Academic Commons

Articles

Targeted gene disruption of the endogenous c-abl locus by homologous recombination with DNA encoding a selectable fusion protein

Goff, Stephen P.; Robertson, Elizabeth J.; Schwartzberg, Pamela L.

We have introduced a substitution mutation into the c-abl locus of murine embryonic stem cells by homologous recombination between exogenously added DNA and the endogenous gene. Model constructs were initially generated that consisted of a promoterless selectable neomycin resistance marker inserted into the v-abl gene of the complete Abelson murine leukemia virus genome, designed to be expressed either as a fusion protein or by translational restart. Tests of these viral genomes for transmission of v-abl and neo markers showed more stable coexpression in a protein fusion construct. The neo fusion was subcloned from this v-abl construct into a promoterless c-abl fragment, and the resulting DNA was used to transform embryonic stem cells. Direct screening of genomic DNAs showed that a high proportion of drug-resistant clones arose from homologous recombination into the endogenous c-abl locus.

Files

Also Published In

More About This Work

Academic Units
Biochemistry and Molecular Biophysics
Published Here
October 19, 2018
Academic Commons provides global access to research and scholarship produced at Columbia University, Barnard College, Teachers College, Union Theological Seminary and Jewish Theological Seminary. Academic Commons is managed by the Columbia University Libraries.