counts b.

The background-only fit estimates the background yields in each signal region. This fit uses the control region event yields as inputs; they do not include information from the signal regions besides the simulation event yield. The cross-contamination between CRs is also fit by this procedure. The output of the background-only fit is a set of fitted simulated event counts in the signal and validation regions.

In the case no excess is observed, we use a model-independent fit to set upper limits on the possible number of possible beyond the Standard Model events in each SR. These limits are derived using the same procedure as the background-only fit, with two additional pieces of information included in the fitting procedure. We include the SR event count as an additional input and fit an additional normalization parameter μ_{signal}, which we call the signal strength. We use the CL_S procedure [147], to derive the observed and expected limits on the number of events from BSM phenomena in each signal region.

Model-dependent fits are used to set exclusion limits on the specific SUSY models
in the sparticle-LSP grids. It is identical to the background-only fit but including the signal model simulation event yield and the additional μ_{signal} normalization parameter. As noted when we introduced Fig. 8.1, the exclusion contours from previous model-dependent fits motivate the signal region design. If no excess is found, we set limits on each of the simplified signal models with various mass splittings.
This chapter presents the results of the search for squarks and gluinos in all hadronic final states. The full signal region distributions with normalization factors μ_B derived from the background-only fits are shown. The systematic uncertainties are discussed. As no excess is observed, we run the model-dependent fits to set exclusion limits in the sparticle-$\tilde{\chi}_1^0$ plane and use the model-independent fit procedure to set model-independent upper limits on the new physics cross-sections.

9.1 Signal region distributions

Figs. 9.1 to 9.3 show the distributions of the last scale cut ($p_{T,S}^{CM}$, $H_{T,4,1}^{PP}$, or $H_{T,2,1}^{PP}$) used for each signal region. These distributions include the μ normalization scale factors for each SM background μ_B derived from the background-only fits. The systematic uncertainties are also shown with a red dashed band. In each plot, the distribution of one particular signal model is shown. The signal model is targeted by the signal region shown in the plot, but each signal region targets a number of other signal models as well. These distributions are shown after all signal region cuts are applied, except for the main scale variable shown on the horizontal axis. We show the (a) and (b) version of a given noncompressed signal region on the same figure, as they differ only in the value of the main scale cut. For example, SRS1a and SRS1b are both shown in the distribution of $H_{T,2,1}^{PP}$ shown in the upper-left plot of Fig. 9.2. The left (right) arrow shown is the location of the a (b) cut applied in the analysis. We call
Figure 9.1: Scale variable distributions for the gluino signal regions

these plot $N - 1$ plots, where N refers to the number of cuts applied in the analysis.

An expanded set of $N - 1$ plots are available in Appendix B. Each variable which is used to discriminate signal from background has an associated $N - 1$ plot. These plots show the additional discrimination resulting from only from the variable displayed on the horizontal axis.

A summary figure is shown in Fig. 9.4. This figure shows the data and simulation event yields with the corresponding statistical and systematic uncertainties for all signal regions simultaneously. This information is also presented in Table 9.1. The table also includes the raw event yields from simulation before applying the μ normalization factor for comparison. The model-independent limits are shown in
Figure 9.2: Scale variable distributions for the squark signal regions

this table.

9.2 Systematic Uncertainties

This section considers the results of Table 9.2. This table is a summary of the systematic uncertainties on the SM background event yields in each signal region. These uncertainties are expressed both as relative and absolute uncertainties. The absolute uncertainties do not add in quadrature as the uncertainties can be correlated. We discuss the general trends in the systematic uncertainties for each type of signal region.
Figure 9.3: Scale variable distributions for the compressed signal regions
Table 9.1: Numbers of events observed in the signal regions compared with background expectations. Empty cells (indicated by a ‘-’) correspond to estimates lower than 0.01. Also shown are 95% CL upper limits on the visible cross-section \((\sigma_{\text{obs}})^{95}\), the visible number of signal events \((S_{\text{obs}}^{95})\) and the number of signal events \((S_{\text{exp}}^{95})\) given the expected number of background events (and ±1σ excursions of the expectation).
In the squark regions, the total uncertainties including statistical and systematic uncertainties are approximately 10% of the total event yield. The uncertainties on the Z event yields, both theoretical and $\Delta_{\mu,\nu}$, are the largest uncertainties for each signal region. The κ factor uncertainty, which is also an uncertainty on the Z event yield, is also significant at 4% in each region. The $Z \rightarrow \nu\nu$ contribution to the squark regions is the primary irreducible background, so even when relatively well-measured, the Z event yield uncertainties dominate the overall background uncertainty. There are also significant uncertainties from the W, top, and flat diboson uncertainties. The uncertainty due to statistics of the MC simulation samples are small for the squark case; this is a reflection of the “looseness” of these regions.

The gluino regions have overall larger total uncertainties on the background event yields than the squark regions, from 10% and 25%. The Z uncertainties all contribute
significantly, yet they are similar to the squark Z event yield uncertainties. The W, top, and diboson uncertainties are all significantly larger than in the squark case. In the gluino case, we also see that the limited simulation statistics begin to significantly affect the estimation of the Standard Model background event yield. These are all reflections of the overall “tighter” quality of the gluino regions. In SRG3b, the low simulation statistics account for a large 14% statistical uncertainty on the SR event yields.

The compressed regions have total uncertainties ranging from 10% to 19%. For the tighter regions, SRC1, SRC4, and SRC5, there is a large contribution owing to a lack of MC statistics. SRC1 and SRC4 have a large W theory uncertainty. As with the squark and gluino signal regions, the theoretical Z uncertainty contributes significantly. The theoretical diboson uncertainty is also large, indicating we may reduce the overall uncertainty by developing a diboson control region if possible. SRC5 has large top and jet/E_T^{miss} uncertainties. As SRC5 is the gluino-like compressed signal region, its systematic uncertainties are similar to the gluino signal regions.

9.3 Model-Independent Limits and Model-Dependent Exclusions

In Table 9.1, we show the one-sided p-value (p_0) and the equivalent statistical significance Z for each signal region:

$$Z = \frac{N_{\text{obs}} - N_{\text{pred}}}{\sigma_{\text{tot}}}$$ \hspace{1cm} (9.1)

We calculate this using the fitted simulation mean compared with the observed event counts in each region. There is no significant excess in any of the signal region; the largest excess is in SRG3b with $Z_{\text{SRG3b}} = 1.55$. This information is summarized in Fig. 9.4. We thus set model-independent and model-dependent limits.
Table 9.2: Breakdown of the dominant systematic uncertainties in the background estimates. The individual uncertainties can be correlated, and do not necessarily add in quadrature. Δ_{μ} uncertainties result from control region statistical uncertainties and the systematic uncertainties in the appropriate control region. In brackets, uncertainties are given relative to the expected total background yield, also presented in the table. Empty cells (indicated by a `_`) correspond to uncertainties <0.1%.

<table>
<thead>
<tr>
<th>Channel</th>
<th>S1a</th>
<th>S1b</th>
<th>S2a</th>
<th>S2b</th>
<th>S3a</th>
<th>S3b</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>394</td>
<td>233</td>
<td>96</td>
<td>75</td>
<td>75</td>
<td>37</td>
</tr>
<tr>
<td>Total bkg unc.</td>
<td>±2.6 [11%]</td>
<td>±2.6 [10%]</td>
<td>±1.5 [2%]</td>
<td>±1.3 [2%]</td>
<td>±1.0 [2%]</td>
<td>±0.7 [2%]</td>
</tr>
<tr>
<td>MC statistics</td>
<td>±20 [6%]</td>
<td>±14 [6%]</td>
<td>±4.4 [4%]</td>
<td>±2.9 [4%]</td>
<td>±2.2 [4%]</td>
<td>±1.5 [4%]</td>
</tr>
<tr>
<td>$\Delta \mu_{Z,+jets}$</td>
<td>±10 [3%]</td>
<td>±7 [3%]</td>
<td>±3.1 [3%]</td>
<td>±2.3 [3%]</td>
<td>±1.6 [3%]</td>
<td>±1.1 [3%]</td>
</tr>
<tr>
<td>$\Delta \mu_{W,+jets}$</td>
<td>±6 [2%]</td>
<td>±4 [2%]</td>
<td>±1.5 [2%]</td>
<td>±1.1 [1%]</td>
<td>±0.9 [2%]</td>
<td>±0.6 [2%]</td>
</tr>
<tr>
<td>$\Delta \mu_{Top}$</td>
<td>±0.00 [0%]</td>
<td>±0.05 [0%]</td>
<td>±0.02 [0%]</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CRγ corr. factor</td>
<td>±12 [4%]</td>
<td>±8 [3%]</td>
<td>±4 [4%]</td>
<td>±2.9 [4%]</td>
<td>±2.2 [4%]</td>
<td>±1.4 [4%]</td>
</tr>
<tr>
<td>Theory Z</td>
<td>±23 [7%]</td>
<td>±16 [7%]</td>
<td>±7 [7%]</td>
<td>±6 [8%]</td>
<td>±4 [7%]</td>
<td>±2.8 [8%]</td>
</tr>
<tr>
<td>Theory W</td>
<td>±4 [1%]</td>
<td>±5 [2%]</td>
<td>±0.4 [0%]</td>
<td>±0.11 [0%]</td>
<td>±0.15 [3%]</td>
<td>±1.2 [3%]</td>
</tr>
<tr>
<td>Theory Top</td>
<td>±4 [1%]</td>
<td>±2.7 [1%]</td>
<td>±0.8 [1%]</td>
<td>±0.7 [1%]</td>
<td>±0.6 [1%]</td>
<td>±0.4 [1%]</td>
</tr>
<tr>
<td>Theory Diboson</td>
<td>±9 [3%]</td>
<td>±6 [3%]</td>
<td>±2.8 [3%]</td>
<td>±0.31 [5%]</td>
<td>±0.26 [5%]</td>
<td>±0.6 [8%]</td>
</tr>
<tr>
<td>Jet/MET</td>
<td>±3.3 [1%]</td>
<td>±1.5 [1%]</td>
<td>±0.6 [1%]</td>
<td>±0.1 [2%]</td>
<td>±0.6 [1%]</td>
<td>±1.0 [3%]</td>
</tr>
<tr>
<td>MultiJet method</td>
<td>±0.7 [0%]</td>
<td>±0.4 [0%]</td>
<td>±0.08 [0%]</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Channel</th>
<th>G1a</th>
<th>G1b</th>
<th>G2a</th>
<th>G2b</th>
<th>G3a</th>
<th>G3b</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>40</td>
<td>18.8</td>
<td>27.8</td>
<td>8.5</td>
<td>5.8</td>
<td>1.7</td>
</tr>
<tr>
<td>Total bkg</td>
<td>±4 [10%]</td>
<td>±2.5 [13%]</td>
<td>±3.4 [12%]</td>
<td>±1.4 [16%]</td>
<td>±1.1 [19%]</td>
<td>±0.4 [24%]</td>
</tr>
<tr>
<td>Total bkg unc.</td>
<td>±1.6 [4%]</td>
<td>±1.0 [5%]</td>
<td>±1.2 [4%]</td>
<td>±0.6 [7%]</td>
<td>±0.4 [7%]</td>
<td>±0.25 [14%]</td>
</tr>
<tr>
<td>MC statistics</td>
<td>±20 [4%]</td>
<td>±15.4 [4%]</td>
<td>±0.7 [4%]</td>
<td>±1.6 [6%]</td>
<td>±0.5 [6%]</td>
<td>±0.4 [7%]</td>
</tr>
<tr>
<td>$\Delta \mu_{Z,+jets}$</td>
<td>±0.9 [2%]</td>
<td>±0.33 [2%]</td>
<td>±0.9 [3%]</td>
<td>±0.29 [3%]</td>
<td>±0.07 [1%]</td>
<td>±0.1 [6%]</td>
</tr>
<tr>
<td>$\Delta \mu_{W,+jets}$</td>
<td>±0.8 [2%]</td>
<td>±0.33 [2%]</td>
<td>±0 [0%]</td>
<td>±0.02 [0%]</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CRγ corr. factor</td>
<td>±1.2 [3%]</td>
<td>±0.6 [3%]</td>
<td>±0.8 [3%]</td>
<td>±0.26 [3%]</td>
<td>±0.19 [3%]</td>
<td>±0.05 [3%]</td>
</tr>
<tr>
<td>Theory Z</td>
<td>±2.3 [6%]</td>
<td>±1.1 [6%]</td>
<td>±1.6 [6%]</td>
<td>±0.5 [6%]</td>
<td>±0.4 [7%]</td>
<td>±0.1 [6%]</td>
</tr>
<tr>
<td>Theory W</td>
<td>±1.1 [3%]</td>
<td>±1.3 [7%]</td>
<td>±0.3 [1%]</td>
<td>±0.7 [8%]</td>
<td>±0.6 [10%]</td>
<td>±0.16 [9%]</td>
</tr>
<tr>
<td>Theory Top</td>
<td>±1.2 [3%]</td>
<td>±0.7 [4%]</td>
<td>±1.0 [4%]</td>
<td>±0.4 [5%]</td>
<td>±0.0 [7%]</td>
<td>±0.26 [15%]</td>
</tr>
<tr>
<td>Theory Diboson</td>
<td>±1.3 [3%]</td>
<td>±0.8 [4%]</td>
<td>±1.5 [5%]</td>
<td>±0.6 [7%]</td>
<td>±0.31 [5%]</td>
<td>±0.13 [8%]</td>
</tr>
<tr>
<td>Jet/MET</td>
<td>±1.0 [3%]</td>
<td>±0.6 [3%]</td>
<td>±0.4 [1%]</td>
<td>±0.17 [2%]</td>
<td>±0.22 [4%]</td>
<td>±0.05 [3%]</td>
</tr>
<tr>
<td>MultiJet method</td>
<td>±0.24 [1%]</td>
<td>±0.12 [1%]</td>
<td>±0.5 [2%]</td>
<td>±0.4 [5%]</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Channel</th>
<th>C1</th>
<th>C2</th>
<th>C3</th>
<th>C4</th>
<th>C5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>14.5</td>
<td>59</td>
<td>110</td>
<td>10.5</td>
<td>7.3</td>
</tr>
<tr>
<td>Total bkg</td>
<td>±2.2 [15%]</td>
<td>±6 [10%]</td>
<td>±11 [10%]</td>
<td>±1.5 [14%]</td>
<td>±1.4 [19%]</td>
</tr>
<tr>
<td>Total bkg unc.</td>
<td>±0.7 [5%]</td>
<td>±1.7 [3%]</td>
<td>±2.4 [2%]</td>
<td>±0.6 [6%]</td>
<td>±0.6 [8%]</td>
</tr>
<tr>
<td>MC statistics</td>
<td>±0.5 [3%]</td>
<td>±1.9 [3%]</td>
<td>±2.5 [2%]</td>
<td>±0.31 [3%]</td>
<td>±0.13 [2%]</td>
</tr>
<tr>
<td>$\Delta \mu_{Z,+jets}$</td>
<td>±0.4 [3%]</td>
<td>±1.7 [3%]</td>
<td>±5 [5%]</td>
<td>±0.4 [4%]</td>
<td>±0.25 [3%]</td>
</tr>
<tr>
<td>$\Delta \mu_{W,+jets}$</td>
<td>±0.33 [2%]</td>
<td>±1.3 [2%]</td>
<td>±4 [4%]</td>
<td>±0.31 [3%]</td>
<td>±0.4 [5%]</td>
</tr>
<tr>
<td>$\Delta \mu_{Top}$</td>
<td>±0.8 [6%]</td>
<td>±3.5 [6%]</td>
<td>±4 [4%]</td>
<td>±0.6 [6%]</td>
<td>±0.24 [3%]</td>
</tr>
<tr>
<td>$\Delta \mu_{MultiJet}$</td>
<td>-</td>
<td>±0.1 [0%]</td>
<td>±0.06 [0%]</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CRγ corr. factor κ</td>
<td>±0.5 [3%]</td>
<td>±1.8 [3%]</td>
<td>±2.3 [2%]</td>
<td>±0.29 [3%]</td>
<td>±0.13 [2%]</td>
</tr>
<tr>
<td>Theory Z</td>
<td>±1.3 [9%]</td>
<td>±0.03 [0%]</td>
<td>±2.0 [2%]</td>
<td>±1.0 [10%]</td>
<td>±0.13 [2%]</td>
</tr>
<tr>
<td>Theory W</td>
<td>±0.5 [3%]</td>
<td>±1.3 [2%]</td>
<td>±3.2 [3%]</td>
<td>±0.6 [6%]</td>
<td>±0.9 [12%]</td>
</tr>
<tr>
<td>Theory Top</td>
<td>±1.0 [7%]</td>
<td>±4 [7%]</td>
<td>±6 [5%]</td>
<td>±0.27 [3%]</td>
<td>±0.4 [5%]</td>
</tr>
<tr>
<td>Theory Diboson</td>
<td>±0.5 [3%]</td>
<td>±1.5 [3%]</td>
<td>±3.1 [3%]</td>
<td>±0.24 [2%]</td>
<td>±0.5 [7%]</td>
</tr>
<tr>
<td>Jet/MET</td>
<td>±0.09 [1%]</td>
<td>±0.4 [1%]</td>
<td>±2.1 [2%]</td>
<td>-</td>
<td>±0.18 [2%]</td>
</tr>
</tbody>
</table>
Model-Independent Limits

As no significant excess is observed in any of the signal regions of this analysis after estimating the background using the background-only fit, we set limits on the model-independent and model-dependent cross sections. We use the model-independent and model-dependent fit setups.

The model-independent limits are shown in Table 9.1. We present the upper limits on the cross-section for new physics which enters each SR. The observed and expected limits S_{obs}^{95} and S_{exp}^{95} are reported for the potential contribution from new physics in each region. Including the acceptance ϵ, the model-independent limits in most signal regions are of $\sim 1 - 2$ fb. One should note that the (b) version of each signal region has a strictly tighter cut on the primary scale variable, and thus provides a stronger limit when we observe no excess.

Model-Dependent Limits and Exclusions

We derive exclusion limits for the simplified models. These are models with pair-production of squark pairs with inaccessible gluinos, and gluino pairs with inaccessible squarks. They correspond directly to the Feynman diagrams shown previously. The free parameters of these simplified models are the relevant sparticle mass and the mass of the LSP $\tilde{\chi}^0_1$. We set limits in the plane of these free parameters.

The exclusion limits are shown in Fig. 9.5. The gray text indicates the signal region providing the best sensitivity at that $(m_{\text{sparticle}}, m_{\tilde{\chi}^0_1})$ point, as measured by the background-only fit. For each simplified signal model, we run the model-dependent fit, where the signal model signal strength μ_{sig} is included as an additional free parameter. The signal sample can also contribute to the control regions due to signal contamination. This produces a CL$_s$ p-value for each signal model in the plane, and we can find those with $p = 0.05$ to set a 95% exclusion limit. For comparison, the limits from the 2015 dataset and the 2012 dataset are also shown.
In the squark-$\tilde{\chi}_1^0$ exclusion plane in Fig. 9.5(a), the limits are far extended compared to the 2015 dataset. The expected and observed exclusions are similar, which reflects the compatibility of the expected Standard Model event counts and observed event counts in the squark signal regions. A squark with mass of 1350 GeV or less is excluded by the analysis in direct decays to a quark and massless LSP. In the compressed spectra, we extended limits significantly over the 2015 result in the region of 600-700 GeV in squark mass with an LSP of 450 GeV to 600 GeV. Directly along the kinematically-forbidden diagonal, the shape of the exclusions are artificially affected by the interpolation between the signal models considered. This artificial effect can be resolved by the simulation of additional signal models to fill in the space. The limits in the intermediate with an LSP of \sim450-500 GeV are not significantly extended beyond the previous dataset. Each signal region designed to provide sensitivity to the squark pair-production model (all SRS regions and SRC1-4) excludes at least one point in the grid. This indicating each signal region provides additional sensitivity to squark phenomena, or more explicitly, we would exclude a smaller region of the squark pair-production simplified model space with fewer signal regions.

Curiously, a gluino region, SRG2a, is chosen as the optimal signal region in the squark-$\tilde{\chi}_1^0$ plane, when the squark mass is \sim700 GeV. Generally, the squark regions are looser than the gluino regions, as seen in their overall event yields. One could see this as an indication that the next iteration of the analysis should have an additional tight squark region targeting this point in the plane. Another possibility is this region also benefits from the ISR-assisted compressed region strategy. As the gluino regions require four jets due to the imposition of the gluino decay tree, these could be capturing events where a two jet ISR system recoils off the disquark system.

In the gluino-$\tilde{\chi}_1^0$ exclusion plane shown in Fig. 9.5(b), the limits on gluino masses in the simplified model where gluinos decay to two jets and an $\tilde{\chi}_1^0$ significantly extend
the limits from the 2015 dataset. Throughout most of the plane, the expected limit is significantly stronger than the observed limit; for example, the gluino mass limit is more than 50 GeV stronger in the case of a massless $\tilde{\chi}_1^0$. A significant portion of phase space is covered by SRG3a and SRG3b. These regions saw a statistical fluctuation upward, seen in the signal region pulls Fig. 9.4. The weaker observed limits are a result of this fluctuation. We emphasize that every gluino signal region is the best choice at some point in this plane. This indicates each signal region provides additional sensitivity to some portion of the phase space of simplified models, and thus lead to stronger exclusions.
Figure 9.5: Exclusion limits for direct production of (a) light-flavour squark pairs with decoupled gluinos and (b) gluino pairs with decoupled squarks. Exclusion limits are obtained from the signal region with the best expected sensitivity at each point. The blue dashed lines show the expected limits at 95% CL, with the yellow bands indicating the 1σ exclusions. Observed limits are indicated by maroon curves where the solid contour represents the nominal limit and the dashed contours indicate the 1σ exclusions.
This thesis presented a search for supersymmetry in hadronic final states. The dataset had near the highest integrated luminosity to date, and the proton-proton collisions had the highest center-of-mass energy every produced in a laboratory.

The search described in this thesis is the first to use Recursive Jigsaw Reconstruction. RJR shows promise as the conceptual successor to the razor technique. It compares favorably with previous analysis strategies. As no excess is observed, we set model-dependent and model-independent limits in models of sparticle pair production. We consider more broadly what has been learned by this analysis and dozens of other null searches for new physics at both ATLAS and CMS.

The assumption of R-parity is at the heart of a large number of LHC SUSY searches. R-parity can not be too badly broken, due to the stability of the proton, as discussed in Ch. 1 and 3. However, there is no good reason to assume that all the R-parity violating (RPV) couplings are zero. Any individual RPV coupling can be nonzero, while still avoiding the proton decay shown in Fig. 3.2. The imposition of R-parity has two significant other effects.

R-parity conservation leads to a dark matter candidate. Indeed, this candidate can be a WIMP, and this lucky coincidence is often known as the “WIMP miracle” [24]. However, it is possible that this miracle is a red herring. The dark matter could be of a different nature than a weakly interacting massive particle, even assuming we discover supersymmetry with an appropriate LSP. Additionally, the WIMPS could be real, but not coincide with the LSP from supersymmetry. As evidence for dark
matter is the best experimental motivation for supersymmetry, contemplation of these scenarios does not inspire confidence.

R-parity conservation makes searches for supersymmetry significantly easier. In SUSY searches where R-parity is conserved, E_T^{miss} or related variables are strong discriminators against the dominant QCD background. If R-parity is violated, the LSP will decay via SM particles, which can be measured by our experiments. RPV searches do not have these discriminators against the most complicated background. In order to more completely cover the phase space of R-parity violating supersymmetry, much more robust techniques to understand QCD backgrounds will be needed.

Simplified models provide a useful tool to understand the reach of supersymmetric searches [148]. However, they can also lead us astray, as we make ad-hoc assumptions. Although not covered directly in this thesis, searches for supersymmetric tops are particularly affected by branching ratio assumptions. As both stops and tops have a variety of decay modes, assumptions can drastically affect the final limits. In future searches, it is imperative to understand simplified models inside of the larger space of the MSSM and more complicated supersymmetric models.

The space of supersymmetric models is very large. Even in the MSSM, we have 120 free parameters. The total space of the MSSM is very large. Viewing the landscape from before Run-1, it is easy to see why the strategies of ATLAS and CMS became commonplace. We expected to find some sort of new physics, which would help explain the hierarchy problem. If we even discover one sparticle, with its associated mass and branching ratios, we would drastically reduce the number of free SUSY model parameters.

We have yet to find any supersymmetric particle, and much parameter space has been ruled out, especially in simplified models. However, there is still a large parameter space of more complicated models to be probed. The exclusive decay
channels will be more extensively probed by the increasing luminosity provided by the LHC in the coming decade. However, a higher energy collider may provide the most promise for the discovery of supersymmetry if it exists.
Bibliography

[23] M. Persic, P. Salucci, and F. Stel, *The Universal rotation curve of spiral galaxies: 1. The Dark matter connection,*

[83] B. de Carlos, J. A. Casas, and J. M. Moreno,
Constraints on supersymmetric theories from mu — e gamma,

[84] J. A. Casas and S. Dimopoulos,
Stability bounds on flavor violating trilinear soft terms in the MSSM,

[85] C. Borschensky et al., *Squark and gluino production cross sections in pp collisions at \(\sqrt{s} = 13, 14, 33 \) and 100 TeV*,

URL: {https://indico.fnal.gov/sessionDisplay.py?sessionId=3&
confId=11505#20160811}.

[89] *LEP design report*, Copies shelved as reports in LEP, PS and SPS libraries,

[90] ATLAS Collaboration,
The ATLAS Experiment at the CERN Large Hadron Collider,

[91] G. Aad et al., *ATLAS pixel detector electronics and sensors*,

[93] ATLAS Collaboration,
Operation and performance of the ATLAS semiconductor tracker,

ATL-DAQ-PUB-2016-001 (2016),
URL: https://cds.cern.ch/record/2104298.

ATLAS-CONF-2012-042, 2012,
url: https://cds.cern.ch/record/1435196.

url: https://cds.cern.ch/record/2110140.

url: https://cds.cern.ch/record/1489674.

[100] ATLAS Collaboration, *Jet energy resolution in proton–proton collisions at $\sqrt{s} = 7$ TeV recorded in 2010 with the ATLAS detector*,

[103] ATLAS Collaboration, *Electron and photon energy calibration with the ATLAS detector using LHC Run 1 data*,

[104] “Electron and photon energy calibration with the ATLAS detector using data collected in 2015 at $\sqrt{s} = 13$ TeV,”
technical report ATL-PHYS-PUB-2016-015, CERN, Aug. 2016,
url: https://cds.cern.ch/record/2203514.

[117] ATLAS Collaboration,
Optimisation of the ATLAS b-tagging performance for the 2016 LHC Run, ATL-PHYS-PUB-2016-012 (2016),
URL: https://cds.cern.ch/record/2160731.

[119] ATLAS Collaboration,
Prospects for Supersymmetry discovery based on inclusive searches at a 7 TeV centre-of-mass energy with the ATLAS detector, ATL-PHYS-PUB-2010-010, 2010,
URL: https://cds.cern.ch/record/1278474.

[120] ATLAS Collaboration,

URL: https://cds.cern.ch/record/2037700.

URL: https://cds.cern.ch/record/2037904.

[124] M. R. Buckley et al.,

Appendix A

Additional Control Region N-1 Figures

This appendix presents the control region $N - 1$ plots for the scaleful variables. For the labeled control region, all other cuts are applied.
Figure A.1: Scale variable distributions for the compressed CRY regions
Figure A.2: Scale variable distributions for the squark and gluino CRY regions
Figure A.3: Scale variable distributions for the compressed CRW regions
Figure A.4: Scale variable distributions for the squark and gluino CRW regions
Figure A.5: Scale variable distributions for the compressed CRT regions
Figure A.6: Scale variable distributions for the squark and gluino CRT regions
Figure A.7: Scale variable distributions for the compressed CRQ regions
Figure A.8: Scale variable distributions for the squark and gluino CRQ regions
Appendix B

Additional Signal Region N-1 Figures

This appendix presents the $N - 1$ plots for all signal regions. Each plot shows the distribution of a discriminating variable used in the analysis in data, SM simulation, and a particular targeted SUSY model. For the labeled signal region, all other cuts are applied. We can use these plots to understand the additional discrimination provided only by that variable.
Figure B.1: N-1 plots for all variables used in SRC1
Figure B.2: N-1 plots for all variables used in SRC2
Figure B.3: N-1 plots for all variables used in SRC3
Figure B.4: N-1 plots for all variables used in SRC4
Figure B.5: N-1 plots for all variables used in SRC5
Figure B.6: N-1 plots for all variables used in SRG1a
Figure B.7: N-1 plots for all variables used in SRG1b
Figure B.8: N-1 plots for all variables used in SRG2a
Figure B.9: N-1 plots for all variables used in SRG2b
Figure B.10: N-1 plots for all variables used in SRG3a
Figure B.11: N-1 plots for all variables used in SRG3b
Figure B.12: N-1 plots for all variables used in SRS1a
Figure B.13: N-1 plots for all variables used in SRS1b
Figure B.14: N-1 plots for all variables used in SRS2a
Figure B.15: N-1 plots for all variables used in SRS2b
Figure B.16: N-1 plots for all variables used in SRS3a
Figure B.17: N-1 plots for all variables used in SRS3b