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WEAK CARTELS AND COLLUSION-PROOF AUCTIONS

YEON-KOO CHE, DANIELE CONDORELLI, AND JINWOO KIM

Abstract. We study collusion in a large class of private-value auctions by cartels whose

members cannot exchange monetary transfers among themselves (i.e., weak cartels). We

provide a complete characterization of outcomes that are implementable in the presence

of weak cartels, and identify optimal collusion-proof auctions for symmetric value distri-

butions. When the density is single-peaked, the optimal collusion-proof auction can be

implemented by a procedure that combines a second-price auction with a sequential one-

on-one negotiation.

Keywords: Weak cartels, weakly collusion-proof auctions, optimal auctions, robustly

collusion-proof auctions.

JEL-Code: D44, D82.

1. Introduction

Collusion is a pervasive problem in auctions, especially in public procurement. In 2009

the UK Office of Fair Trading (OFT) fined 103 construction firms which had been found

colluding on 199 tenders between 2006 and 2009. The cartel affected construction projects

worth more than 200 million pounds and including schools, universities, hospitals, and

various private projects. The Dutch Construction cartel, whose revelation became a TV

documentary as well as one of the biggest financial scandals in the Netherlands, allegedly
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involved 3,500 rigged bids during 1986-1998.1 In Korea, the competition authority uncov-

ered in 2007 a cartel in the construction of Subway Line 7 in Seoul. In this case, the largest

six local companies won six different sections of the subway line construction.

The vast majority of the bid-rigging cases uncovered by competition authorities fall into

the category of what McAfee and McMillan (1992) labeled weak cartels, namely cartels that

do not involve exchange of side payments among cartel members. Weak cartels usually

operate by designating a winning bidder and suppressing competition from other cartel

members. The winning bidder is designated through “market sharing” agreements (e.g.,

Korea), through “bid rotation” whereby firms took turns in winning contracts (e.g., some

UK cartels), or through more complicated schemes (e.g., in the Dutch case). The designated

bidders place bids somewhere around the reserve price, and bids from other cartel members

are either altogether suppressed (the practice of “bid suppression”) or submitted at non-

competitive levels (the practice of “cover bidding”).

Cartels have good reasons to avoid side payments: monetary transfers leave a trail of

evidence that can expose a cartel and lead to its prosecution. Compensating losing bidders

in money may also lure “pretenders” who join a cartel solely to collect “the loser compen-

sation” without ever intending to win. At the same time, it is not clear how cartel may

successfully operate without exchanging side-payments among its members. If transfers

are not used, compensating losing bidders entails an efficiency loss and a cartel may not

work. Hence, despite the abundant empirical evidence of weak cartels, it remains unclear

how weak cartels operate. We thus ask the following questions: Can weak cartels form and

operate effectively? If so, under what circumstances and what auction formats? What are

their effects? How should auctions be designed to deter weak cartels?

McAfee and McMillan (1992, henceforth MM) were the first to show that weak cartels can

operate successfully, even with extreme allocative inefficiencies. They showed that in a first-

price auction, symmetric bidders would benefit ex-ante from agreeing to randomly select a

single bidder to bid the reserve price (as opposed to playing the symmetric equilibrium of

the auction) whenever their value distribution has the increasing hazard rate. Further, they

suggest that the optimal response by the seller is to sell the good at a fixed price. To the

1In 2001, a TV program, Zembla, made an investigative report on fraud inquiries in Netherlands. See

Doree (2004).
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extent that the increasing hazard rate is a mild condition, this theory suggests that a first-

price auction is “virtually always” susceptible to a weak cartel, and that in its presence the

seller can never hope to realize the efficiency gain from bidding competition. This largely

negative view rests on the analysis of ex ante benefit from collusion, however. Importantly,

their model does not consider bidders’ (interim) incentives to participate in a cartel. Even

though a cartel promises to yield strictly positive surplus to its members on average, the

surplus may not accrue to all bidder types so that bidders may actually be worse off from

participating in the cartel, depending on the realization of their types. In practice, the

lack of interest alignment is often what causes a cartel — even well-known ones such as

OPEC — to break up, so the analysis would be incomplete and potentially misleading

without considering the potential conflicts of interest among cartel participants. This issue

is particularly relevant for a weak cartel since the gains from a cartel manipulation cannot

be redistributed via side transfers.

In the current paper, we explicitly consider the bidders’ interim incentive to participate

in a cartel. Doing so yields a qualitatively different result on weak cartel manipulation. In

particular, our characterization of weak cartel susceptibility depends crucially on the shape

of bidders’ type distribution. We show that a large class of standard auctions — which we

call “winner-payable” (to be explained later) — is susceptible to a weak cartel if and only

if the auction allocates the good to a bidder with non-constant probability over an interval

of types where the density of value distribution is non-decreasing (Theorem 1 and 2). This

means in particular that an auction (in the winner-payable class) that allocates the good

efficiently is vulnerable to cartel manipulation unless all bidders’ distributions are concave.

In the latter case (i.e., if the density of value distribution is always decreasing), however,

a weak cartel can never be effective; in particular the seller can implement the Myerson’s

second-best outcome even in the presences of a weak cartel.

The intuition behind our result is explained as follows. Since members of a weak cartel

can never use side payments, they can only gain from altering the allocation of the good,

specifically by selecting a winner at random — i.e., by letting a randomly-selected bidder

win with a low bid, with the other bidders either staying out or making non-competitive

losing bids. Such a manipulation entails efficiency loss (as compared with the competitive

outcome), and this loss is not borne uniformly across different types. As will be shown

in our analysis, the bidder with the highest valuation is affected most adversely by this

efficiency loss, and the efficiency loss is larger the more likely it is for his opponents to
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have low valuations. The distribution of bidders’ valuations thus matters: if the density

of bidder valuation is increasing, the efficiency loss from random allocation is lessened

from the perspective of the high value bidder, so the overall gain from a low winning

bid dominates the efficiency loss even for such a bidder. The cartel manipulation is thus

profitable uniformly across all types. If the density of bidder’s valuation is decreasing,

however, the opposite is true, and the highest type bidder will start defecting, followed by

the types just below, which makes the cartel unravel.

The complete characterization of collusion-proof auctions obtained in Theorem 1 and 2

enables us to study the normative question: How should one design an auction in the

presence of a weak cartel? Restricting attention to winner-payable auctions, we identify

the optimal collusion-proof auction for the seller when the bidder’s valuation is drawn

from identical distribution whose density has a single-peak (Theorem 3). In such a case,

the optimal collusion-proof mechanism combines features of the Myerson’s optimal auction

and sequential one-on-one negotiation (Corollary 5). The seller begins with a second-price

auction with a reserve price set at the maximum between the standard optimal reserve price

and the peak of the density. If no bidder bids above that reserve price (so the auction yields

no sale), then the seller engages in a take-it-or-leave-it negotiation with each of the bidders

sequentially in a predetermined order. This mechanism collapses to two special forms in the

case the density is everywhere decreasing and in the case it is everywhere nondecreasing.

In the former case, the Myerson auction is collusion-proof and thus optimal. In the latter

case, the optimal collusion-proof mechanism reduces to sequential negotiation.

This result stands in contrast to the MM’s theory that the seller can do no better

than posting a single price in the presence of a weak cartel. It is also interesting that the

sequential negotiation treats bidders asymmetrically even though they are ex ante identical.

The reason for this surprising result is that since the seller cannot discriminate across types

of a given bidder (due to the collusion proofness requirement), she finds it optimal to

discriminate across bidders.

Considering a bidder’s incentive to participate in collusion involves a conceptual issue.

A bidder’s incentive to join a cartel depends on the payoff he expects to receive if he

refuses to join the cartel, and that payoff in turn depends on what happens when a bidder

refuses to join a cartel. In particular, how the remaining bidders update their beliefs about

the refusing bidder, whether they will still form a cartel among themselves, and, if so, to
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what extent they can credibly punish the refusing bidder, all affect that payoff. In dealing

with these issues, we initially follow the weak collusion-proofness notion of Laffont and

Martimort (1997, 2000) by assuming that when a bidder refuses to participate in a cartel,

the cartel collapses and the remaining bidders do not update their beliefs.

In section 5, we consider a much broader set of circumstances in terms of how a cartel

is formed and operated. For instance, any informed bidder(s) as well as an uninformed

mediator may propose a cartel manipulation; there can be partial or multiple cartels in

operation; and participants in a cartel may punish those who have refused to participate.

We show that outcomes that are weakly collusion-proof can be also implemented by the

auctioneer in these environments, as long as no cartel employs strategies that are weakly

dominated for themselves (Theorem 5).

The current paper is related to a number of papers on collusion in auction. Seminal con-

tributions include Robinson (1985), Graham and Marshall (1987), von Ungern-Stenberg

(1988), Mailath and Zemsky (1991), and MM, who studied whether a collusive agreement

can be beneficial to its members.2 Unlike the current paper, these papers largely focus

on strong cartels, where side-payments play a crucial role for achieving efficient collusion.

As mentioned above, MM does consider weak cartels and show that they involve random

allocation of a good, much consistent with oft-observed practice of bid rotation.3 As high-

lighted above, our approach is differentiated by its explicit consideration of the bidders’

incentive for participation in the cartel. This difference explains the different results we

2These authors, like us, abstract from the enforcement issue — how members of a cartel may sustain

collusion without a legally binding contract. Several authors study enforceability of collusion through

repeated interaction (see Aoyagi (2003), Athey et al. (2004), Blume and Heidhues (2004), and Skrzypacz

and Hopenhayn (2004)) or via implicit collusive strategies (see Engelbrecht-Wiggans and Kahn (2005),

Brusco and Lopomo (2002), Marshall and Marx (2007, 2009), Garratt et al. (2009)). If types are distributed

independently over time, repeated interaction enables members of a weak cartel to use their future market

shares in a way similar to monetary transfers. If the types are persistent over time, as we envision to be

more realistic, however, tampering with future market shares involves severe efficiency loss (see Athey and

Bagwell (2008)). The current modeling approach is justified as long as market share cannot be adjusted

frictionlessly without welfare consequences.
3See also Condorelli (2012). This paper analyzes the optimal allocation of a single object to a number of

agents when payments made to the designer are socially wasteful and cannot be redistributed. The problem

addressed is analogous to that of a cartel-mediator designing an ex-ante optimal weak cartel agreement at

a standard auction with no reserve price.
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obtain on the susceptibility of auctions to a weak cartel and the optimal response by the

seller in its presence.

Aside from the participation incentive, our model is also more general than MM in

several respects. First, we consider a more general class of auctions called “winner-payable

auctions.” These are the auctions in which bidders can coordinate, if they so choose,

so that only one bidder can pay to win the object. Winner-payable auctions include all

standard auctions such as first-price sealed-bid, second-price sealed-bid, Dutch and English

auctions, or any hybrid forms, and sequential negotiation. Considering such a general class

of auctions helps to isolate the features of auctions that make them vulnerable to cartels.

Second, we relax the monotone hazard rate and symmetry assumptions. One may view

bidder symmetry as favoring the emergence of a cartel especially when the use of side

payments is limited. In practice, however, bidders are unlikely to be symmetric, so it is

useful to know to what extent bidder asymmetry affects the sustainability of weak cartels.

The current paper is also related to the literature that studies collusion-proof mechanism

design. This literature, pioneered by Laffont and Martimort (1997, 2000) (henceforth LM)

and further generalized by Che and Kim (2006, 2009) (henceforth CK), models cartel as

designing an optimal mechanism for its members (given the underlying auction mechanism

they face), assuming that the members have necessary wherewithal to enforce whatever

agreement they make.4 Similar to LM (1997, 2000) and CK (2006), we explicitly consider

the bidders’ incentives for participating the cartel. Unlike the current paper, though,

their models allow a cartel to be formed only after bidders enter into the grand auction

noncooperatively. This modeling assumption, while realistic in some internal organization

setting, is not applicable to auction environments where the collusion often centers around

the participation into auction.

CK (2009) and Pavlov (2008) do consider collusion on participation. And they show

that the second-best outcome (i.e., the Myerson (1981) benchmark) can be achieved even

in the presence of a strong cartel as long as the second best involves a sufficient amount

of exclusion of bidders. The mechanism that accomplishes this has features not shared by

the standard auctions, however. For instance, it requires losing bidders not only to pay the

winning bidders but also to incur strict loss in some states, i.e., it fails ex-post individual

4The likely scenario of enforcement involves the threat of retaliation through future interaction, multi-

market contact, or organized crime.
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rationality of the bidders. Such auctions, while theoretically interesting, are never observed

in practice. By contrast, the current paper restricts attention to a more realistic, albeit

broad, class of auctions rules, particularly those that ensure ex-post individual rationality.

Further, the results we obtain here are more in line with the casual empiricism, namely

that even weak cartels can present a serious problem for auctions. These two approaches

ultimately complement each other in the sense that they clarify the features of auctions

that make them vulnerable to bidder collusion.

The rest of the paper is organized as follows. Section 2 introduces a broad class of auction

rules and the model of collusion. Section 3 characterizes the condition for the auction rules

to be susceptible to weak cartel. Section 4 characterizes the optimal weak cartel collusion-

proof auctions. Section 5 presents a more robust concept of collusion-proofness. Appendices

A, B, and C (together with Supplementary Appendix) contain all the proofs not presented

in the main body of the paper.

2. Model

2.1. Environment. A risk neutral seller has a single object for sale. The seller’s valuation

of the object is normalized at zero. There are n ≥ 2 risk neutral bidders and N := {1, ..., n}
denotes the set of bidders. We assume that bidder i’s private valuation of the object,

vi, is drawn from the interval Vi := [vi, vi] ⊂ R+ according to a strictly increasing and

continuous cumulative distribution function Fi (with density fi). We let V := ×i∈NVi and

assume that bidders’ valuations are independently distributed. When a bidder does not

obtain the object, makes no payment, and receives no transfer, he earns a reservation utility

normalized to zero.

The object is sold via an auction (i.e. a selling mechanism). An auction is defined by

a triplet, A := (B, ξ, τ), where B := ×i∈NBi is a profile of message spaces (one for each

bidder), ξ : B → Q is a rule mapping a vector of messages (typically the “bids”) to a

(possibly random) allocation of the object in Q := {(x1, ..., xn) ∈ [0, 1]n|
∑

i∈N xi ≤ 1}, and

τ : B → Rn is a rule determining expected payments as a function of the messages. We

assume that the seller cannot force bidders to participate in the auction. Therefore, for each

bidder, we require that the message space Bi includes a non-participation option, b0
i , the

exercise of which results in no winning and no payment for bidder i, ξi(b
0
i , ·) = τi(b

0
i , ·) = 0.



WEAL CARTELS 8

Whether and how a cartel can operate in an auction depends crucially on the fine details

of its allocation and payment rule. CK (2009) show that if the seller faces no constraints in

designing the auction, any outcome that involves sufficient exclusion can be implemented

even in the presence of a cartel that can use side payment and reallocate objects among

its members. By effectively “selling the project” to the cartel at a fixed price, the seller

removes any scope for a manipulation of the bids by the cartel. However, optimal auction

of this type may require payments from losing bidders and therefore is rarely observed in

practice.

Standard auctions do not often collect payments from losing bidders, so they are poten-

tially susceptible to bidder collusion in a way not recognized by CK (2009). In the current

paper, we focus on these more realistic auction formats. Specifically, we restrict attention

to a set A∗ of auction rules that are winner-payable in the following sense.

Definition 1. An auction A is winner-payable if, for all i ∈ N , there exist message

vectors bi, b
i ∈ B such that ξi(b

i) = ξi(b
i
) = 1, τj(b

i) = τj(b
i
) = 0 for all j 6= i, and

τi(b
i) ≤ τi(b)

ξi(b)
≤ τi(b

i
) for all b ∈ B such that ξi(b) > 0 and

τi(b)

ξi(b)
≤ vi.

In words, an auction is winner-payable if, for each bidder i, there exist two profiles of

bids, bi and bi, which both result in all bidders except for bidder i paying nothing and bidder

i winning the object for sure, at a lowest per-unit price for the object (in the former) and

at a highest per-unit price (in the latter) allowed by the auction rule, respectively. One

can see that most of commonly observed auctions are winner-payable.5

• First-Price (or Dutch) Auctions with Reserve Price: winner-payability holds

because each bidder can obtain the object for sure at any positive price above the

reserve price, if he places a bid at that price and all the other bidders place lower

bids or do not participate in the auction.

5Lotteries represent a notable exception. For instance, consider a mechanism where there is a fixed

number of lottery tickets, each bidder can buy a single ticket at a fixed price, the auctioneer retains the

unsold tickets, and the object is assigned to the holder of a randomly selected ticket. In this mechanism

Bi := {0, 1}, ξi(0, b−i) = τi(0, b−i) = 0, ξi(1, b−i) = 1/n, τi(1, b−i) = p for some p ∈ R. Winner-payability

fails as there is no message profile that can guarantee the object to any of the players. On the other hand,

fixed-prize raffles (see Morgan (2000)) are winner-payable.
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• Second-Price (or English) Auctions with Reserve Price: winner-payability

holds because each bidder i can be guaranteed to win the good at any price above

the reserve price, if another bidder bids exactly that price, i bids anything above

that price, and all other bidders bid strictly lower or do not participate.

• Sequential Take-It-or-Leave-It Offers: Suppose the seller approaches the buy-

ers in a given exogenous order and makes to each of them a single take-or-leave-it

offer. This format is winner-payable because each bidder can win the object for

sure if all other prior bidders reject their offers.6

More generally, winner-payability is implied by the requirement that only the winner

of the auction pays for the object, if the auction is deterministic (i.e. for each profile of

bids the object is assigned with probability one to only one of the bidders, whenever it is

assigned), or randomization is limited to tie-breaking and it occurs with zero probability

in (collusion-free) equilibrium.

2.2. Characterization of Collusion-Free Outcomes. An auction rule A in A∗ induces

a game of incomplete information where all bidders simultaneously submit messages (i.e.

bids) to the seller. A pure strategy for player i is βi : Vi → Bi, and β = (β1, · · · , βn)

denotes its profile.

Given a profile of equilibrium bidding strategies β∗ of an auction, its outcome cor-

responds to a direct mechanism MA ≡ (q, t) : V → Q × Rn, where for all v ∈ V ,

q(v) = ξ(β∗(v)) is the allocation rule for the object and t(v) = τ(β∗(v)) is the payment

rule. Given MA, we define the interim winning probability Qi(vi) = Ev−i [qi(vi, v−i)] and

interim payment Ti(vi) = Ev−i [ti(vi, v−i)] for bidder i ∈ N with type vi ∈ Vi. We will refer

to the mapping Q = (Qi)i∈N and T = (Ti)i∈N as interim allocation and transfer rules,

6More precisely, suppose the seller approaches the buyers in the order of the bidder index, say, and

makes a take-it-or-leave-it offer of pi for bidder i in his turn (i.e., when all bidders before i have rejected

the seller’s offers). A bid profile b = (b1, ..., bn) in this rule may represent the highest offers bidders are

willing to accept. Given this interpretation, ξi(b) represents the probability of the event that bidder i is

approached by the seller and accepts her offer of pi, so ξi(b) > 0 means that bi > pi. Further, conditional

on that event, bidder i pays pi, so τi(b)/ξi(b) = pi whenever ξi(b) > 0. In this case, bi = b
i

can be set so

that for j 6= i, bij = b
i

j = 0 (so these bidders always reject the seller’s offers), and bii = b
i

i = bi (i.e, the same

as the original bid for bidder i). Then, ξi(b
i) = ξ(b

i
) = 1, and τ(bi) = τ(b

i
) = pi = τi(b)/ξi(b).
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respectively. The equilibrium payoff of player i with value vi is then expressed as

UMA
i (vi) := Qi(vi)vi − Ti(vi).

Any equilibrium outcome MA must be incentive compatible (by definition of equi-

librium) and individually rational (because bidders are offered the non-participation

option). That is, for all i ∈ N and vi ∈ Vi:

(IC) UMA
i (vi) ≥ viQi(ṽi)− Ti(ṽi), for all ṽi ∈ Vi,

(IR) UMA
i (vi) ≥ 0

In the following Lemma, we characterize the set of interim allocation and transfer rules

that can arise as an equilibrium outcome of some auction rule.

Lemma 1. A profile (Q, T ) is the interim allocation and transfer rules of an equilibrium

outcome of an auction rule A ∈ A∗ if and only if the following conditions hold:

(M) Qi is nondecreasing, ∀i ∈ N ;

(Env) Ti(vi) = viQi(vi)−
∫ vi

vi

Qi(s)ds+ T (vi)− viQi(vi), ∀vi ∈ Vi,∀i ∈ N ;

(IR′) UMA
i (vi) = viQi(vi)− T (vi) ≥ 0,∀i ∈ N ;

(B)
∑
i∈N

∫ vi

vi

Qi(s)dFi(s) ≤ 1−
∏
i∈N

Fi(vi),∀v ∈ V .

It is well known that the conditions (M), (Env), and (IR′) are necessary and sufficient

for any interim rule (Q, T ) to satisfy (IC) and (IR). The last condition (B), which we

shall refer to as capacity constraint, captures the feasibility of an interim allocation rule;

more precisely, the condition is necessary and sufficient for there to be an ex-post allocation

rule, q = (q1, ..., qn) : V → Q, that gives rise to Q as an associated interim allocation rule.7

Combining these observations, the necessity of conditions (M) − (B) is immediate. The

sufficiency can be argued as follows: For any Q satisfying (B), there exists an (ex-post)

allocation rule q that gives rise to Q as an associated interim allocation. We can then set

7See Mierendorff (2011) or Che et al. (2013). This characterization generalizes Border (1991)’s charac-

terization derived in the symmetric bidder case to the asymmetric case.
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ti(θ) = Ti(θi)
Qi(θi)

if Qi(θi) > 0 and ti(θ) = 0 otherwise, to obtain the desired auction rule in

Lemma 1.

2.3. A Model of Collusion. Our model of collusion does not involve exchanges of side-

payments among cartel members. Instead, the members of a cartel can only collude by

coordinating their messages in the auction. Since a non-participation message is included

in the auction rule, bidders are also able to coordinate their participation decisions. As

mentioned in the introduction, we abstract from the question of how a cartel can enforce

an agreement among its members, but rather focus on whether there will be an incentive

compatible agreement that is beneficial for all bidders.8

To this end, we consider an agreement by which the bidders may coordinate their bids.

Formally, a cartel agreement is a mapping α : V → ∆(B) that specifies a lottery over

possible bid profiles in auction A for each profile of valuations for the bidders. We envision

bidders in the cartel to commit to submitting their private information to the cartel (e.g.,

an uninformed mediator) and bidding according to its subsequent recommendation. To

be precise, a cartel agreement, if unanimously accepted, leads bidders to play a game of

incomplete information where each player’s strategy is to report his type to the cartel and

then outcomes are determined by the lottery α over bids and auction rule A. Hence, for

any cartel agreement α, one can equivalently consider a direct mechanism it induces as

follows.

Definition 2. A direct mechanism M̃A = (q̃, t̃) is a cartel manipulation of A if there

exists a cartel agreement α such that9

q̃i(v) = Eα(v)[ξi(b)] and t̃i(v) = Eα(v)[τi(b)],∀v ∈ V , i ∈ N.

Since M̃A results from bidders’ equilibrium play in the incomplete information game

described above, it is without loss to require that M̃A be incentive compatible, i.e. satisfy

(IC). Our goal is to investigate whether any auction A ∈ A∗ is susceptible to some cartel

manipulation M̃A. To analyze this, one must know what sort of cartel manipulation will

be accepted by the bidders; and this in turn requires one to analyze what happens when a

bidder refuses a proposed manipulation. The latter in turn depends on the beliefs formed on

8This is consistent with MM and LM and most of the literature on the auction collusion.
9Here, Eα(v)[·] denotes the expectation taken by using the probability distribution α(v) ∈ ∆(B).
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the bidder who refuses a proposed manipulation and the abilities of the remaining bidders

to punish such a bidder.

To address these issues, we initially follow the weak notion of collusion, originally devel-

oped by LM. According to this notion, a cartel manipulation takes effect when all bidders

accept it, and if at least one bidder refuses a proposed manipulation, this does not trigger

any revision of beliefs on the subsequent play; that is, all bidders play the auction game A

non-cooperatively with their prior beliefs. Since the latter play yields the (interim) payoff

of UMA
i (vi) to a bidder i with valuation vi, for a cartel manipulation M̃A to be accepted

unanimously, we must have U M̃A
i (vi) ≥ UMA

i (vi),∀vi, i. For the manipulation to be strictly

profitable, this inequality must hold strictly for some bidder type(s). Hence, the weak

notion is stated as follows:

Definition 3. Given an auction A, its collusion-free equilibrium outcome MA is weakly

collusion-proof (or WCP) if there exists no cartel manipulation M̃A of A satisfying

(IC) and

(C − IR) U M̃A
i (vi) ≥ UMA

i (vi),∀vi, i, with strict inequality for some vi, i.

According to this definition, an auction is susceptible to bidder collusion if and only

if there exists a cartel manipulation that interim Pareto dominates its collusion-free out-

come.10 This notion of collusion-proofness should be interpreted as a necessary requirement

for an auction rule to be unsusceptible to cartel manipulation. If an auction rule fails to

be weakly collusion-proof, then one should expect weak cartels to be a concern. How-

ever, it could be argued that weak cartels may still form, even when an auction is weakly

collusion-proof. For example, there could be cartels that may benefit only a subset of bid-

ders perhaps for some types, possibly at the expense of the other bidders. We address this

issue in Section 5, by showing that the notion of collusion-proofness can be strengthened

significantly without altering the outcome that a seller can obtain from the auction.

10As Holmstrom and Myerson (1983) argue, if an equilibrium outcome of an auction mechanism is

interim Pareto dominated by another outcome resulting from a cartel manipulation, then there is unanimous

agreement, without any communication taking place among bidders, that everyone will be better off by

joining the cartel.
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3. When Are Auctions Susceptible to Weak Cartels?

In this section, we study the conditions that make an auction in the class A∗ weakly

collusion-proof. First, we provide a necessary condition for an auction to be weakly

collusion-proof (Theorem 1). Next we prove that this condition is also sufficient, when

we consider auctions that satisfy two further natural requirements (Theorem 2).

To state the necessity result, let us define the reserve price faced by bidder i as:

ri := inf{ Ti(vi)
Qi(vi)

: Qi(vi) > 0}. (1)

It is straightforward to see that Qi(vi) = 0 if vi < ri and Qi(vi) > 0 only if vi ≥ ri.
11

Theorem 1. Suppose that an equilibrium outcome MA of an auction rule A ∈ A∗ is

weakly collusion-proof. Then, each interim allocation Qi must be constant in any interval

(a, b) ⊂ (ri, vi] on which fi is nondecreasing.

Proof. See Appendix A (page 26).

This result implies that if fi is nondecreasing in an interval of types for bidder i, there

is a scope for a profitable cartel manipulation unless the bidder’s winning probability is

constant in his value over that interval. To see the logic behind this result, suppose that in

(collusion-free) equilibrium, bidder i’s winning probability Qi(vi) is strictly increasing in a

certain region [a, b] where fi is nondecreasing (or Fi is convex). Then, one can construct

a cartel manipulation, labeled M̃A, that: (i) leaves unchanged the interim probability of

winning and expected payments of all bidders other than bidder i and also of bidder i when

his value is outside [a, b] and (ii) gives the good to bidder i with a constant probability p̄

if his value is inside [a, b] where

p̄ =

∫ b
a
Qi(s)dFi(s)

Fi(b)− Fi(a)
, (2)

that is, p̄ is set equal to bidder i’s average winning probability over the interval [a, b] in

MA.

11To see this, suppose that Qi(vi) > 0 for some vi < ri. Then, by definition of ri, we have vi < ri ≤ Ti(vi)
Qi(vi)

or viQi(vi)− Ti(vi) < 0, contradicting the (IR) condition.
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Our proof in Appendix A shows that (i) this cartel manipulation can be implemented by

the bidders in auction A; and (ii) it is acceptable to all bidders in the sense of satisfying

(C − IR), thus making the auction not weakly collusion-proof.

To see (ii) (assuming that (i) is true), recall that the payoffs of all other bidders remain

unchanged, and observe how bidder i’s payoff is changed by the manipulation. Absent

collusion, we know that that bidder i will earn the interim payoff of

UMA
i (vi) = UMA

i (a) +

∫ vi

a

Qi(s)ds, (3)

when his valuation is vi ∈ [a, b]. Under the manipulation M̃A, bidder i with valuation

vi ∈ [a, b] will earn

U M̃A
i (vi) = UMA

i (a) +

∫ vi

a

p̄ds = UMA
i (a) +

vi − a
Fi(b)− Fi(a)

∫ b

a

Qi(s)dFi(s), (4)

where the last equality follows from (2). Note that the payoff in each of two cases rises at

a speed equal to the winning probability. Since Qi rises strictly whereas p̄ is constant, the

payoff without manipulation is strictly convex whereas the payoff under manipulation rises

linearly, as depicted by Figure 1. Essentially, the manipulation speeds up the rate of payoff

increase for lower value and slows down the rate for the higher value. Since Fi is convex in

[a, b] and since Qi is strictly increasing,∫ b

a

Qi(s)dFi(s) ≥
Fi(b)− Fi(a)

b− a

∫ b

a

Qi(s)ds. (5)

Substituting (5) into (4) for vi = b, we get

U M̃A
i (b) ≥ UMA

i (a) +

∫ b

a

Qi(s)ds = UMA
i (b). (6)

In other words, bidder i with valuation vi = b will be at least weakly better off from the

manipulation. Given the curvatures of these two payoff functions, then the bidder will be

strictly better off from the manipulation for any intermediate value vi ∈ (a, b) (see the left

panel of Figure 1).

The same argument explains why this manipulation may not work if fi is decreasing (or

equivalently, Fi is strictly concave). In this case, the inequality of (5) is reversed. Hence, as

shown in the right panel of Figure 1, bidder i will be strictly worse off from the manipulation

when his valuation is vi ≈ b. This means that the weak cartel will not be able to induce

bidders with sufficiently high valuations to join the collusive agreement since it requires
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a b vi

UMA
i (vi)

fi is decreasing on [a, b]

a b vi

UMA
i (vi)

fi is nondecreasing on [a, b]

ŨMA
i (vi)

ŨMA
i (vi)

Slope= p̄Slope= p̄

Figure 1. Profitability of Manipulation

them to sacrifice the probability of obtaining the object to such an extent that cannot be

compensated by a lower expected payment. Although we do not formally model this, there

is a sense in which the cartel unravels in this case. With the highest types dropping out,

the expected payoff from manipulation falls (the straight line in the right panel rotates

down), and given strict concavity of the value distributions, the next highest types also

become worse off, and drop out. This process continues until the cartel unravels.

To complete our argument, we need to verify (i) above, i.e. the issue of how to implement

the desired manipulation. In fact, pooling the types of bidder i in [a, b] requires shifting

the winning probability away from high types toward low value types of bidder i, and it is

not clear whether and how such a shifting of the winning probabilities can be engineered

to occur in equilibrium, especially without altering the payoffs of the other bidders.

As a first step, we observe that the interim allocation from M̃A, Q̃, satisfies the condition

(B), so it is feasible in the sense that there is an ex-post allocation rule q̃ that gives rise to

Q̃ as the associated interim allocation rule. The tricky part is how to replicate the interim

transfer T̃ , which makes M̃A incentive compatible, along with the above allocation q̃ via a

weak cartel manipulation (that does not use any side payments among the cartel members).

The winner-payability plays a role here. Since the cartel can employ a randomizing device,
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the winner-payability allows the cartel to generate, for each profile of reported values, a

distribution of bids that produces q̃ and T̃ (in expectation) for the proposed manipulation.12

Theorem 1 suggests that a winner-payable auction which assigns the object with higher

probability to bidders with higher values is vulnerable to weak cartels unless each bidder’s

value distribution is strictly concave everywhere. The following three corollaries state (un-

der certain technical qualifications) that (i) standard auctions, (ii) seller’s optimal auctions

(i.e. those which implement Myerson’s optimal auction), and (iii) efficient auctions are all

susceptible to weak cartels unless all distributions of values are strictly decreasing.

Corollary 1. Letting v := mini∈N vi and v := maxi∈N vi, assume that v > v. Then,

the collusion-free equilibrium outcomes (in weakly undominated strategies) of first-price,

second-price, English, or Dutch auctions, with a reserve price r < v, are not WCP if fi(vi)

is nondecreasing in vi for vi ∈ (a, b) ⊂ Vi, for some b > r and a ≥ v, for some bidder i.

Proof. See Appendix A (page 29).

Corollary 2. Suppose that the virtual valuation, Ji(vi) := vi− 1−Fi(vi)
fi(vi)

, is strictly increas-

ing in vi for all i ∈ N . Suppose also that fi(vi) is nondecreasing vi for vi ∈ (a, b) ⊂ (ri, vi],

Ji(b) > 0, and maxj 6=i Jj(vj) < Ji(b) < maxj 6=i Jj(vj), for some bidder i. Then, all auction

rules in A∗ that maximize the seller’s revenue are not WCP.

Proof. The hypotheses guarantee that there exists an interval [b − ε, b] with ε > 0, where

Qi(vi) is strictly increasing in the optimal auction. The result follows from Theorem 1.

Corollary 3. Suppose that fi is nondecreasing on some interval (a, b) ∈ (ri, vi] and

maxj 6=i vj < b < maxj 6=i vj, for some bidder i. Then, all auction rules in A∗ whose equilib-

rium outcomes are efficient are not WCP.

Proof. The hypotheses guarantee that there exists an interval [b − ε, b] with ε > 0, where

Qi(vi) is strictly increasing in any efficient auction. The result follows from Theorem 1.

The next result establishes a converse of Theorem 1: a sufficient condition for an auction

rule to be weakly collusion-proof. The sufficiency requires two further conditions, which

roughly speaking provide minimal optimality requirements from the seller’s perspective.

12Winner-payability is sufficient for the cartel to essentially attain any incentive compatible allocation

for values above reserve prices. Therefore, focusing on set of auctions that allows for reserve prices but is

larger than A∗ would not make collusion any easier for the cartel.
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Theorem 2. Suppose that an auction rule A ∈ A∗ satisfies τi(b) ≥ ξi(b)vi,∀b ∈ B,∀i
and that its collusion free outcome MA = (Q, T ) satisfies condition (B) with equality at

r1, . . . , rn. If, for each i ∈ N , Qi is constant wherever fi is nondecreasing in some interval

of (ri, vi], then the chosen equilibrium outcome is weakly collusion-proof.

Proof. See Appendix A (page 29).

The two conditions rule out auctions that are clearly undesirable from the seller’s per-

spective in the sense that either it leaves the object unsold even though selling raises her

revenue without altering incentives, or it sells the object to a bidder at a price below his

lowest possible value.13 Given these additional optimality conditions, the intuition behind

this result is essentially the flip-side of the intuition behind Theorem 1. In other words,

starting from the suggested equilibrium, any manipulation including, but not limited to,

those that involve pooling of some types, must leave some bidder types strictly worse off.

Theorem 2 has the following immediate corollary, which collects in a single statement

the natural counterparts to the three previous corollaries to Theorem 1.

Corollary 4. If fi is (strictly) decreasing for all i ∈ N , then the following auctions

are WCP: (i) the collusion-free equilibrium equilibria of first-price, second-price, English,

or Dutch auctions, with reserve price r ≥ maxi∈N vi (ii) any equilibrium of any auction

τi(b) ≥ ξi(b)vi,∀b ∈ B,∀i that results in an efficient allocation, and (iii) any equilibrium of

any auction that maximizes the seller’s revenue.

Proof. The proof is immediate given Theorem 2 and the fact that fi is (strictly) decreasing

for all i ∈ N .

Our characterization of collusion-proof auctions in Theorem 1 and 2 contrasts with that of

MM, who assume the cartel can successfully form if bidders benefit ex-ante from collusion.

In the symmetric environment, they show that if the hazard rate of value distribution

is increasing, then a cartel will always form (all bidders will submit a bid equal to the

reserve price to randomly allocate the object among them). Our results highlight that

13It is easy to see that without a sufficiently high reserve price when the lowest possible valuation is

sufficiently high, all standard auctions are susceptible to weak cartels. Consider, for instance, a first-price

auction in which the lower bound of value support, v, is very high while there is no reserve price. Then,

bidders will find it Pareto-improving to identically bid zero and share the object with equal probability.
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ignoring the bidders’ interim incentives to participate in the cartel overstates their ability

to collude, to the extent that the increasing hazard rate condition is quite mild. This has

an important implication on the design of the optimal collusion-proof auction. In MM, the

only instrument available for the seller to cope with weak cartels is the choice of reserve

price whereas in our case the problem of designing the optimal collusion-proof auction

becomes nontrivial, as we show in the next section.

4. Optimal Collusion-Proof Auctions

If an auction is not weakly collusion-proof, then bidders will be able to coordinate their

bidding strategies to achieve a different outcome which will make everyone better off. There-

fore, if the seller has designed an auction to maximize revenue without taking into account

the possibility of collusion, and the auction is not collusion-proof, then collusion will lead

to lower expected revenue.

Corollary 2 shows that in a wide range of circumstances, the seller’s optimal auction will

not be weakly collusion-proof. Then, what is the best outcome the seller can achieve in

a collusion-proof way? In this section, we look for an auction that maximizes the seller’s

revenue among all collusion-proof auctions. Consistent with our general approach to the

problem, we require the seller to employ a winner-payable auction.

Using Lemma 1 and the necessary condition given in Theorem 1, we can write the seller’s

maximization problem as follows:14

[P ] max
(Qi)i∈N

∑
i∈N

∫ vi

ri

Ji(s)Qi(s)dFi(s),

subject to (M), (B), and the collusion-proof constraint for all i ∈ N

(CP ) Qi is constant whenever fi is nondecreasing in some interval of (ri, vi].

The objective function is the (well-known) expression of the seller’s expected revenue

that is obtained by substituting condition (Env) into the original objective function for

the seller. We have also used the fact that (IR′) is binding at the optimum for the lowest

types, i.e. for all i ∈ N , T (vi) = viQi(vi). The constraint (M) is required for the incentive

compatibility. Lastly, the constraint (CP ) arises from the weak collusion-proofness, namely

the characterization given by Theorems 1 and 2.

14Recall that Ji(s) = s− 1−Fi(s)
fi(s)

is the virtual valuation function for bidder i with value s.
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Unfortunately, the problem [P ] is not tractable to solve in full generality. Hence, we

focus on a restricted class of value distributions where either bidders are symmetric with a

single-peaked density or all bidders have nondecreasing (and possibly asymmetric) densities.

First, consider symmetric bidders with a single-peaked density. Specifically, it is assumed

that, for each i ∈ N , we have Fi = F for some distribution F with continuous density f ,

which is single-peaked in the sense that there is a value v∗ ∈ V = [v, v] such that

f(v) is (weakly) increasing in v for v < v∗ and (weakly) decreasing in v for v > v∗. It

is possible that v∗ = v or v∗ = v, so single-peakedness include the cases in which f is

nondecreasing or nonincreasing everywhere. Indeed, the condition is satisfied by many

well known distributions, including Cauchy, Exponential, Logistic, Normal, Uniform, and

Weibull. Further, we assume that the virtual valuation J(·) is nondecreasing. Finally, we

only consider the case in which v∗ > inf{v ∈ [v, v]|J(v) ≥ 0}, because otherwise Myerson’s

optimal auction is weakly collusion-proof according to Theorem 2 and is trivially optimal.

The following theorem characterizes the optimal collusion-proof auction in A∗.

Theorem 3. Suppose that Fi = F, ∀i ∈ N and the density f is single-peaked. Suppose also

that v∗ > v̂ := inf{v ∈ [v, v]|J(v) ≥ 0}. Then, the solution of [P ] is given by:

Qi(v) =


F (v)n−1 if v > v∗

F (v∗)n−i
∏i−1

k=1 F (rk) if v ∈ [ri, v
∗]

0 otherwise

. (7)

where v̂ = rn < rn−1 < · · · < r1 < v∗ and

(r1, · · · , rn) = arg max
(r̃1,··· ,r̃n)

∑
i∈N

F (v∗)n−i
i−1∏
k=1

F (r̃k)

∫ v∗

r̃i

J(v)f(v)dv. (8)

Proof. See Appendix B (page 32).

The optimal auction allocates the object as follows: If there is at least one bidder with

valuation above v∗, then the optimal auction allocates the object to the bidder with the

highest valuation. If every bidder’s valuation is below v∗, then the seller allocates the object

to bidder 1 if his valuation is in [r1, v
∗], to bidder 2 if v1 < r1 and v2 ∈ [r2, v

∗], and so on,

where r1 > r2 > · · · > rn = v̂. The seller does not allocate the object to any bidder if

vi < ri, ∀i. Payments are determined to make the allocation rule incentive compatible, i.e.,

according to (Env).
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The optimal weakly collusion-proof auction can be implemented via a (winner-payable)

procedure that combines a second-price auction with individualized reserve prices and a

sequential one-on-one negotiation (in case the auction does not sell the object), described

more precisely as follows:

Corollary 5. Let (r1, · · · , rn) be those defined in (8), and let (R1, · · · , Rn) satisfy

(v∗ −Ri)F (v∗)n−1 = (v∗ − ri)F (v∗)n−i
i−1∏
k=1

F (rk). (9)

The optimal weakly collusion-proof auction can be implemented as a Perfect Bayesian equi-

librium of the following procedure. First, the seller holds a second-price (or English) auction

with individualized minimum prices (R1, · · · , Rn). If the auction does not sell the object,

then the seller approaches the bidders in the order of the bidder index, and makes take-it-

or-leave offer of ri to bidder i, in case each bidder j < i has rejected the seller’s offer of

rj.

Proof. The left and right hand sides of (9) correspond to the payoffs that bidder i with

value v∗ can obtain in the second-price auction and in the sequential take-it-or-leave-it

offers, respectively, provided that all other bidder j bids his value in the second-price

auction if vj ≥ v∗ while bidding zero to accept the offer rj afterwards if vj ∈ [rj, v
∗). Since

bidder i with value v∗ is indifferent between two payoffs, it is straightforward to see that

absent collusion, the optimal strategy for bidder i is also to bid his value in the second-price

auction if vi ≥ v∗, and to bid zero and accept the offer ri afterwards if vi ∈ [ri, v
∗). Clearly,

this auction rule and its equilibrium outcome satisfy the sufficient condition of Theorem 2

and is thus collusion-proof.

Observe that our optimal collusion-proof auction allocates the object less frequently

compared to optimal mechanism in the collusion-free environment, since each bidder i(6= n)

with valuation vi ∈ [v̂, ri) is allocated the object in the latter, but not in our environment.

This feature also appears in the optimal (collusion-proof) auction rule of MM. A novel and

interesting feature of our optimal auction rule is that it treats bidders asymmetrically even

though they are ex-ante symmetric. Because the common virtual valuation is increasing, the

seller maximizes revenue by assigning the object efficiently, whenever bidders have v > v∗,

and this is also collusion-proof in light of Theorem 2, since the density is decreasing in

this region. However, for values below v∗ our collusion-proofness constraint is binding and



WEAL CARTELS 21

forces the seller to provide the good to each bidder with a constant probability whenever

the probability is positive. This means that, for values below v∗, the seller is unable to

discriminate each bidder based on his valuations. The seller can only exclude allocation to

all values below a certain threshold, determined by a reserve price, and assign the good to all

the remaining types between the reserve price and v∗ with the same probability. Therefore,

the only remaining way for the seller to price-discriminate across different valuations is by

discriminating across ex-ante identical bidders. The seller accomplishes this by charging

a higher price to a bidder she approaches earlier (who thus enjoys a higher probability of

obtaining the good) than those she approaches later. This feature of the mechanism shows

that the asymmetric mechanism can be a useful device by which the seller can increase the

revenue against collusive bidders, when she is restricted to use winner-payable auctions.

Remark 1. If, for some exogenous reason, the seller is not allowed to use an asymmetric

mechanism, the optimal winner payable auction will still be a sequential procedure. It will

combine an efficient assignment for values above v∗, with a subsequent simultaneous take-

it-or-leave-it offer to all bidders (with a fair lottery in case of excess demand), if the object

remains unsold in the auction.

When bidders are asymmetric, computing the optimal auction in full generality becomes

intractable. However, building on the insight we developed earlier, we can find the revenue

maximizing mechanism when the density fi is nondecreasing for all i ∈ N . In this case,

Theorems 1 and 2 require the interim winning probability for each bidder i to be constant

in the range [ri, vi] and to be equal to zero in [vi, ri). Hence, the seller’s problem reduces

to choosing r1, . . . , rn optimally, taking into account that the n constant interim winning

probabilities are pinned down by binding capacity constraint (B). This problem can be

reformulated as follows:

Theorem 4. Suppose that all fi’s are nondecreasing. Then, the program [P ] amounts to

solving

max
π∈Π

[
max

(ri)i∈N

∑
i∈N

( ∏
j:π(j)<π(i)

Fj(rj)
)

(1− Fi(ri)) ri
]
, (10)

where Π is the set of all permutation functions π : N → N . At the solution of (10), ri ≥ rj

if π(i) < π(j).

Proof. See Appendix B (page 38).
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This result says that an algorithm for finding the optimal mechanism is first to find

an optimal profile (ri)i∈N for each possible order π, and then to choose the order π that

achieves the highest revenue. In terms of practical implementation, π represents the order

in which the seller makes a set of sequential take-it-or-leave-it offers (ri)i∈N . Given an order

π, the seller makes a take-it-or-leave-it offer ri to bidder i if all bidders approached earlier

have rejected the seller’s offers, which occurs with probability
∏

j:π(j)<π(i) Fj(rj). The result

also says that the seller offers a (weakly) higher price to whomever is approached earlier.

5. Strengthening the Notion of Collusion-Proofness

The weak notion of collusion-proofness presumes that a cartel will form if, and only if, all

bidders benefit at least weakly from coordinating their bids. This provides a conservative

test on the susceptibility of an auction to bidder collusion; if an auction fails to be weakly

collusion-proof, there will be a consensus among bidders to form a cartel and manipulate

the auction. At the same time, the limited scope of collusion it allows for leaves open the

possibility that even weakly collusion-proof auctions may be susceptible to collusion.

In this section, we show that the optimal weakly collusion-proof mechanism identified

in the previous section can be made unsusceptible to collusion in a much stronger sense.

To this end, we stack the deck against the seller by taking a quite permissive approach

on how cartels form and behave. First, any informed bidder(s) as well as an uninformed

mediator is allowed to propose a cartel manipulation. Second, the cartel formation need

not be all-inclusive; so there can be partial or multiple cartels in operation. Also, bidders

need not unanimously agree to form a cartel, in the sense that after some bidders reject a

cartel proposal, the remaining bidders can form an alternative cartel. Further, if a bidder

refuses to participate, the remaining bidders may punish the refusing bidder. We then show

that the outcome of the optimal collusion-proof auction identified in the previous section

can be implemented even if cartels can form and behave as outlined above, as long as cartel

members plays only cartel-undominated strategies — a notion which is formalized in

the next paragraph.

Take an auction A ∈ A∗ and let uAi (b | vi) = viξi(b) − τi(b) for any bid profile b ∈ B,

i ∈ N and vi ∈ Vi. For any potential cartel C ⊂ N , let bC = (bi)i∈C and bN\C = (bi)i∈N\C

denote two arbitrary bid profiles for bidders within C and bidders outside C, respectively.
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Then, we say a bid profile b′C is cartel-dominated at vC if there exists b′′C such that

uAi (b′C , b̃N\C |vi) ≤ uAi (b′′C , b̃N\C |vi),∀b̃N\C and ∀i ∈ C

with strict inequality for at least one i ∈ C and one b̃N\C . We say that a bid profile b′C is

cartel-undominated at vC if there is no b′′C that cartel-dominates it.15

We now describe a cartel-game and present our notion of robust collusion-proofness.

A cartel game starts after the seller has announced auction A. All bidders and uninformed

third parties are allowed to propose cartel agreements to other bidders (not necessarily

to all bidders). Analogous to our earlier definition of an all-inclusive cartel agreement,

an agreement specifies a mapping from reports to lotteries over bids for the participating

bidders. However, the agreement in this case also specifies which agreement comes into

force among accepting bidders depending on the set of accepting and rejecting bidders.

With all available — possibly multiple — proposals, each bidder decides which proposal, if

any, to accept. If a bidder accepts a cartel proposal, then he commits to it. We assume that

no bidder can accept more than one proposal and that each bidder’s decision to accept or

reject a proposal is observable to the proposer.16 Following this stage, bidders update their

beliefs about others’ types based on the proposals — and possibly acceptance/rejection

decisions — they have observed. Given the updated beliefs, they play in the subsequent

auction A.

Definition 4. An auction A with (interim) equilibrium outcome (Qi, Ti)i∈N is robustly

collusion-proof (or RCP) if there exists no equilibrium outcome of a cartel-game fol-

lowing A which is different from (Qi, Ti)i∈N for at least one i ∈ N and a positive measure

of vi ∈ Vi, and where cartel-undominated strategies are played at any history.

Finally, we now state the main result of this section. This result follows from a more

general result (Theorem 6) provided in Appendix C, where we show that if a WCP mecha-

nism satisfies two conditions, monotone dominant strategy incentive compatibility

(mDSIC) and weak non-bossiness, then it is also robustly collusion-proof.

15Observe that this condition impose less restrictions on cartel behavior than requiring that every bidder

plays a weakly-undominated strategy.
16Our result does not depend on whether or not bidders other than the proposer can observe the

acceptance/rejection decision.
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Theorem 5. There exists a robustly collusion-proof auction which implements the same

(interim) equilibrium outcome as the optimal WCP auction identified in Theorem 3.

Proof. See Appendix C (page 43).

In addition to the result above, the following result is also a straightforward corollary of

Theorem 6 in Appendix C. The proof is omitted.

Corollary 6. (i) If fi is increasing for all i ∈ N then the optimal mechanism of Theorem

4 is RCP. (ii) If fi is (strictly) decreasing for all i ∈ N then the Myerson optimal auction

with the canonical payment rule is RCP.17

6. Conclusion

The possibility of exchanging side payments facilitates the formation of profitable cartels.

Cartels with side-payments can always be arranged at standard private value auctions in a

way that is beneficial for all cartel members. In light of this, it would be natural to expect

that in the absence of side-payments, cartels should be more difficult to sustain.

The result of McAfee and McMillan (1992) contradicts this intuition. As far as we

maintain the standard assumption of increasing hazard rate, collusion is always profitable

for bidders ex-ante, even in the case in which the cartel is weak. In this paper, we take an

alternative approach by considering the bidders’ interim incentives to form a weak cartel.

We do not limit our analysis to standard first- or second-price auction, but consider a

broad class of auctions that are winner-payable. We provide a tight, sufficient and necessary,

condition for an auction in this class to be weakly collusion-proof, which requires that

whenever there is some bidder whose value distribution is convex in some interval, he must

obtain a constant interim winning probability in that interval. Hence, for instance, when

all value distributions are decreasing, the classic revenue-maximizing auction is collusion-

proof. In this case, any attempt to form a cartel, even an all inclusive one facilitated by a

mediator, unravels.

Our characterization of collusion-proof auctions leads us to identify an optimal auction

that maximizes the revenue of the seller facing a weak cartel. For a broad class of value

distributions with single-peaked density, the optimal mechanism consists of an auction with

17See Appendix C, equation (41), for a formal definition of the canonical payment rule.
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a relatively high reserve price, followed by one-to-one negotiations with bidders in case the

object is unsold at the auction. An interesting feature that emerges from this mechanism is

that the auctioneer may benefit from treating bidders asymmetrically. While an increasing

interim allocation helps screen across different types of any individual bidder, if it cannot

be implemented due to collusion among bidders, the seller should rather choose to screen

across bidders by treating them asymmetrically.

Finally, our optimal collusion-proof auctions continue to be collusion-proof under a va-

riety of different, less restrictive, collusion formation scenarios, as far as we maintain the

mild requirement that cartels always play undominated strategies.
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Appendix Appendix A:. Proofs for Section 3

Proof of Theorem 1: Let us first define

Bi(vi) =


Ti(vi)
Qi(vi)

if vi ∈ [ri, vi]

0 otherwise
.

It is straightforward to see that the function Bi is nondecreasing.18

Suppose now for a contradiction that MA = (q, t) is WCP but Qk(·) is not constant in

the interval (a,b) ⊂ (rk, vk] for some k ∈ N , where fk is nondecreasing.

Let us define Q̃(·) = (Q̃1, · · · , Q̃n) as follows:

Q̃i(vi) =

p̄ if i = k and vi ∈ (a, b)

Qi(vi) otherwise
, (11)

where p̄ is defined to satisfy

p̄(Fk(b)− Fk(a)) =

∫ b

a

Qk(s)dFk(s). (12)

Observe first that Q̃ satisfies (M). For this, we only need to check that Qk(a) ≤ p̄ =∫ b
a Qk(s)dFk(s)

(Fk(b)−Fk(a))
≤ Qk(b), which clearly holds since Qk(·) is nondecreasing. The next claim

shows that, in addition to (M), Q̃ also satisfies (B).

Claim 1. The interim allocation rule Q̃(·) satisfies (B).

Proof. Since Q(·) satisfies (B), it suffices to show that for all v = (v1, · · · , vn) ∈ V ,∑
i∈N

∫ vi

vi

Q̃i(s)dFi(s) ≤
∑
i∈N

∫ vi

vi

Qi(s)dFi(s),

which, given (11), will hold if for all vk ∈ [vk, vk],∫ vk

vk

Q̃k(s)dFk(s) ≤
∫ vk

vk

Qk(s)dFk(s). (13)

18To see it, suppose to the contrary that there are two types vi and ṽi > vi such that Qi(ṽi) ≥ Qi(vi) > 0

but Bi(ṽi) < Bi(vi). Then, UMA
i (vi) = Qi(vi)(vi −Bi(vi)) < Qi(ṽi)(vi −Bi(ṽi)) so vi finds it profitable to

deviate to ṽi’s strategy.
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Note that (13) clearly holds for vk ≥ b since Q̃k(s) = Qk(s),∀s ∈ [b, vk]. Let us pick

vk ∈ [a, b) and then we obtain as desired∫ vk

vk

Q̃k(s)dFk(s) =

∫ b

vk

p̄dFk(s) +

∫ vk

b

Qk(s)dFk(s)

=

[
Fk(b)− Fk(vk)
Fk(b)− Fk(a)

] ∫ b

a

Qk(s)dFk(s) +

∫ vk

b

Qk(s)dFk(s)

≤
∫ b

vk

Qk(s)dFk(s) +

∫ vk

b

Qk(s)dFk(s) =

∫ vk

vk

Qk(s)dFk(s), (14)

where the second equality follows from the definition of p̄, and the inequality from the fact

that Qk(·) is nondecreasing and thus∫ b

a

Qk(s)

Fk(b)− Fk(a)
dFk(s) ≤

∫ b

vk

Qk(s)

Fk(b)− Fk(vk)
dFk(s).

Also, for vk < a, we have∫ vk

vk

Q̃k(s)dFk(s) =

∫ a

vk

Qk(s)dFk(s) +

∫ vk

a

Q̃k(s)dFk(s)

≤
∫ a

vk

Qk(s)dFk(s) +

∫ vk

a

Qk(s)dFk(s) =

∫ vk

vk

Qk(s)dFk(s),

where the inequality follows from (14).

From Q̃, we can derive an interim transfer rule T̃ by fixing T̃i(ri) = Ti(ri) for all i ∈ N
and then using (Env). Since the profile (Q̃, T̃ ) thus defined satisfies all the conditions in

Lemma 1, we can find an auction rule whose equilibrium outcome is a direct mechanism

M̃A = (q̃, t̃) that has (Q̃, T̃ ) as the interim rule.

Let us first show that M̃A interim Pareto dominates the original equilibrium payoff of

the auction rule A (i.e. satisfies (C − IR)). First, it is clear that all other bidders than k

will have their payoffs unaffected. Moreover, bidder k’s payoff will only be affected when

his value is above a. To show that U M̃A
k (vk) ≥ UMA

k (vk) for all vk ∈ [a, vk], with strict

inequality for some vk, it suffices to show that U M̃A
k (b) ≥ UMA

k (b), since U M̃A
k (·) is linear in

[a, b] while UMA
k (·) is convex but not linear, and since Q̃k(vk) = Qk(vk) for all vk ∈ (b, vk]

so Ũk(·) and Uk(·) have the same slope beyond b.
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To check that U M̃A
k (vk) ≥ UMA

k (vk), note first that

p̄(Fk(b)− Fk(a))

b− a
=

∫ b

a

Qk(s)fk(s)

b− a
ds ≥

∫ b

a

Qk(s)

b− a
ds

∫ b

a

fk(s)

b− a
ds,

where the inequality follows since both Qk(·) and fk(·) are nondecreasing in the interval

(a, b). Rearranging yields

U M̃A
k (b)− U M̃A

k (a) = p̄(b− a) ≥
∫ b

a

Qk(s)ds = UMA
k (b)− UMA

k (a).

or U M̃A
k (b) ≥ UMA

k (b) since U M̃A
k (a) = UMA

k (a).

Then, the desired contradiction will follow if we show that M̃A can be implemented via

a weak cartel manipulation. To this end, let B̃i(vi) = T̃i(v)

Q̃i(vi)
if vi ∈ [ri, vi] and B̃i(vi) = 0

otherwise.19 We then exploit the winner-payability property to establish the following

result:

Claim 2. Given the winner payability, for any given vi ∈ [ri, vi], there exists a randomiza-

tion over bid profiles bi and b
i
, denoted µi(vi) ∈ [0, 1], such that

µi(vi)τi(b
i) + (1− µi(vi))τi(b

i
) = B̃i(vi). (15)

Proof. First, we show that

Bi(ri) ≤ B̃i(vi) ≤ Bi(vi),∀vi ∈ [ri, vi],∀i. (16)

This is immediate if i 6= k or if i = k and vk ∈ [vk, a] since in those cases, Bi(vi) = B̃i(vi)

and Bi(·) is nondecreasing. Consider now i = k and any vk ∈ (a, vk]. The first inequality of

(16) holds trivially. To prove the latter inequality, it suffices to show that B̃i(vi) ≤ Bi(vi),

since B̃i(·) is nondecreasing. This inequality holds trivially if vk = b since Bk(b) ≥ Bk(a) =

B̃k(a) = B̃k(b). If vk > b, then Qk(vk) = Q̃k(vk) and also

T (vk)− T̃ (vk) = vkQk(vk)− vkQ̃k(vk) + U M̃A
k (vk)− UMA

k (vk) = U M̃A
k (vk)− UMA

k (vk) ≥ 0.

This implies Bi(vi) ≥ B̃i(vi).

Next, we observe that for any vi ∈ [ri, vi],

inf
{τi(b)
ξi(b)

| ξi(b) > 0, b ∈ B
}
≤ Bi(vi) ≤ sup

{τi(b)
ξi(b)

| ξi(b) > 0, b ∈ B and
τi(b)

ξi(b)
≤ vi

}
.

19Note that ri = inf{vi ∈ Vi | Q̃i(vi) > 0} = inf{vi ∈ Vi |Qi(vi) > 0}.
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By definition, τi(b
i) and τi(b

i
) are equal to the LHS and RHS of the above equation, respec-

tively. Combining this with (16) means that for each vi ∈ [ri, vi], B̃i(vi) ∈ [τi(b
i), τi(b

i
)],

which guarantees the existence of µi(vi) as in (15).

Then, if the cartel members report v ∈ V such that vi ≥ ri for some i ∈ N , let the cartel

bid bi with probability q̃i(v)µi(v) and b
i

with q̃i(v)(1 − µi(v)). So each bidder i obtains

the object with probability q̃i(v) and pays q̃i(v)B̃i(vi) in expectation. If there is no cartel

member with vi ≥ ri, then let the cartel bid (b0
1, · · · , b0

n). It is straightforward to verify

that the interim allocation and payment from this manipulation are Q̃i(vi) and T̃i(vi) for

each bidder i with value vi, as desired.

Proof of Corollary 1: Fix a bidder k for whom fk is nondecreasing on some interval

(a, b) with b > r and a ≥ v. We show that in any standard auction, the winning probability

of bidder k is non-constant in the interval (max{a, r}, b), which will imply by Theorem 1

that the auction is not WCP. Consider first the second-price and English auctions where

each bidder bids his value in the undominated strategy. The interim winning probability

of bidder k with vk ∈ (max{a, r}, b) is equal to Qk(vk) =
∏

i 6=k Fi(vk), which is strictly

increasing in the interval (max{a, r}, b).

Consider next the first-price auction (or Dutch auction since the two auctions are strate-

gically equivalent). Note first that in undominated strategy equilibrium, (i) no bidder bids

more than his value and (ii) no bidder puts an atom at any bid B if B wins with posi-

tive probability. Letting βi(·) denote bidder i’s equilibrium strategy, note also that βi(·)
is nondecreasing. Given (i), we must have Qk(vk) > 0 for all vk ∈ (max{a, r}, b) since he

can always bid some amount B ∈ (max{a, r}, vk) and enjoy a positive payoff. Next, by

(ii), there must be some vk ∈ (max{a, r}, b) such that βk(vk) < βk(b) since otherwise βk(b)

would be an atom bid. For such vk, we must have Qk(vk) < Qk(b) so Qk(·) is non-constant

in (max{a, r}, b). To see why, suppose to the contrary that Qk(vk) = Qk(b), which implies

that no one else is submitting any bid between βk(vk) and βk(b). Then, bidder k with value

b can profitably deviate to lower his bid below βk(b) but above βk(vk), a contradiction.

Proof of Theorem 2: To begin, for each i ∈ N , we partition V i = [ri, vi] into a two

families, {V j
i }j∈J+

i
and {V j

i }j∈J−i , of countably many intervals such that f ′i(v) ≥ 0 for a.e.

v ∈ V j
i for j ∈ J+

i , and f ′i(v) < 0 for a.e. v ∈ V j
i for j ∈ J−i . In particular, each interval

V j
i , j ∈ J−i can be taken to be an open interval. (One of the index sets J+

i and J−i can be
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empty as fi can be everywhere nondecreasing or everywhere increasing.) This partitioning

is well-defined since fi is absolutely continuous. Let V+
i := ∪j∈J+

i
V j
i and V−i := ∪j∈J−i V

j
i .

Consider an auction A which induces an equilibrium whose interim allocation probability

satisfies Q′i(v) = 0 for all v ∈ V+
i and

1−
∏
i∈N

Fi(ri) =
∑
i∈N

∫ vi

ri

Qi(vi)fi(vi)dvi.

We prove that A is unsusceptible to collusion.

Define Gi to be the locally concave hull of Fi, defined as follows: For each v ∈ V j
i ,∀j ∈

J+
i ∪ J−i ,

Gi(v) := max{sFi(v′) + (1− s)Fi(v′′)|s ∈ [0, 1], v′, v′′ ∈ V j
i , and sv′ + (1− s)v′′ = v}.

In words, Gi is the lowest function such that Gi(·) ≥ Fi(·) and that it satisfies concavity in

each interval V j
i . Clearly, if V j

i ⊂ V−i , then Gi(v) = Fi(v) for all v ∈ V j
i , and if V j

i ⊂ V+
i ,

then Gi(v) is linear in v for all v ∈ V j
i . Clearly, Gi admits density, denoted gi, for almost

every v ∈ Vi. More importantly, while Gi need not be globally concave, g′i(v) ≤ 0 for

almost every v ∈ Vi.

Consider any any weak cartel manipulation M̃A = (q̃, t̃) implementing an interim Pareto

improvement. Since by assumption τi(b) ≥ ξi(b)vi,∀i ∈ N, ∀b ∈ B and M̃A is a weak

manipulation of A, we must have

U M̃A
i (vi) ≤ max

b∈B
ξi(b)vi − τi(b) ≤ max

b∈B
ξi(b)vi − ξi(b)vi = 0

so due to (C−IR), U M̃A
i (vi) = 0 for each i ∈ N . A similar reasoning also yields UMA

i (vi) = 0

for each i ∈ N . Then, interim Pareto domination implies that

Xi(vi) := U M̃A
i (vi)− UMA

i (vi) =

∫ vi

ri

(Q̃i(s)−Qi(s))ds ≥ 0,∀i, vi. (17)

Next, it follows from Lemma 1 that∑
i∈N

∫ vi

ri

Q̃i(vi)fi(vi)dvi ≤ 1−
∏
i∈N

Fi(ri) =
∑
i∈N

∫ vi

ri

Qi(vi)fi(vi)dvi,

or ∑
i∈N

∫ vi

ri

(Q̃i(vi)−Qi(vi))fi(vi)dvi ≤ 0. (18)
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Meanwhile,

∑
i∈N

∫ vi

ri

(Q̃i(vi)−Qi(vi))fi(vi)dvi

=
∑
i∈N

∫ vi

ri

(Q̃i(vi)−Qi(vi))gi(vi)dvi −
(∑
i∈N

∫ vi

ri

(Q̃i(vi)−Qi(vi))[gi(vi)− fi(vi)]dvi
)

=
∑
i∈N

(
Xi(vi)gi(vi)−

∫ vi

ri

Xi(vi)gi
′(vi)dvi

)
+
∑
i∈N

∫ vi

ri

(Gi(vi)− Fi(vi))[Q̃′i(vi)−Q′i(vi)]dvi

≥ 0

where the first equality follows from the integration by parts, and the inequality holds since,

for each i ∈ N , Xi(v) ≥ 0, g′i(v) ≤ 0 for a.e. v ∈ Vi (by definition of gi), and, whenever

Gi(vi) > Fi(vi), Q
′
i(vi) = 0 ≤ Q̃′i(vi) (by the monotonicity of Q̃i).

The last inequality combined with (18) means that the inequality must hold as equality,

which in turn implies that Xi(v) = 0 for a.e. v ∈ V−i for each i ∈ N . We next prove

that Q̃i(v) ≥ Qi(v) for a.e. v ∈ Vi. To prove this, suppose to the contrary that there

exists v > ri such that Q̃i(v) < Qi(v). Then, since Xi(·) ≥ 0 implies that there is some v′

(arbitrarily) close to ri with Q̃i(v
′) ≥ Qi(v

′) , by the mean value theorem, there must exist

some v′′ ∈ (v′, v] such that Q̃i(v
′′) < Qi(v

′′) and Q̃′i(v
′′) < Q′i(v

′′) (and both Q̃i and Qi are

continuous at v′′). It follows that X ′i(v) = Q̃i(v)−Qi(v) < 0 for all v ∈ (v′′− ε, v′′ + ε), for

some ε > 0. Since Q̃′(v′′) ≥ 0, Q′i(v
′′) > 0, so v′′ ∈ V−i . But this means that X ′i(v) = 0 for

a.e. v ∈ [v′′, v′′ + ε) or for a.e. v ∈ (v′′ − ε, v′′] for some ε > 0, which is a contradiction.

Since Q̃i(·) ≥ Qi(·) for each i, the above equality
∑

i∈N
∫ vi
ri

(Q̃i(vi)−Qi(vi))fi(vi)dvi = 0

means that Q̃i(v) = Qi(v) for a.e. v ∈ Vi for each i ∈ N . We thus conclude that for any

feasible weak-cartel manipulation, M̃A = (q̃, t̃)

U M̃A
i (vi)− UMA

i (vi) =

∫ vi

ri

(Q̃i(s)−Qi(s))ds = 0,∀vi,∀i. (19)

That is, auction rule A is unsusceptible to weak cartel.
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Appendix Appendix B:. Proofs for Section 4

Here we provide the proofs of Theorem 3 and 4. First, we establish a preliminary result

in Lemma 2 below. Fix a profile of reserve prices r = (ri)i∈N and define

P :=
{
p = (p1, · · · , pn) ∈ [0, 1]n

∣∣∣∑
i∈S

pi(1− Fi(ri)) ≤ 1−
∏

i∈S Fi(ri),∀S ⊂ N
}
. (20)

Note that the inequalities that define P correspond to the constraint (B) associated with

the constant interim allocation rule: Qi(vi) = pi ∈ [0, 1] if vi ≥ ri and Qi(vi) = 0 otherwise.

So, P is the set of all such allocation rules that are implementable (in the sense of being

a reduced form). Clearly, P is a convex polytope since the inequalities defining (20) are

all linear. The following lemma, whose proof is provided in the Supplementary Appendix,

gives a characterization for extreme points of P .

Lemma 2. A vector p = (p1, · · · , pN) ∈ [0, 1]N is an extreme point of P defined in (20) if

and only if it can be expressed as follows: For some permutation function π : N → N ,

pi =
∏

j:π(j)<π(i)

Fj(rj) (21)

with pi = 1 for i = π−1(1). Moreover, at each extreme point, there are exactly n sets,

S1 ( · · · ( Sn = N , for which the weak inequalities in (20) are satisfied as equality.

Proof of Theorem 3: First, we relax some of the constraints and consider a relaxed

problem. To that end, define for any v ∈ [v∗, v]

Y (v) := 1− F (v)n −
∑
i∈N

∫ v

v

Qi(s)f(s)ds. (22)

The function Y (v) represents the probability that the object is not assigned to a bidder

whose value is at least v, even though there exists at least one such bidder. In other words,

Y (v) is the capacity that is not exhausted by the types above v. By some abuse of notation,

we define ri = inf{vi ∈ Vi|Qi(vi) > 0}.20 Define also N∗ := {i ∈ N |ri < v∗}. Given the

function Y and any subset M ⊂ N∗, the constraint (B) at a value profile v = (v1, · · · , vn)

with vi = ri for i ∈M and vi = v∗ for i ∈ N\M , can be written as

0 ≤ 1− F (v∗)n−|M |
∏
i∈M

F (ri)−
∑
i∈N

∫ v

v∗
Qi(v)f(v)dv −

∑
i∈M

pi[F (v∗)− F (ri)]

20Later, ri defined here will turn out to be the same as ri defined in (1).
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= Y (v∗)−
∑
i∈M

pi[F (v∗)− F (ri)] + F (v∗)n − F (v∗)n−|M |
∏
i∈M

F (ri). (23)

Since the weak collusion-proofness requires that Qi(·) is constant in the interval [ri, v
∗), we

define pi = Qi(v) for v ∈ [ri, v
∗). (Note that pi = 0 in case ri ≥ v∗.) Then, the relaxed

problem, denoted [P ′], is given as follows:

[P ′] max
(Qi)i∈N

∑
i∈N

∫ v

v∗
J(v)Qi(v)f(v)dv +

∑
i∈N

pi ·
∫ v∗

ri

J(v)f(v)dv

subject to

Y (v) ≥ 0,∀v ∈ [v∗, v] and Y (v) = 0, (24)

and ∑
i∈M

pi[F (v∗)− F (ri)] ≤ Y (v∗) + F (v∗)n − F (v∗)n−|M |
∏
i∈M

F (ri),∀M ⊂ N∗. (25)

Note first that the objective function is rewritten by embedding the collusion-proofness

constraint (CP ), so the constraint (CP ) is dropped. To compare the other constraints of

[P ′] to those of [P ], the monotonicity constraint (M) is dropped in [P ′]. Also, the capacity

constraints (B) is imposed on a much smaller set of value profiles: The inequality in (24)

corresponds to the capacity constraint (B) along the diagonal where vi = v ∈ [v∗, v],∀i ∈ N ;

In light of (23), the inequality (25) corresponds to the capacity constraint at the profile v

where vi = ri if i ∈ M and vi = v∗ otherwise. We aim to obtain a solution of [P ′], which

will turn out to satisfy all the constraints of [P ] and thus solve [P ] as well.

Our search for a solution of [P ′] consists of three lemmas, Lemma 3 to 5. The first

lemma shows that at the optimum, bidders who have negative virtual value must have a

zero probability of obtaining the object in equilibrium. It also provides an upper bound,

equal to v∗, to a set of values that can be assigned zero probability at the optimum. The

proof of this result is provided in the Supplementary Appendix.

Lemma 3. At any optimum of [P ′], it must be that ri ≥ v̂ for all i ∈ N . Also, it is without

loss to assume that ri < v∗,∀i ∈ N (i.e. N∗ = N) at an optimal solution of [P ′].

The next Lemma shows that the constraint (B) must be binding at all profile (v, . . . , v)

for each v ≥ v∗.
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Lemma 4. At an optimum of [P ′],∑
i∈N

∫ v

v

Qi(s)f(s)ds = 1− F (v)n,∀v ∈ [v∗, v] (26)

Proof. To solve [P ′], let us fix r for a while at any level satisfying r < (v∗, · · · , v∗). Given

Y (v∗), the second term of the objective function in [P ′] can be independently maximized

as follows: Given Y (v∗) = y for some y ≥ 0,

[R; y] max
{pi}i∈N

∑
i∈N

pi ·
∫ v∗

ri

J(v)f(v)dv

subject to (25). Let φ(y; r) denote the value function obtained from solving [R; y].

Claim 3. Given any r < (v∗, · · · , v∗), the function φ(·; r) is (weakly) concave and also

satisfies ∂φ(0;r)
∂y

< J(v∗).

Proof. To prove the concavity of φ, consider any y and y′, and let p and p′ denote the

solution of [R; y] and [R; y′], respectively. Since the constraint (25) is linear in y and p, for

any λ ∈ [0, 1], we have λp+ (1− λ)p′ satisfying the constraint of [R;λy+ (1− λ)y′]. Given

this and the linearity of the objective function in p, we must have φ(λy + (1 − λ)y′; r) ≥
λφ(y; r) + (1− λ)φ(y′; r), as desired.

To prove ∂φ(0;r)
∂y

< J(v∗), define for each i ∈ N ,

qi :=
pi

F (v∗)n−1
, G(v) :=

F (v)

F (v∗)
, and g(v) :=

dG(v)

dv
.

Given this, one can rewrite the program [R; y] as

max
{qi}i∈N

F (v∗)n
(∑
i∈N

qi

∫ v∗

ri

J(v)g(v)dv
)

(27)

subject to ∑
i∈M

qi[1−G(ri)] ≤
y

F (v∗)n
+ 1−

∏
i∈M

G(ri),∀M ∈ 2N . (28)

Set up the Lagrangian for this problem as

L = F (v∗)n
(∑
i∈N

qi ·
∫ v∗

ri

J(v)g(v)ds
)

+
∑
M∈2N

λM [
y

F (v∗)n
+ 1−

∏
i∈M

G(ri)−
∑
i∈M

qi[1−G(ri)]],
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Letting λ0
M denote the Lagrangian multiplier when y = 0, by the envelope theorem, we

have ∂φ(0,ri)
∂y

= ∂L
∂y

=
∑
M∈2N

λ0
M

F (v∗)n
. The proof will be done if

∑
M∈2N

λ0
M

F (v∗)n
< J(v∗).

Suppose to the contrary that
∑
M∈2N

λ0
M

F (v∗)n
≥ J(v∗). To draw a contradiction, we investi-

gate the program [R; 0]. First of all, since the objective and constraints are all linear in

(q1, · · · , qn), the optimum arises at one of vertices of the constraint set, which is a polytope

given by the inequalities in (28). Denote that vertex by q0. Note next that the constraints

in (28) are identical to those in (20) with F and pi being replaced by G and qi, respectively.

So, according to Lemma 2, at the vertex q0, there are exactly n subsets of N , M1, · · · ,Mn,

for which (28) holds as equality, and some j ∈ N for whom j ∈ Mk, ∀k = 1, · · · , n. Also,

letting M := {M1, · · · ,Mn}, (28) holds as strict inequality for all M ∈ 2N\M, which

implies that λ0
M = 0 for M ∈ 2N\M and thus

∑
M∈2N λ

0
M =

∑
M∈M λ0

M . Given this and

y = 0, we have

∂L
∂qj

= F (v∗)n
∫ v∗

rj

J(v)g(v)ds−
∑
M∈M

λ0
M [1−G(rj)]

= F (v∗)n[1−G(rj)]
[ ∫ v∗

rj

J(v)
g(v)

1−G(rj)
ds−

∑
M∈2N λ

0
M

F (v∗)n

]
< F (v∗)n[1−G(rj)]

[
J(v∗)−

∑
M∈2N λ

0
M

F (v∗)n

]
≤ 0,

which implies that q0
j = 0. This cannot happen, however, due to the fact that the (28)

holds as equality for M = {j} since {j} ∈ M.

We now show that at the optimum, Y (v) = 0 for all v ≥ v∗. Suppose that r = (r1, · · · , rn)

is fixed at the optimal level. Then, the interim allocation rule Q that solves [P ′] can be

found as a solution of the following problem:

[P ′′] max
{Qi(·)}i∈N

∑
i∈N

∫ v

v∗
J(v)Qi(v)f(v)dv + φ(Y (v∗); r)

subject to (24). Consider this as an optimal control problem with control variable Q(·),
state variable Y (·), and salvage value φ(Y (v∗); r). Note that

Y ′(v) = f(v)
[∑
i∈N

Qi(v)− nF (v)n−1
]
.
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Letting γ and λ denote the costate variable and the multiplier for (24), one can write the

Hamiltonian (or Lagrangian) for [P ′′] (exclusive of the salvage value) as

H(v,Q, Y, γ, λ) =
∑
i∈N

J(v)Qi(v)f(v) + γ(v)f(v)
[∑
i∈N

Qi(v)− nF (v)n−1
]

+ λ(v)Y (v).

Since both objective and constraint functions are concave (in particular, φ(·; r) is concave

by Lemma 3), the necessary and sufficient condition for the optimum is given as follows21:

∂H

∂Qi

= (J(v) + γ(v))f(v) = 0, ∀i ∈ N (29)

γ′(v) = −∂H
∂Y

= −λ(v) (30)

Y (v∗) ≥ 0, γ(v∗) +
∂φ(Y (v∗); r)

∂y
≤ 0, and Y (v∗)

[∂φ(Y (v∗); r)

∂y
+ γ(v∗)

]
= 0 (31)

Y (v), λ(v) ≥ 0 and Y (v)λ(v) = 0, (32)

where γ(v∗) is the derivative of the value function (exclusive of the salvage value) for [P ′′].

From (29), J(v) = −γ(v) and thus using (30), we obtain λ(v) = −γ′(v) = J ′(v) > 0, which

implies by (32) that Y (v) = 0,∀v ∈ [v∗, v]. One can now verify (31) since Y (v∗) = 0 and
∂φ(0;r)
∂y

< J(v∗) = −γ(v∗) by Lemma 3.

Since the optimality condition (26) does not pin down an interim allocation rule for each

individual bidder, let us set

Qi(v) = F (v)n−1,∀v ∈ (v∗, v],∀i ∈ N. (33)

This allocation rule along with p = (p1, · · · , pn) defined in Lemma 5 below will satisfy the

monotonicity constraint.22

The last lemma shows how to determine the reserve prices (r1, . . . , rn) and interim win-

ning probabilities (p1, . . . , pn) for the types between ri and v∗.

Lemma 5. At an optimum of [P ′], r = (r1, · · · , rn) is chosen (up to a permutation among

symmetric bidders) as

r = arg max
r̃=(r̃1,··· ,r̃n)

∑
i∈N

F (v∗)n−i
i−1∏
k=1

F (r̃k)

∫ v∗

r̃i

J(v)f(v)dv. (34)

21Refer to Leonard and Van Long (1992) or Kamien and Shwartz (1991), for instance.
22In fact, one can show that any interim rule satisfying (M), (B), and (26) must take the form given in

(33).
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Then, p = (p1, · · · , pn) is given as

pi = F (v∗)n−i
i−1∏
k=1

F (rk). (35)

Moreover, the profile r = (r1, · · · , rn) in (34) satisfies v̂ = rn < rn−1 < · · · < r1 < v∗.

Proof. By Lemma 4, whatever r is chosen, we must have Y (v∗) = 0 at the optimum. Thus,

in order for (p, r) to solve [P ′], the pair (q, r) (where qi = pi
F (v∗)n−1 ) must solve the problem

in (27) with y = 0 and r being included as choice variable. As mentioned in the proof

of Claim 3, the optimum of that problem arises at one of the vertices in the constraint

set. This implies that given any vector r̃, we can relabel the (symmetric) bidders so that

qi =
∏i−1

k=1 G(r̃k) =
∏i−1

k=1
F (r̃k)
F (v∗)

or

pi = F (v∗)n−1qi = F (v∗)n−i
i−1∏
k=1

F (r̃k). (36)

Plugging this into (27) yields the objective function in (34), which can then be maximized

by choosing r̃ optimally. Plugging the optimal r̃ into (36) yields (35).

We now show that v̂ = rn < rn−1 < · · · < r1 < v∗. Define first

Π̃n :=

∫ v∗

r̃n

J(v)f(v)dv, (37)

and define recursively

Π̃i(r̃i, Π̃i+1) := F (v∗)n−i
∫ v∗

r̃i

J(v)f(v)dv + F (r̃i)Π̃i+1, i = 1, · · · , n− 1.

One can easily verify that the objective function in (34) is the same as the function Π̃1

defined above. Also, the terms in the objective function that involve r̃i are all included

in Π̃i (multiplied by some expression unrelated to r̃i.). Thus, maximizing the objective

function corresponds to choosing r̃i for each i ∈ N that maximizes Π̃i, given the maximized

value of Π̃i+1. Let us recursively define ri and Πi to be respectively the maximizer and

maximized value of Π̃i with Πi+1 given. From (37), it is immediate that rn = v̂.

In order to complete the proof, we adopt the induction argument to show the followings:

For all i = 1, · · · , n − 1, (i) Πi+1 < F (v∗)n−iJ(v∗); (ii) ri+1 < ri < v∗. Consider i = n − 1

for the initial step. Then, Πn =
∫ v∗
v̂
J(s)f(s)ds < F (v∗)J(v∗) so (i) is satisfied. For (ii),

note that ∂Π̃n−1(r̃n−1,Πn)
∂r̃n−1

= f(r̃n−1)[Πn − F (v∗)J(r̃n−1)], which is negative if r̃n−1 = v∗ and
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positive if r̃n−1 = v̂ = rn. So we must have rn < rn−1 < v∗. Let us now assume that (i)

and (ii) hold for some k > 1, that is Πk+1 < F (v∗)n−kJ(v∗) and rk+1 < rk < v∗. We show

that Πk < F (v∗)n−k+1J(v∗) and rk < rk−1 < v∗. First, the fact that Πk < F (v∗)n−k+1J(v∗)

follows from

Πk − F (v∗)n−k+1J(v∗) = F (rk)Πk+1 − F (v∗)n−k+1J(v∗) + F (v∗)n−k
∫ v∗

rk

J(v)f(v)dv

< F (v∗)n−k
[
J(v∗)(F (rk)− F (v∗)) +

∫ v∗

rk

J(v)f(v)dv
]
< 0, (38)

where the first inequality is due to the inductive assumption and the second inequality

holds since v∗ > rk and J(v∗) > J(v),∀v < v∗. To show rk−1 < v∗, note that by (38),
∂Π̃k−1(v∗,Πk)

∂r̃k−1
= f(v∗)[Πk − F (v∗)n−k+1J(v∗)] < 0, which implies rk−1 < v∗. To show lastly

that rk < rk−1, notice that the first-order conditions w.r.t. rk and rk−1 yield J(rk) =
Πk+1

F (v∗)n−k
and J(rk−1) = Πk

F (v∗)n−k+1 , respectively. So the result will follow if Πk+1

F (v∗)n−k
<

Πk
F (v∗)n−k+1 or F (v∗)Πk+1 < Πk, which is true since Πk = Π̃k(rk,Πk+1) > Π̃k(v

∗,Πk+1) =

F (v∗)Πk+1.

Combining (33), (34), and (35) gives a solution to the problem [P ′]. It remains to check

that it satisfies (M) and (B) and thus solves [P ] as well. It is straightforward to check that

(M) is satisfied. To show that (B) is satisfied, it suffices to construct an ex-post allocation

rule that generates the interim rule in (33) and (35):

qi(v) =


1 if either vi > max{v∗,maxj 6=i vj}

or vi ∈ [ri, v
∗),maxj 6=i vj < v∗, and vj < rj,∀j < i

0 otherwise

. (39)

It is straightforward to check that q specified above generates the desired interim rule.

Proof of Theorem 4: Given the interim winning probability profile p = (p1, · · · , pn),

the capacity constraint (B) is the same as requiring p ∈ P defined in (20). Then, p can be

expressed as a convex combination of extreme points of P given in (21): letting Π denote

the set of all permutation functions, and for each π ∈ Π, letting pπi :=
∏

j:π(j)<π(i) Fi(ri)

and pπ = (pπ1 , · · · , pπn), there is some vector (λπ)π∈Π ∈ ∆Π for each p ∈ P such that
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p =
∑

π∈Π λ
πpπ. Given this, the objective can be rewritten as

max
(λπ)π∈Π,(ri)i∈N

∑
π∈Π

λπ
∑
i∈N

pπi ri(1− Fi(ri))

= max
(λπ)π∈Π

∑
π∈Π

λπ
[

max
(ri)i∈N

∑
i∈N

pπi ri(1− Fi(ri))
]

= max
π∈Π

[
max

(ri)i∈N

∑
i∈N

pπi ri(1− Fi(ri))
]

as desired, where the second equality follows since the objective function is linear with

respect to the weighting vector (λπ)π∈Π so the entire weight can be be assigned to a function

π that maximizes the term in the square bracket.

Next, we show that ri ≥ rj if π(i) < π(j). Suppose to the contrary that it is not true.

Then, there must be some i, j ∈ N such that π(i) = π(j)− 1 (i.e. i immediately precedes

j) and ri < rj. Consider now an alternative mechanism (r′, π′) which is the same as (r, π),

except that the orders of i and j are reversed: i.e. π′(i) = π(j) and π′(j) = π(i) while

π′(k) = π(k),∀k 6= i, j and r′k = rk, ∀k ∈ N . Note that this does not affect the revenue

from other bidders than i and j, while the revenue from i and j changes from(
Πk:π(k)<π(i)Fk(rk)

) [
(1− Fi(ri))ri + Fi(ri)(1− Fj(rj))rj

]
to (

Πk:π(k)<π(i)Fk(rk)
) [

(1− Fj(rj))rj + Fj(rj)(1− Fi(ri))ri
]
.

Subtracting the former from the latter and rearranging yield(
Πk:π(k)<π(i)Fk(rk)

)
(1− Fi(ri))(1− Fj(rj))(rj − ri) > 0,

so the revenue is higher with the alternative mechanism, a contradiction.

Appendix Appendix C:. Proofs for Section 5

In this section it will be sufficient to focus on the case in which the seller offers a direct

mechanism M . Let M̃ = (q̃, t̃) denote an equilibrium outcome that results from a cartel

game following M . Since M̃ is an equilibrium outcome, it must be incentive compatible.

We next show that there is a lower bound for the payoff that each bidder enjoys in that

equilibrium, assuming that all bidders play cartel-undominated strategies (on and off the

equilibrium path).
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To this end, fix any bidder i, and let πi = {C1, . . . , Ck} denote an arbitrary partition

of N\{i}, with the interpretation that each group C`, ` = 1, . . . , k, forms a cartel, in case

bidder i chooses not to join any cartel. Let Πi denote the set of all such partitions. Finally,

let Ω(vC) be the set of cartel-undominated strategies at vC .

Lemma 6. In any equilibrium outcome M̃ , the interim payoff of each bidder i with value

vi must be at least

U
M

(vi) := sup
v′i

Ev−i
[

inf
{
uMi (v′i, v

′
C1 , . . . , v′Ck |vi)

∣∣∣v′C` ∈ Ω(vC`),∀C` ∈ πi, and πi ∈ Πi
}]

.

Proof. For any type profile (vi, v−i) and bidder i’s report v′i, define

uMi (v′i|vi, v−i) = inf
{
uMi (v′i, v

′
C1 , . . . , v′Ck |vi)

∣∣∣v′C` ∈ Ω(vC`), ∀C` ∈ πi, and πi ∈ Πi
}
.

Let µi(hi) ∈ ∆(V−i) denote the bidder i’s updated belief (under Bayes’ rule) at the end

of the cartel game following M , given that he has observed a (private) history hi. Let

Hi denote the set of all history that bidder i can observe with a positive probability at

equilibrium. For each hi ∈ Hi, let τi(hi) ∈ [0, 1] denote the probability with which hi arises

at equilibrium. We now classify Hi into two categories depending on whether or not bidder

i is a member of a cartel, and argue that after any history hi ∈ Hi, the expected payoff of

bidder i with value vi is at least

sup
v′i∈Vi

Eµi(hi)[u
M
i (v′i|vi, v−i)]. (40)

Note first that this is the lowest payoff bidder i can get when he is not a member of any

cartel, given that all cartels employ cartel-undominated strategies and bidder i with belief

µi(hi) optimally responds to that. Clearly, his equilibrium payoff after history hi where he

did not join any cartel, cannot fall below (40). The same is true after history hi where he

joins some cartel, since his payoff from deviating to reject all cartel proposals is at least

(40) so the payoff from having accepted some proposal cannot fall below (40). Thus, bidder

i’s interim payoff is at least

Eτi [ sup
v′i∈Vi

Eµi(hi)[u
M
i (v′i|vi, v−i)]] ≥ sup

v′i∈Vi
Eτi [Eµi(hi)[u

M
i (v′i|vi, v−i)]]

= sup
v′i∈Vi

Ev−i [uMi (v′i|vi, v−i)] = U
M

i (vi),

where the first equality follows from the fact that Eτi [Eµi(hi)[·]] = Ev−i [·] and the second

equality from the definition of uMi and U
M

i .
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In order to prove Theorem 5, we introduce a couple of general properties and show in

Theorem 6 that they are sufficient for a WCP mechanism to be robustly collusion-proof.

Definition 5. A direct auction mechanism M = (q, t) is mDSIC if (i) qi is nondecreasing

in vi and nonincreasing in v−i, and (ii)

ti(vi, v−i) = qi(vi, v−i)vi −
∫ vi

vi

qi(s, v−i)ds; (41)

Note that this property is slightly stronger than the usual dominant-strategy incentive

compatibility since it requires qi to be non-increasing with v−i. To state the second property,

given a direct mechanism M = (q, t), let uMi (v|vi) = viqi(v) − ti(v) for any vi ∈ Vi and

v ∈ V . Also, for any S ⊂ N , let VS = ×i∈SVi.

Definition 6. A direct auction mechanism M = (q, t) is weakly non-bossy if the fol-

lowing holds for any C ( N and almost every vC ∈ VC: for any two strategy profiles v′C
and v′′C ≤ v′C ∈ VC satisfying uMi (v′C , vN\C |vi) = uMi (v′′C , vN\C |vi),∀i ∈ C, ∀vN\C ∈ VN\C , we

must have uMi (v′C , vN\C |vi) = uMi (v′′C , vN\C |vi),∀i ∈ N\C, ∀vN\C ∈ VN\C .

The weak non-bossiness requires no group of bidders to affect others’ payoffs without

changing their own payoffs. Note that this requirement is very weak since it only applies

to two strategy profiles, v′C and v′′C , that satisfy v′C ≥ v′′C and also yield the same payoffs for

bidders in C irrespective of strategies, vN\C , played by bidders outside C. All commonly

known auction mechanisms are weakly non-bossy.

Theorem 6. If a direct auction mechanism M = (q, t) is mDSIC, weakly non-bossy, and

WCP, then it is robustly collusion-proof.

Proof. Let us first make a couple observation from the fact that M is mDSIC. First, given

(41), M is dominant-strategy incentive compatible. Second, if bidder i with value vi reports

truthfully, and others report any arbitrary v−i, then he earns

uMi (vi, v−i|vi) = viqi(vi, v−i)− ti(vi, v−i) =

∫ vi

vi

qi(s, v−i)ds,

which means that his payoff is decreasing in v−i since qi is decreasing in v−i.

Now fix any coalition C of bidders and its value profile vC . Consider any strategy profile

of that coalition v′C . Letting v′′C = vC ∧ v′C , i.e. v′′i = min{v′i, vi},∀i ∈ C, we show that

uMi (v′C , vN\C |vi) ≤ uMi (v′′C , vN\C |vi),∀vN\C ,∀i ∈ C. (42)
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To do so, change the strategy of any bidder j ∈ C from v′j to v′′j and observe that

uMi (v′C , vN\C |vi) ≤ uMi (v′′j , v
′
C\{j}, vN\C |vi),∀vN\C ,∀i ∈ C, (43)

since the dominant-strategy incentive compatibility of M for bidder j means that

uMj (v′C , vN\C |vj) ≤ uMj (v′′j , v
′
C\{j}, vN\C |vj),∀vN\C ,

and since, for i ∈ C \ {j}, the mDSIC property with v′′j ≤ v′j implies that:

uMi (v′C , vN\C |vi) ≤ uMi (v′′j , v
′
C\{j}, vN\C |vi), ∀vN\C .

Now start from the strategy profile (v′′j , v
′
C\{j}) and change the strategy of another bidder

j′ ∈ C\{j} from v′j′ to v′′j′ , which (weakly) increases the payoffs of bidders in C in a way

analogous to (43). The inequality (42) will then follow from repeating the same argument

one by one for all bidders in C.

According to the above argument so far, we can have v′C being C-undominated by v′′C–

namely v′C ∈ Ω(vC)–only if (42) holds as equality. Then, the weak non-bossiness requires

that for almost every vC , any bidder outside C must also be indifferent between (v′C , vN\C)

and (v′′C , vN\C). Thus, for almost every vC and any v′C ∈ Ω(vC),

uMi (v′C , vN\C |vi) = uMi (v′′C , vN\C |vi) ≥ vMi (vC , vN\C |vi), ∀i ∈ N\C, ∀vN\C , (44)

where the inequality follows from v′′C = vC ∧ v′C ≤ vC .

Now fix any bidder i ∈ N and consider πi = {C1, ..., Ck} ∈ Πi. Repeatedly applying

(44) from cartel C1 to Ck, one can obtain that for any vi and almost every v−i ∈ V−i,

uMi (vi, v
′
C1 , ..., v′Ck |vi) ≥ uMi (vi, v−i|vi), ∀v′C` ∈ Ω(vC`), ` = 1, · · · , k

which results in

U
M

i (vi) ≥ Ev−i [uMi (vi, v−i|vi)] = UM
i (vi). (45)

Consider now any mechanism M̃ that satisfies (IC) and (RC − IR). Combining (RC −
IR) and (45), we obtain U M̃

i (vi) ≥ U
M

i (vi) ≥ UM
i (vi),∀vi,∀i. The inequality here must

hold as equality due to the weak collusion-proofness of M , which in turn implies (by the

standard revenue equivalence argument) that Qi(vi) = Q̃i(vi) and Ti(vi) = T̃i(vi) for all

i ∈ N and almost every vi ∈ Vi.
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We now prove Theorem 5 using Theorem 6.

Proof of Theorem 5: Let us begin by observing that the ex-post allocation rule given

in (39) satisfies Part (i) of mDSIC property. Using this allocation rule and (41), we obtain

ti(v) =



maxj 6=i vj if vi ≥ maxj 6=i vj ≥ v∗

v∗ if vi ≥ v∗ > maxj 6=i vj and vj ≥ rj for some j < i

ri if vi ≥ ri, v
∗ > maxj 6=i vj, and vj < rj,∀j < i

0 otherwise

. (46)

We now claim that the mechanism M = (q, t) specified in (39) and (46) is RCP. By Theorem

6, it suffices to show that M is weakly non-bossy.

To do so, consider any set of bidders C ( N and a value profile vC such that vi 6=
vj, ∀i, j ∈ C and vi 6= ri,∀i ∈ C.23 Suppose that there are two strategy profiles v′C and

v′′C ≤ v′C satisfying

uMi (v′C , vN\C |vi) = uMi (v′′C , vN\C |vi),∀i ∈ C, ∀vN\C . (47)

We aim to show that

uMi (v′C , vN\C |vi) = uMi (v′′C , vN\C |vi),∀i ∈ N\C, ∀vN\C . (48)

Let v′C,k and v′′C,k denote the k-th highest value from the profile v′C and v′′C , respectively.

Let also vN\C,k denote the k-th highest value from vN\C . Define m′ = #{i ∈ C|v′i = v′C,1}.

We first consider the case where v′C,1 ≥ v∗, and show that (47) holds only in case v′C,1 =

v′′C,1, which will imply (48) since only the highest report from C can affect the payoffs of

bidders outside C, given the mechanism M . Suppose for a contradiction that v′′C,1 < v′C,1.

(Note that v′′C,1 ≤ v′C,1 since v′′C ≤ v′C by assumption.) We focus on the case v′′C,1 ≥ v∗

since the argument in case v′′C,1 < v∗ is relatively straightforward. For any vN\C with

vN\C,1 ∈ (v′′C,1, v
′
C,1), all bidders in C obtain zero payoff with the strategy profile (v′′C , vN\C),

which must also be true with (v′C , vN\C) in order for (47) to hold. Let bidder i ∈ C be such

that v′i = v′C,1. Suppose first m′ = 1 and choose vN\C such that vN\C,1 ∈ (v′C,2, v
′
C,1). Then,

bidder i’s payoff with the profile (v′C , vN\C) would be (vi − vN\C,1), which cannot be zero

if we choose vN\C,1 6= vi, contradicting (47). Suppose alternatively m′ > 1 and so there is

another bidder j ∈ C such that v′j = v′C,1. In order that bidder i obtains zero payoff with

23Note that it suffices to consider almost every value profile to check the weak non-bossiness.
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any profile (v′C , vN\C) satisfying vN\C,1 < v′C,1, we must have vi = v′C,1, which implies that

bidder j’s payoff is 1
m′

(vj − v′C,1) 6= 0 since vj 6= vi, contradicting (47).

Let us now consider the case where v′C,1 < v∗. There are two cases to consider depending

on whether or not there is some bidder i ∈ C such that v′i ∈ [ri, v
∗). The argument is

straightforward when there is no such bidder, and thus omitted. In case there is at least

one such bidder, let j = min{i ∈ C|v′i ∈ [ri, v
∗)}. Then, (48) will clearly hold if j = n,

which is because, in that case, v′′i ≤ v′i < ri for all i ∈ C\{j}, v′′j ≤ v′j < v∗, and thus the

change from v′C to v′′C cannot affect the payoff of any k ∈ N\C. In case j < n, a change in

bidder j’s report from v′j to v′′j , given that v′′i ≤ v′i < ri for all i ∈ C preceding j, can affect

the payoffs of bidders outside C only when v′′j < rj ≤ v′j. In this case, however, if vi < ri

for all i ∈ N\C with i < j, bidder j earns (vj − rj) 6= 0 by reporting v′j while he earns zero

by reporting v′′j , which contradicts (47).
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Supplementary Appendix to
Weak Cartels and Collusion-Proof Auctions

Yeon-Koo Che, Daniele Condorelli, and Jinwoo Kim

Proof of Lemma 3: Let us denote by IT , the inequality (20) with S = T ⊂ N . We

first show that any p satisfying (21) is an extreme point of P . Note that the allocation

probability p can be achieved in a feasible way by assigning the k-th order to each agent

π(k) and then allocating the object in this order as long as the agents have values no lower

than their reserve prices, which implies that p is a reduced form. Thus Lemma 1 implies

that p must satisfy (20) so p ∈ PN . Suppose for a contradiction that p is not an extreme

point of P . Then, we can write p = λp′ + (1 − λ)p′′ for some p′ 6= p and p′′ 6= p. Since

pπ(1) = 1 and p′π(1), p
′′
π(1) ≤ 1 (by I{π(1)}), we must have p′π(1) = p′′π(1) = 1. Using this and

applying I{π(1),π(2)} to p′ and p′′, we obtain p′π(2), p
′′
π(2) ≤ Fπ(1)(rπ(1)) = pπ(2), which implies

p′π(2) = p′′π(2) = Fπ(1)(rπ(1)) = pπ(2). Proceeding in this fashion, one can easily verify that

p′π(k) = p′′π(k) =
∏

j<k Fπ(j)(rπ(j)) = pπ(k) for all k ∈ N , a contradiction. To show that any

extreme point p ∈ P can be expressed as in (21) for some π, we first establish the following

claim.

Claim 4. If for any two sets S, T ⊂ N , IS and IT hold as equality, then either S ⊂ T or

T ⊂ S.

Proof. Suppose for a contradiction that for some S, T ⊂ N , IS and IT hold as equality but

S * T and T * S. Then, we must have S ∩T ( T and S\T 6= ∅. To draw a contradiction,

let us first show ∑
i∈T\S

pi(1− Fi(ri)) ≤
∏
i∈S

Fi(ri)
(

1−
∏
i∈T\S

Fi(ri)
)
. (S.1)

For this, note that by IS∪T and the assumption,∑
i∈S∪T

pi(1− Fi(ri)) ≤ 1−
∏
i∈S∪T

Fi(ri) (S.2)∑
i∈S

pi(1− Fi(ri)) = 1−
∏
i∈S

Fi(ri). (S.3)

1
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It is straightforward to see that (S.1) results from subtracting (S.3) from (S.2) side by side.

Also, by IS∩T , we have ∑
i∈S∩T

pi(1− Fi(ri)) ≤ 1−
∏
i∈S∩T

Fi(ri).

Adding this inequality and (S.1) side by side yields∑
i∈T

pi(1− Fi(ri)) ≤ 1 +
∏
i∈S

Fi(ri)−
∏
i∈S∩T

Fi(ri)−
∏
i∈S∪T

Fi(ri) < 1−
∏
i∈T

Fi(ri), (S.4)

where the strict inequality follows since S ∩ T ( T and S\T 6= ∅, and thus∏
i∈S∩T

Fi(ri) +
∏
i∈S∪T

Fi(ri)−
∏
i∈S

Fi(ri)−
∏
i∈T

Fi(ri)

=
( ∏
i∈S∩T

Fi(ri)−
∏
i∈T

Fi(ri)
)(

1−
∏
i∈S\T

Fi(ri)
)
> 0.

However, (S.4) contradicts the assumption that IT holds as equality.

Pick any extreme point p ∈ P satisfying (20). Let us denote by S1, · · · , Sm, all subsets of

N for which (20) is satisfied as equality given p. Due to the above Claim, these subsets

must have a nested structure, that is S1 ⊂ S2 ⊂ · · · ⊂ Sm. Since N contains n elements,

m cannot be greater than n. Suppose for a contradiction that m < n. Then, there must

be some k and h, j ∈ N with h 6= j such that h, j /∈ S` if ` < k and h, j ∈ S` if ` ≥ k. We

now show that p can be obtained by linearly combining some p′ and p′′ ∈ P , contradicting

that p is an extreme point. To do so, we denote by ei, n-dimensional vector with its i-the

element being 1 and all others being zero. Let p′ = p − εeh + δej and p′′ = p + εeh − δej,
where ε and δ are sufficiently small positive real numbers satisfying

ε(1− Fh(rh)) = δ(1− Fj(rj)),

which implies that for all ` < k,
∑

i∈S` p
′
i(1−Fi(ri)) =

∑
i∈S` pi(1−Fi(ri)) and for all ` ≥ k,∑

i∈S`

p′i(1− Fi(ri)) =
∑
i∈S`

pi(1− Fi(ri))− ε(1− Fh(rh)) + δ(1− Fj(rj)) =
∑
i∈S`

pi(1− Fi(ri))

and similarly for p′′. From this, we see that whether p satisfies (20) as equality or strict

inequality, the same is true for p′ and p′′, provided that ε and δ are sufficiently small, which

means p′, p′′ ∈ P . However, p = 1
2
p′ + 1

2
p′′, resulting in the desired contradiction. Thus, we

must have m = n, which implies |Sk\Sk−1| = 1 for all k = 1, · · · , n with S0 = ∅.
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To complete the proof, define the permutation function π : N → N such that π(i) = k if

{i} = Sk\Sk−1. Then, by definition of S1, IS1 holds as equality or pi(1−Fi(ri)) = 1−Fi(ri)
for i = π−1(1), which yields pi = 1 for i = π−1(1). For an induction argument, suppose

pi =
∏

j:π(j)<π(i)

Fj(rj) for i = π−1(k′),∀k′ = 1, · · · , k − 1. (S.5)

Then, by definition of Sk and π, we must have for i = π−1(k)∑
j:π(j)≤π(i)=k

pj[1− Fj(rj)] = 1−
∏

j:π(j)≤π(i)=k

Fj(rj),

which after substituting (S.5) and canceling the terms, leads us to obtain pi =
∏

j:π(j)<π(i) Fj(rj),

as desired.

Proof of Lemma 4: We let Q = (Q1, · · · , Qn) denote the optimum of [P ′]. First sup-

pose to the contrary that rj < v̂ for some j. Let us construct an alternative rule Q =

(Q1, · · · , Qn) as

Qi(vi) =

0 if i = j and vi < v̂

Qi(vi) otherwise.

Clearly, the value of objective function is higher with Q than with Q. Also, Q satisfies the

constraints (M) and (CP ). So it only remains to show that (B) is satisfied, for which it

suffices to construct an ex-post rule generating Q.24 To do so, let (q1, · · · , qn) denote the

ex-post allocation rule for Q and we can construct the ex-post rule for Q as

qi(v) =

0 if i = j and vj < v̂

qi(v) otherwise.

To prove the second statement, we first show that any optimum must have ri ∈ [v̂, v∗)

for at least one agent i. Suppose not, i.e. ri ≥ v∗,∀i ∈ N . We draw a contradiction by

constructing an alternative interim allocation rule Q̃ which makes the value of objective

function greater than Q does, and which differs from Q only in that for an arbitrarily chosen

agent k, Q̃k(vk) = p̃k = F (v∗)n−1 for vk ∈ [v̂, v∗]. It is clear that the value of objective

function is greater with Q̃ by as much as F (v∗)n−1
∫ v∗
v̂
J(s)dF (s) > 0. Since Y (v) for all

v ≥ v∗ is unaffected by the change from Q to Q̃, it only remains to check (25). Letting

24Recall that the condition (B) is necessary and sufficient for there to be an ex-post allocation rule that

generates Q as an associated interim allocation rule.
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r̃i = inf{vi ∈ Vi|Q̃i(vi) > 0} and Ñ∗ = {i ∈ N |r̃i < v∗}, we have Ñ∗ = {k} so can focus on

M = {k}. Then, (25) can be written as

F (v∗)n−1[F (v∗)− F (v̂)] ≤ Y (v∗) + F (v∗)n − F (v∗)n−1F (v̂),

which clearly holds since Y (v∗) ≥ 0.

Given a solution Q of [P ′], the above argument means N∗ = {i ∈ N |ri < v∗} 6= ∅. Assuming

that N∗ 6= N , we construct an alternative solution Q̃ of [P ′] such that r̃i = inf{vi ∈
Vi|Q̃i(vi) > 0} < v∗, ∀i ∈ N . Letting N∗ = N\N∗, select any agent k ∈ N∗ and then define

Q̃ to be the same as Q, except that for each agent i ∈ N∗ ∪ {k}, Q̃i(vi) = p̃i = pk
|N∗|+1

for

vi ∈ (rk, v
∗), where pk = Qk(vk) > 0 for vk ∈ (rk, v

∗). It is clear that the value of objective

function remains the same under Q̃. Since Y (v) for all v ≥ v∗ is unaffected, it only remains

to check (25). We can focus on such M that M ∩ (N∗ ∪ {k}) 6= ∅, since the allocation for

each agent i /∈ N∗ ∪ {k} has not been changed. For any such M , note that∑
i∈M

p̃i[F (v∗)− F (r̃i)] =
∑

i∈M∩(N∗\{k})

pi[F (v∗)− F (ri)] +
∑

i∈M∩(N∗∪{k})

pk
|N∗|+1

[F (v∗)− F (rk)]

≤
∑

i∈M∩(N∗\{k})

pi[F (v∗)− F (ri)] + pk[F (v∗)− F (rk)]

=
∑

i∈(M∩N∗)∪{k}

pi[F (v∗)− F (ri)]. (S.6)

Also, we have

∑
i∈(M∩N∗)∪{k}

pi[F (v∗)− F (ri)] ≤ Y (v∗) + F (v∗)n − F (v∗)n−|(M∩N∗)∪{k}|

 ∏
i∈(M∩N∗)∪{k}

F (ri)


≤ Y (v∗) + F (v∗)n − F (v∗)n−|M |

(∏
i∈M

F (r̃i)

)
, (S.7)

where the first inequality holds since Q satisfies (25) and the second due to the facts that

M ∩ (N∗ ∪ {k}) 6= ∅ implies |(M ∩ N∗) ∪ {k}| ≤ |M | and that r̃i ≤ min{ri, v∗},∀i ∈ N .

Combining (S.6) and (S.7), we obtain∑
i∈M

p̃i[F (v∗)− F (r̃i)] ≤ Y (v∗) + F (v∗)n − F (v∗)n−|M |

(∏
i∈M

F (r̃i)

)
,

so Q̃ satisfies (25).
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