Theses Doctoral

Holographic Jet Quenching

Ficnar, Andrej

In this dissertation we study the phenomenon of jet quenching in quark-gluon plasma using the AdS/CFT correspondence.

We start with a weakly coupled, perturbative QCD approach to energy loss, and present a Monte Carlo code for computation of the DGLV radiative energy loss of quarks and gluons at an arbitrary order in opacity. We use the code to compute the radiated gluon distribution up to n=9 order in opacity, and compare it to the thin plasma (n=1) and the multiple soft scattering (n=\infty) approximations. We furthermore show that the gluon distribution at finite opacity depends in detail on the screening mass and the mean free path.

In the next part, we turn to the studies of how heavy quarks, represented as "trailing strings" in AdS/CFT, lose energy in a strongly coupled plasma. We study how the heavy quark energy loss gets modified in a "bottom-up" non-conformal holographic model, constructed to reproduce some properties of QCD at finite temperature and constrained by fitting the lattice gauge theory results. The energy loss of heavy quarks is found to be strongly sensitive to the medium properties. We use this model to compute the nuclear modification factor R_AA of charm and bottom quarks in an expanding plasma with Glauber initial conditions, and comment on the range of validity of the model.

The central part of this thesis is the energy loss of light quarks in a strongly coupled plasma. Using the standard model of "falling strings", we present an analytic derivation of the stopping distance of light quarks, previously available only through numerical simulations, and also apply it to the case of Gauss-Bonnet higher derivative gravity. We then present a general formula for computing the instantaneous energy loss in non-stationary string configurations. Application of this formula to the case of falling strings reveals interesting phenomenology, including a modified Bragg-like peak at late times and an approximately linear path dependence. Based on these results, we develop a phenomenological model of light quark energy loss and use it compute the nuclear modification factor R_AA of light quarks in an expanding plasma. Comparison with the LHC pion suppression data shows that, although R_AA has the right qualitative structure, the overall magnitude is too low, indicating that the predicted jet quenching is too strong.

In the last part of the thesis we consider a novel idea of introducing finite momentum at endpoints of classical (bosonic and supersymmetric) strings, and the phenomenological consequences of this proposal on the energy loss of light quarks. We show that in a general curved background, finite momentum endpoints must propagate along null geodesics and that the distance they travel in an AdS5-Schwarzschild background is greater than in the previous treatments of falling strings. We also argue that this leads to a more realistic description of energetic quarks, allowing for an unambiguous way of distinguishing between the energy in the dual hard probe and the energy in the color fields surrounding it. This proposal also naturally allows for a clear and simple definition of the instantaneous energy loss. Using this definition and the "shooting string" initial conditions, we develope a new formula for light quark energy loss. Finally, we apply this formula to compute the nuclear modification factor R_AA of light hadrons at RHIC and LHC, which, after the inclusion of the Gauss-Bonnet quadratic curvature corrections to the AdS5 geometry, shows a reasonably good agreement with the recent data.

Files

  • thumnail for Ficnar_columbia_0054D_12364.pdf Ficnar_columbia_0054D_12364.pdf application/pdf 8.88 MB Download File

More About This Work

Academic Units
Physics
Thesis Advisors
Gyulassy, Miklos
Degree
Ph.D., Columbia University
Published Here
October 8, 2014