Topology and Invertible Maps

by
Graciela Chichilnisky, Columbia University

May 1996 revised June 1996

Discussion Paper Series No. 9596-16
Abstract

I study connected manifolds and prove that a proper map \(f : M \to M \) is globally invertible when it has a nonvanishing Jacobian and the fundamental group \(\pi_1(M) \) is finite. This includes finite and infinite dimensional manifolds. Reciprocally, if \(\pi_1(M) \) is infinite, there exist locally invertible maps which are not globally invertible. The results provide simple conditions for unique solutions to systems of simultaneous equations and for unique market equilibrium. Under standard desirability conditions, it is shown that a competitive market has a unique equilibrium if its reduced excess demand has a nonvanishing Jacobian. The applications are sharpest in markets with limited arbitrage and strictly convex preferences: a nonvanishing Jacobian ensures the existence of a unique equilibrium in finite or infinite dimensions, even when the excess demand is not defined for some prices, and with or without short sales.

1 Introduction

The inverse function theorem gives a simple condition for the local invertibility of a smooth map \(f : M \to M \). If \(f \) has nonvanishing Jacobian at a point, then it is locally invertible. The moral is that a linear approximation to the map predicts its local behavior. What about global behavior?

This paper gives a global version of the inverse function theorem, obtained by using algebraic topology. A finite fundamental group is the crucial link between local and global invertibility. The results are as follows. Let \(M \) be a connected compact manifold with a finite fundamental group \(\pi_1(M) \). Then a smooth map \(f : M \to M \) with a nonvanishing Jacobian is globally invertible. Reciprocally, when \(\pi_1(M) \) is not finite, there are locally invertible maps \(f : N \to M \) which are not globally invertible. These results also hold when \(M \) is not compact, provided that \(f \) is proper, and includes infinite dimensional Banach manifolds. Manifolds with finite fundamental groups are not difficult to find: examples are euclidean space, open convex sets, the...
sphere S^n, $n \geq 2$, all Grassmanians manifolds $G^{n,k}$ with $n > 2$, and all Banach spaces.

A simple example illustrates the role of topology in obtaining global invertibility. Any rotation from the circle S^1 to itself is a locally invertible map with a nonvanishing Jacobian. Yet most rotations are not globally invertible. What fails is the topology: the fundamental group of the circle $\pi_1(S^1)$ is the integers \mathbb{Z}, which is not a finite group.

Finite fundamental groups are the crucial link between local and global invertibility. The example of the circle provided above is typical. The condition on the fundamental group is necessary as well as sufficient to go from local to global invertibility in the following sense: if the group $\pi_1(M)$ of a manifold M is not finite, then there exist locally invertible maps $f : N \to M$ which are not globally invertible.

The results of this paper are simple but have useful applications. These include conditions for unique solutions to systems of simultaneous nonlinear equations. The results imply a very simple condition for unique market equilibrium. Under standard desirability conditions, a competitive market has a unique equilibrium if its reduced excess demand has a nonvanishing Jacobian. When markets have limited arbitrage the results are sharper. Limited arbitrage is a condition on endowments and preferences which was introduced and shown to be necessary and sufficient for the existence of equilibrium, the core and social choice in finite or infinite economies. With strictly convex preferences a nonvanishing Jacobian defined on part of the price space—the intersection of "market cones"—ensures the existence and uniqueness of an equilibrium. This covers economies which were neglected in the literature on unique equilibrium, holding equally with finite or infinitely many markets and with or without short sales.

2 Definitions and Background

Unless otherwise specified all manifolds are smooth connected and without boundary and maps are smooth. The manifolds considered here may be compact or not, and they may be finite or infinite dimensional. In the latter case they are Banach manifolds [2]. A map $f : M \to N$ is locally invertible when for each $x \in M$ there exists neighborhoods U_x and U_y of x and of $y = f(x)$ respectively, such that f maps U_x one-to-one and onto U_y. A map $f : M \to N$ is globally invertible when it is one to one and $f(M) = N$. Given two topological spaces, X and Y a continuous map $f : X \to Y$ is proper when the inverse image of every compact set C, $f^{-1}(C)$, is compact.

Example 1 If X and Y are open convex open sets, then $f : X \to Y$ is proper if $x^n \to x \in \partial X \Rightarrow f(x^n) \to y \in \partial Y$. If X is an open convex set and $Y = R^N$, then the map $f : X \to R^N$ is proper when $x^n \to x \in \partial X$ implies $\| f(x) \| \to \infty$.

2 I consider fundamental groups which are finitely generated but not finite.
3 See Chichilnisky [4], [6], [5], [7], [8] and [9].
4 I.e. C^k, with $k \geq 2$.
5 ∂M denotes the boundary of the set M.

2
Definition 1 Let $l_2(Z, \mu)$ be the space of all square integrable sequences of real numbers, i.e., of all square integrable functions from the integers to the reals $f : Z \to R$ such that $\sum_{t=1}^{\infty} f(t)^2 \mu(t) < \infty$.

Remark 1 l_2 is a Banach space, indeed it is a Hilbert space with the inner product defined by $(f, g) = \sum f(t) g(t) \mu(t), |t|$. When μ is a finite measure on Z, i.e., $\sum_{t} \mu(t) < \infty$, then $l_2(Z, \mu)$ contains unbounded sequences.

The following presents concepts and results of algebraic topology which can be found in any standard textbook, e.g. Spanier [12] or Greenberg [11]. All topological spaces are assumed to be connected and locally path connected.

Definition 2 Given two topological spaces, X and Y, X is a covering space of Y if there exists a continuous onto map $\theta : X \to Y$ such that each $y \in Y$ has a neighborhood U_y whose inverse image $\theta^{-1}(U_y)$ is the disjoint union of sets in X each of which is homeomorphic to U_y. The map θ is called a covering map. When the inverse image $\theta^{-1}(y)$ of each point $y \in Y$ contains exactly $k > 1$ points, then the covering is called a k-fold covering.

Example 2 The map $\theta(r) = e^{ir\pi}$ from the line R to the circle S^1 is a covering map which makes the line a covering space of the circle. The map $\theta(e^{ir\pi}) = e^{i2\pi r}$ makes the circle a 2-fold covering of itself.

Definition 3 The first homotopy group of X, also called its fundamental group, is denoted $\pi_1(X)$. This group is zero, and therefore finite, whenever X is convex or contractible, for example $X = R^k$ or R_+^k, any k. The fundamental group of the circle S^1 is Z, the group of integers, and is not a finite group. All other spheres $S^n, n > 1$, have zero (and therefore finite) fundamental group, i.e., $\pi_1(S^n) = 0$. All Grassmanian manifolds (other than the circle S^1) have fundamental group equal to Z_2, the group of integers modulo 2. This group has two elements $Z_2 = \{0, 1\}$, and therefore the fundamental groups of all the Grassmanians manifolds are finite.

Intuitively $\pi_1(X)$ is the space of all continuous loops in X, where a loop is a map $\phi : S^1 \to X$, under the following natural equivalence relation: two loops ϕ_1 and ϕ_2 are equivalent if and only if one is a continuous deformation of the other. I.e., there exists a continuous map $F : S^1 \times [0, 1] \to X$ such that $\forall x \in X, F(x, 0) = \phi_1(x)$, and $F(x, 1) = \phi_2(x)$. The group operation in $\pi_1(X)$ is defined by running one loop after the other sequentially thus obtaining another loop; for formal definitions see [11].

Definition 4 A map between topological spaces $f : X \to Y$ defines a homeomorphism of the corresponding fundamental groups $f_* : \pi_1(X) \to \pi_1(Y)$. The map f_* is called a monomorphism when it is one-to-one.

4. I.e., $\forall \alpha, \beta \in \pi_1(X), f_*(\alpha \ast \beta) = f(\alpha) \ast f(\beta)$, where \ast denotes the group operation in $\pi_1(X)$.

3
Theorem 1 Let \(p : X \rightarrow Y \) be a covering map. Then \(p_* : \pi_1(X) \rightarrow \pi_1(Y) \) is a monomorphism. See [11], p. 19.

Definition 5 Two covering spaces \(p : X \rightarrow Y \) and \(p' : X' \rightarrow Y \) are equivalent when there is a unique homeomorphism \(\phi : X \rightarrow X' \) such that \(p \circ \phi = p' \).

Theorem 2 Any manifold \(M \) has a covering space \(p : X \rightarrow M \) with \(\pi_1(X) = 0 \), called its universal covering space. See [11], p. 23, (6.7).

Theorem 3 Let \(p : X \rightarrow Y \) be a covering space. For any subgroup \(H \) of \(\pi_1(Y) \) there exists a covering space \(p : X \rightarrow Y \) unique up to an equivalence, such that \(H = p_* \pi_1(X) \). See [11], p. 24, (6.9).

Theorem 4 Inverse Function Theorem [2]. Let \(M \) and \(N \) be two manifolds of the same dimension, \(f : M \rightarrow N \) a smooth map, and \(y = f(x) \). If the Jacobian of \(f \) is non-vanishing at \(x \) there exists neighborhoods \(U_x \) and \(U_y \) of \(x \) and \(y \) respectively, such that \(f/U_x : U_x \rightarrow U_y \) is a diffeomorphism.\(^7\)

3 Results

This section establishes the global invertibility of maps with nonvanishing Jacobian on compact manifolds, and then extends this to proper maps on non compact manifolds.

Theorem 5 Let \(M \) be a compact, connected manifold with a finite fundamental group \(\pi_1(M) \), and \(f : M \rightarrow M \) a smooth map. If the Jacobian of \(f \) is non-vanishing, then \(f \) is globally invertible.

Proof. By the implicit function theorem, the image \(f(M) \) is an open set in \(M \). I will show that under the assumptions \(f(M) \) is closed as well. Consider two sequences \(\{x^n\} \subset M \) and \(\{y^n\} \subset M \) such that \(y^n = f(x^n) \), \(x^n \rightarrow x \) and \(y^n \rightarrow y \). Since \(M \) is compact and the Jacobian of \(f \) does not vanish, this Jacobian is bounded away from zero. Therefore there exists \(\delta, \varepsilon > 0 \) such that \(M \) can be covered by a family of \(\delta \)-neighborhoods\(^8\) \(\{U_x\} \) on each of which \(f \) is a diffeomorphism, and the image under \(f \) of each \(U_x \) covers an \(\varepsilon \)-neighborhood in \(M \). Since \(y^n \rightarrow y \), for \(n \) large enough \(y \) is contained in such an \(\varepsilon \) neighborhood of \(y^n \), so that by construction \(y \in f(M) \). Therefore the image \(f(M) \) is closed. Since \(f(M) \) is both open and closed and \(M \) is connected, \(f(M) = M \), i.e. the map \(f \) is onto.

The next step is to show that \(f \) is a covering map. By the inverse function theorem if \(f(x) = y \) there exists neighborhoods \(U_x \) and \(U_y \) of \(x \) and \(y \) respectively, such that the restriction of the map \(f \) on \(U_x \), \(f/U_x : U_x \rightarrow U_y \), is one-to-one and onto. By the continuity of the map \(f \), for any \(y \in M \) the set \(f^{-1}(y) \) is closed; since \(M \) is compact, the set \(f^{-1}(y) \) is also compact and by the inverse function theorem it is 0-dimensional.

\(^7\)A diffeomorphism is a one-to-one onto map which is smooth and has a smooth inverse.

\(^8\)We can choose the coordinate patches which define the manifold \(M \) so that a \(\delta \)-neighborhood in \(M \) is the image of a ball of radius \(\delta \) in the linear space which is the model for \(M \).
Therefore for any \(y \in M \), the set \(f^{-1}(y) \) consists of finitely many points. We may then choose a neighborhood \(U_y \) of \(y \) such that \(f^{-1}(U_y) \) consists of a union of disjoint neighborhoods each diffeomorphic to \(U_y \), i.e. \(f^{-1}(U_y) = \bigcup_{x \in f^{-1}(y)} U_x \). This implies that \(f \) is a covering map from \(M \) onto \(M \).

The last step is to show that \(f \) is globally invertible. We know by Theorem 3 that for each subgroup \(H \) of \(\pi_1(M) \) there exists a covering \(\theta : X \to M \), which is unique up to equivalence, such that \(\theta_*(\pi_1(X)) = H \). Now let \(H = \pi_1(M) \). The identity map \(i : M \to M \) defines a covering such that \(i_*(\pi_1(M)) = \pi_1(M) \). We already saw that \(f : M \to M \) is a covering map, so that \(f_* : \pi_1(M) \to \pi_1(M) \) is a monomorphism by Theorem 1. Since the first homotopy group \(\pi_1(M) \) is finite, and \(f_* : \pi_1(M) \to \pi_1(M) \) is one-to-one, then \(f_* \) must be an onto, so that \(f_*(\pi_1(M)) = \pi_1(M) \). Therefore both maps \(f \) and \(i \) satisfy \(f_*(\pi_1(M)) = i_*(\pi_1(M)) = \pi_1(M) \); it follows from Theorem 3 that \(f \) and \(i \) define equivalent coverings. Since \(i \) is the identity map, \(f \) must be a one-fold covering of \(M \), i.e. \(f \) is a globally invertible map as we wished to prove.

The following provides an extension of Theorem 5 to paracompact manifolds, such as for example \(\mathbb{R}^N \).

Corollary 1 Let \(M \) be a paracompact connected manifold\(^9\) with \(\pi_1(M) \) finite, and \(f : M \to M \) a proper map. When the Jacobian of \(f \) is nonvanishing, \(f \) is globally invertible.

Proof. First we check that since \(f \) is proper and its Jacobian is nonvanishing, then \(f(M) = M \). We know that \(f(M) \) is an open set by the inverse function theorem. Next we show that \(f(M) \) is closed. Let \(y^n \in f(M) \), \(y^n \to y \). I will show that \(y \in f(M) \). Since \(y^n \to y \) the set \(\{ y^n \} \cup y \) is compact, and since \(f \) is proper, the set \(f^{-1}(\{ y^n \} \cup y) \) is compact as well. Let \(\{ x^n \} \) satisfy \(f(x^n) = y^n \); then the set \(\{ x^n \} \) is contained in the compact set \(f^{-1}(\{ y^n \} \cup y) \). Therefore we may apply the proof of Theorem 5, implying that \(y \in f(M) \) so that \(f(M) \) is closed. Since \(f(M) \) is open and closed and \(M \) is connected, \(f(M) = M \).

Since \(f \) is a proper map \(f^{-1}(y) \) is a compact set and therefore, by the inverse function theorem, \(f^{-1}(y) \) consists of finitely many points. The same argument as in Theorem 5 establishes therefore that \(f : M \to M \) is a covering map, and that \(f \) is globally invertible.

Corollary 2 Let \(C \) be a convex open region of \(\mathbb{R} \) and assume that \(f : C \to \mathbb{R}^N \) satisfies \(x^n \to x \in \partial C \Rightarrow \| f(x^n) \| \to \infty \). Then if the Jacobian of \(f \) is nonvanishing the map \(f \) is globally invertible.

The results extend also to infinite dimensional manifolds provided they are Banach manifolds, so the inverse function theorem holds [2]:

Corollary 3 Let \(M \) be a connected Banach manifold with \(\pi_1(M) \) finite. Let \(f : M \to M \) be a proper map. If its Frechet derivative is invertible, then \(f \) is globally invertible.

\(^9\)A manifold is paracompact if it can be covered by a countable set of precompact charts.
Proof. The argument is similar to those in Theorem 5: since f is proper the condition on its Frechet derivative ensures that the image $f(M)$ is open and closed in M, so that $f(M) = M$. The rest of the proof follows that of Theorem 5 without modification.

A partial converse of the above results can be given. A finite fundamental group $\pi_1(M)$ is necessary for ensuring that a locally invertible map is globally invertible:

Corollary 4 Let $\pi_1(M)$ be a finitely generated abelian group. If $\pi_1(M)$ is infinite, then there exists a locally invertible map $f : N \rightarrow M$ which is not globally invertible.

Proof. If $\pi_1(M)$ is infinite, it contains a strict subgroup H which is isomorphic to $\pi_1(M)$. By Theorem 3 we know that there exists a covering space $p : N \rightarrow M$ such that $p_* (\pi_1(N)) = H$, and the covering map p is not globally invertible. Yet the covering map p is a locally invertible map, by definition of a covering.

4 Applications

4.1 Grassmanians and Simultaneous Equations

This section describes two simple applications of the global invertibility results: one to compact manifolds, and the other to open regions in \mathbb{R}^N.

Corollary 5 If $G^{k,n}$ denotes the classical Grassmanian manifold of k planes in \mathbb{R}^N and $n > 2, n > k$. Then any smooth map $f : G^{k,n} \rightarrow G^{k,n}$ with nonvanishing Jacobian is globally invertible.

Proof. When $n > 2$, the fundamental group $\pi_1(G^{k,n})$ is finite. Indeed $\pi_1(G^{k,n}) = \mathbb{Z}_2$ for all n, k except $G^{1,2} = S^1$.

Corollary 6 Consider a system of equations which define a smooth nonlinear map $f : X \rightarrow \mathbb{R}^N$, where $X \subset \mathbb{R}^N$ is open and convex. If the map f is proper and has a nonvanishing Jacobian, there is a unique solution to the problem $f(x) = 0$.

4.2 Market Equilibrium

Consider the positive vectors in the unit sphere: $\Delta = \{ p \in \mathbb{R}^N : p \gg 0 \text{ and } \sum_{i=1}^N p_i^2 = 1 \}$. This represents the set of relative prices of a market which contains N commodities. An excess demand function for a market economy is a smooth map $Z : \Delta \rightarrow \mathbb{R}^N$ satisfying $\forall p \in \Delta, (p, Z(p)) = 0$. The condition is derived from the requirement that all traders have balanced budgets, and it is described by saying that the value of demand equals the value of supply. A standard desirability condition of the excess demand function Z is:

Definition 6 Desirability condition: if $p^j \rightarrow p \in \partial \Delta$ then $\| Z(p^j) \| \rightarrow \infty$.

Similar conditions are in e.g. [10].
Remark 2 The desirability condition implies that the map \(Z : \Delta \to \mathbb{R}^N \) is proper. However \(Z \) does not generally have a nonvanishing Jacobian.

A market is said to be at an equilibrium when supply equals demand in all markets. Formally:

Definition 7 A market equilibrium \(p^* \) is a zero of the excess demand function \(Z : \Delta \to \mathbb{R}^N \), i.e. \(p^* \in Z^{-1}(0) \).

Observe that when the vector \(Z(p) \) has all but one coordinates equal to zero, then \(Z(p) \) is the zero vector, because \(\forall p \in \Delta, \langle p, Z(p) \rangle = 0 \). Therefore to identify a market equilibrium it suffices to find a zero of another map, the composition map \(\tilde{Z}_i = \pi_i \circ Z : \Delta \to \mathbb{R}^{N-1} \), where \(i \in \{1, ..., N\} \) and \(\pi_i : \mathbb{R}^N \to \mathbb{R}^{N-1} \) is the projection map on the \(N - 1 \) coordinates other than \(i \). Observe that the composition map \(\tilde{Z}_i = \pi_i \circ Z : \Delta \to \mathbb{R}^{N-1} \) maps an open convex set of \(\mathbb{R}^{N-1} \) into \(\mathbb{R}^{N-1} \), and that under the desirability condition, \(\tilde{Z}_i \) is a proper map. \(\tilde{Z}_i \) is called a reduced excess demand.

Observe that all the definitions provided here extend to markets where the trading space rather than \(\mathbb{R}^N \) is the infinite dimensional Hilbert space \(l_2 \), see Chichilnisky and Heal [9]. \(l_2 \) has an inner product and a countably basis of coordinates, properties which all Hilbert spaces share, and is the closest to euclidean space \(\mathbb{R}^N \) to infinite dimensions. These properties allow one to treat the trading space the same as euclidean space, and all the definitions given above apply without modification. In particular, since the Hilbert space is self-dual, it is possible to find invertible operators from the price space to the commodity space: both are the same space \(H \). This makes Hilbert spaces the preferred space for infinite dimensional markets:

Theorem 6 Under the desirability condition, if the reduced excess demand \(\tilde{Z}_i : \Delta \to \mathbb{R}^{N-1} \) has a nonvanishing Jacobian then \(\tilde{Z}_i \) is globally invertible. In this case the market has a unique equilibrium. This is also true in infinite dimensional markets when the Frechet derivative of \(\tilde{Z}_i \) is an invertible operator.

Proof. Observe that the image of \(\Delta \) under the map \(Z, Z(\Delta) \), is contractible because \(\Delta \) is contractible. The image \(\tilde{Z}_i(\Delta) \) is also contractible, because \(\tilde{Z}_i \) is \(Z \) composed with a projection. It follows that \(\pi_1(\tilde{Z}_i(\Delta)) = 0 \).

Next observe that the image \(\tilde{Z}_i(\Delta) \) is open under the hypothesis, by the inverse function theorem. In particular, \(\tilde{Z}_i(\Delta) \) is a manifold. The desirability condition of Definition 5 implies that the map \(\tilde{Z}_i \) is proper. The result now follows from Corollary 1 for the finite dimensional case, and Corollary 3 for infinite dimensions.

The following result applies to economies where the excess demand function is not well defined at all prices, but only on a subset of prices:

\(^{10}\)A topological space \(X \) is contractible when there exists a continuous map \(F : X \times [0, 1] \to X \) and \(x^0 \in X \) such that \(\forall x \in X, F(x, 0) = x^0 \), and \(F(x, 1) = x^0 \). A contractible space has a zero fundamental group, \(\pi_1(X) = 0 \).
Corollary 7 If the demand function \(Z : C \rightarrow R^N \) is defined on a convex subset of prices \(C \subset \Delta \), and the desirability condition is satisfied in \(C \), i.e., \(p^j \rightarrow p \in \partial C \Rightarrow Z(p^j) \rightarrow \infty \), then there exists a unique market equilibrium price in \(C \) when the Jacobian of the reduced excess demand \(\tilde{Z}_j \) is nonvanishing on \(C \). When the market is infinite dimensional, \(X = l_2 \), the result obtains when the Frechet derivative of \(\tilde{Z}_j \) is invertible.

4.3 Limited Arbitrage and Uniqueness with Short Sales

This subsection includes explicitly economies with short sales and with finite or infinitely many markets. These cases have been neglected in the literature on uniqueness of equilibrium.

The following uses a condition of limited arbitrage which is defined on the preferences and endowments of a market. It was introduced and shown to be necessary and sufficient for the existence of a competitive equilibrium, the core and social choice in markets with or without short sales in Chichilnisky [4] [6], [5], [7], [8] and in infinite dimensions in Chichilnisky and Heal [9].

Consider a market with trading space \(X = R^N \) or \(X = l_2 \), where traders have property rights represented by vectors \(\Omega_i \in X \) and preferences represented by strictly concave increasing utility functions \(u_i : X \rightarrow R \). For trader \(i \) define the global cone \(G_i \) as the set of directions along which utility never ceases to increase:

\[
G_i = \{ x \in X : \exists \text{argmax}_{\lambda \geq 0} u_i(\Omega_i + \lambda x) \}
\]

and the market cone as

\[
D_i = \{ y \in X : \forall x \in G_i, \langle y, x \rangle > 0 \}.
\]

Definition 8 The market has limited arbitrage when \(D = \cap_{i=1}^H D_i \neq \emptyset \).

Remark 3 The intersection \(D = \cap_{i=1}^H D_i \) denotes the set of prices at which the excess demand of the economy is well defined. It has been shown that \(D \neq \emptyset \) is equivalent to the existence of an equilibrium, the core and social choice [4], [6], [5], [7], [8].

The result below proves the uniqueness of an equilibrium in an economy with limited arbitrage, with finite or infinitely many commodities and without short sales:

Corollary 8 Consider an economy with limited arbitrage and strictly convex preferences. If the reduced excess demand function \(\tilde{Z}_i \) has a nonvanishing Jacobian on \(D = \cap_{i=1}^H D_i \subset \Delta \) then there exists a unique competitive equilibrium. This is also true in infinite dimensional markets \((X = l_2) \) when the Frechet derivative of \(\tilde{Z}_i \) is invertible.

Proof. By Corollary 7 it suffices to show that under limited arbitrage the reduced excess demand is a proper map on a convex subset of \(\Delta \) on which its Jacobian is nonvanishing.

11 Or more generally by utilities whose indifferences have no half lines.
12 In the infinite dimensional case, when the Frechet derivative is an invertible operator.
By definition limited arbitrage the set \(D = \cap_{i=1}^{H} D_i \subset \Delta \) is not empty. \(D \) is a convex set since, under the assumptions on preferences, each set \(D_i \) is convex. If \(y \in R^N \) is in the boundary of \(D = \cap_{i=1}^{H} D_i \) then it is in the boundary of \(D_i, \partial D_i \), for some trader \(i \). Since preferences are strictly convex this implies that for trader \(i \) the norm of the excess demand increases without ever reaching a maximum along the direction defined by \(y \) from \(\Omega_i \), see [7]. By Example 1, this implies that for all \(j \), the reduced excess demand function \(Z_j \) is proper on \(D \). Therefore under the assumptions by Corollary 7 there exists a unique competitive equilibrium.

4.4 Related literature on unique equilibrium

It seems worth comparing these results with other approaches to the uniqueness of equilibrium. A main difference is that the results presented here apply equally to finite or infinite dimensional markets with or without short sales, while the existing literature concentrates instead on finite dimensional markets without short sales. For ease of comparison, the following discussion concentrates on economies with finite dimensions and without short sales.

The closest to Theorem 6 above in finite economies without short sales is Theorem 15 on p. 236 of Arrow and Hahn [1] whose proof is connected to the convergence to equilibrium of the global Newton method. However the proof of Theorem 15, on p. 304 of [1] uses a “numeraire assumption” A.11.2 given on page 268.\(^{13}\) No such condition is required in this paper, so that Theorem 6 above is strictly stronger than the results in [1]. Furthermore Corollaries 7 and 8 above include markets where the excess demand function is not defined on the whole price space, as assumed in Theorem 15 of Arrow and Hahn, and Corollary 8 covers markets with short sales and which are finite or infinite dimensional.

Working also on finite economies without short sales Dierker [10] assumes a desirability condition which is similar to that required here, and uses an index argument to show the uniqueness of equilibrium. His conditions and results are different: I assume that the Jacobian never vanishes in the interior of \(\Delta \), or on a convex subset \(C \subset \Delta \), while [10] assumes that there is a price adjustment system which is stable at each equilibrium, or more generally that the Jacobian of the system has the same sign at each equilibrium. The result obtained here is stronger than those in [10]: I prove the global invertibility of the map \(Z_i \) and hence uniqueness of equilibrium while [10] proves only that the equilibrium is unique.

The results presented here are also different from other global invertibility results for finite economies, such as the Gale-Nikaido theorem, which apply to maps defined on closed cubes, and require a nonvanishing Jacobian on the interior of the cube as well as similar conditions on the boundary of the cube. I only require conditions on the interior of the price space \(\Delta \) or a convex subset \(C \subset \Delta \). The desirability condition eliminates boundary equilibrium, so there is no need to study the boundary of the price space.

\(^{13}\)Assumption A.11.2 is used to show that as relative prices \(|p(t)| \to \infty \) the excess demand for a specific good, the “numeraire”, goes to plus infinity, see p. 304 of [1].
References

Department of Economics
Columbia University
1022 International Affairs Bldg.
420 West 118th Street
New York, N.Y., 10027

The following papers are published in the 1995-96 Columbia University Discussion Paper series which runs from early November to October 31 of the following year (Academic Year).

Domestic orders for discussion papers are available for purchase at the cost of $8.00 (U.S.) Per paper and $140.00 (US) for the series.

Foreign orders cost $10.00 (US) per paper and $185.00 for the series.

To order discussion papers, please write to the Discussion Paper Coordinator at the above address along with a check for the appropriate amount, made payable to Department of Economics, Columbia University. Please be sure to include the series number of the requested paper when you place an order.
<table>
<thead>
<tr>
<th>Paper Number</th>
<th>Title</th>
<th>Author(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>9596-01</td>
<td>Protectionist Response to Import Competition in Declining Industries Reconsidered</td>
<td>J. Choi</td>
</tr>
<tr>
<td>9596-02</td>
<td>New Estimates on Climate Demand: Evidence from Location Choice</td>
<td>M. Cragg, M. Kahn</td>
</tr>
<tr>
<td>9596-03</td>
<td>Enforcement by Hearing</td>
<td>C. Sanchirico</td>
</tr>
<tr>
<td>9596-04</td>
<td>Preferential Trading Areas and Multilateralism: Strangers, Friends or Foes?</td>
<td>J. Bhagwati, A. Panagariya</td>
</tr>
<tr>
<td>9596-05</td>
<td>Simplification, Progression and a Level Playing Field</td>
<td>W. Vickrey</td>
</tr>
<tr>
<td>9596-06</td>
<td>The Burden of Proof in Civil Litigation</td>
<td>C. Sanchirico</td>
</tr>
<tr>
<td>9596-07</td>
<td>Market Structure and the Timing of Technology Adoption</td>
<td>J. Choi, M. Thum</td>
</tr>
<tr>
<td>9596-08</td>
<td>The Emergence of the World Economy</td>
<td>R. Findlay</td>
</tr>
<tr>
<td>9596-09</td>
<td>The Global Age: From a Skeptical South to a Fearful North</td>
<td>J. Bhagwati</td>
</tr>
<tr>
<td>9596-10</td>
<td>A Conformity Test for Cointegration</td>
<td>P. Dhrymes</td>
</tr>
<tr>
<td>9596-11</td>
<td>Identification and Kullback Information in the GLSEM</td>
<td>P. Dhrymes</td>
</tr>
<tr>
<td>9596-12</td>
<td>Informational Leverage and the Endogenous Timing of Product Introductions</td>
<td>J. Choi</td>
</tr>
<tr>
<td>9596-13</td>
<td>Changes in Wage Inequality</td>
<td>J. Mincer</td>
</tr>
<tr>
<td>9596-14</td>
<td>The Design of Monte Carlo Experiments for VAR Models</td>
<td>P. Dhrymes</td>
</tr>
<tr>
<td>9596-15</td>
<td>A Topological Invariant for Competitive Markets</td>
<td>G. Chichilnisky</td>
</tr>
<tr>
<td>9596-16</td>
<td>Topology and Invertible Maps</td>
<td>G. Chichilnisky</td>
</tr>
</tbody>
</table>