2015 Articles
Activation of GTP hydrolysis in mRNA-tRNA translocation by elongation factor G
During protein synthesis, elongation of the polypeptide chain by each amino acid is followed by a translocation step in which mRNA and transfer RNA (tRNA) are advanced by one codon. This crucial step is catalyzed by elongation factor G (EF-G), a guanosine triphosphatase (GTPase), and accompanied by a rotation between the two ribosomal subunits. A mutant of EF-G, H91A, renders the factor impaired in guanosine triphosphate (GTP) hydrolysis and thereby stabilizes it on the ribosome. We use cryogenic electron microscopy (cryo-EM) at near-atomic resolution to investigate two complexes formed by EF-G H91A in its GTP state with the ribosome, distinguished by the presence or absence of the intersubunit rotation. Comparison of these two structures argues in favor of a direct role of the conserved histidine in the switch II loop of EF-G in GTPase activation, and explains why GTP hydrolysis cannot proceed with EF-G bound to the unrotated form of the ribosome.
Files
- e1500169.full.pdf application/pdf 1.97 MB Download File
Also Published In
- Title
- Science Advances
- DOI
- https://doi.org/10.1126/sciadv.1500169
More About This Work
- Academic Units
- Biochemistry and Molecular Biophysics
- Publisher
- American Association for the Advancement of Science
- Published Here
- February 20, 2016