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ABSTRACT

The Gauss curvature flow : Regularity and Asymptotic Behavior

Kyeongsu Choi

This thesis contains the author’s results on the evolution of convex hypersurfaces by positive
powers of the Gauss curvature

B

Bt
F “ Kα~n.

We first establish interior estimates for strictly convex solutions by deriving lower bounds for
the principal curvatures and upper bounds for the Gauss curvature. We also investigate the opti-
mal regularity of weakly convex translating solutions. The interesting case is when the translator
has flat sides. We prove the existence of such translators and show that they are of optimal class
C1,1. Finally, we classify all closed self-similar solutions of the Gauss curvature flow which is
closely related to the asymptotic behavior.
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Chapter 1

Introduction

We consider a family of complete non-compact strictly convex hypersurfaces Σt embedded in
Rn`1 which evolve by any positive power of their Gauss curvature K.

Given a complete and strict convex hypersurface Σ0 embedded in Rn`1, we let F0 : Mn Ñ

Rn`1 be an immersion with F0pMnq “ Σ0. For a given number α ą 0, we say that an one-
parameter family of immersions F : Mn ˆ p0,T q Ñ Rn`1 is a solution of the α-Gauss curvature
flow, if for each t P p0,T q, FpMn, tq “ Σt is a complete and strictly convex hypersurface embed-
ded in Rn`1, and Fp¨, tq satisfies

(˚α)

$

&

%

B

Bt Fpp, tq “ Kαpp, tq~npp, tq

lim
tÑ0

Fpp, tq “ F0ppq

where Kpp, tq is the Gauss curvature of Σt at Fpp, tq and ~npp, tq is the interior unit normal vector
of Σt at the point Fpp, tq.

The Gauss curvature flow was first introduced by W. Firey in [18], where he showed that a
closed strictly convex and centrally symmetric solution in R3 converges to a round sphere after
rescailing the solution. In [25] K. Tso established the existence of closed and strictly convex
solutions in Rn`1 and showed that it converges to a point. B. Chow [12] extended Tso’s result to
the flow by positive powers of the Gauss curvature, namely a strictly convex closed solution to
the α-Gauss curvature flow BtF “ Kα~n. Schnürer [24] showed the existence of strictly convex
entire graph solution to the α-Gauss curvature flow for 0 ă α ă 1

n´1 . The author, jointly with
P. Daskalolpoulos, L. Kim, and K. Lee [10], established the all-times existence of non-compact,
complete, and strictly convex solution solutions to the α-Gauss curvature flow for α ą 0. In
addition, J. Urbas [26], [27] showed that given an exponent α ą 1

2 and a strictly convex open
bounded domain Ω Ă Rn`1, there exists a complete smooth strictly convex graph translating by
the α-power of the Gauss curvature Kα.
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Regarding weakly convex solutions, B. Andrews [1] showed the optimal C1,1 regularity of the
solution to the Gauss curvature flow in the case n “ 2, and extended to the result to α P r1

2 , 1s and
n “ 2 with X. Chen [3]. In [16] the C1,β regularity of weakly convex viscosity solutions to the
α-Gauss curvature flow was established. The author, jointly with P. Daskalolpoulos and K. Lee
[11], established the optimal C1,1 regularity to the translating solutions to the Gauss curvature
flow in the case n “ 2. They also showed that the translator defined on a square has flat sides so
that C1,1 is actually the optimal regularity.

In particular, if the initial closed convex hypersurface Σ0 has a flat side, then the solution Σt to
the α-Gauss curvature flow with α ą 1

n preserves the flat side for some finite time. See [14], [15],
[23]. If α ď 1

n , B. Andrews [2] showed that any weakly convex closed hypersurface becomes
strictly convex immediately by the α-Gauss curvature flow.

The convergence of the flow to a closed self-similar solution has been widely studied in
[1, 2, 3, 4, 12, 13, 19, 20, 21, 22] for α ą 1

n`2 . In the case α “ 1
n`2 , E. Calabi [7] that showed

that closed self-similar solutions are ellipsoids. In the case α “ 1
n , B. Chow [12] established the

convergence to the round sphere, namely the sphere is the unique closed self-similar solution.
In the two dimension case n “ 2, B. Andrews showed the convergence to sphere for α “ 1 in
[1], and for α P p1

2 , 1q with X. Chen in [3]. P. Guan and L. Ni [19] obtained the convergence
of the Gauss curvature flow to a self-similar solution and in [4] they extended the same result to
α ě 1

n`2 jointly with B. Andrews. So, it remained to classify the closed self-similar solutions
Σt “ pT ´ tq

1
1`nαΣ. Namely, it is enough to classify strictly convex closed hypersurfaces Σ

satisfying

Kα
ppq “ ´xFppq, ~nppqy.(˚˚α)

The author and P. Daskalopoulus [9] showed the uniqueness of the closed self-similar solu-
tion to the α-Gauss curvature flow for α P r1

n , 1`
1
nq, and jointly with S. Brendle, they extended

the result to α ą 1
n`2 . Moreover, in the case α “ 1

n`2 , they gave an alternating proof of the
classification result of Calabi [7].
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Chapter 2

Preliminaries

1 Notation
We summarize the following notation which will be frequently used in what follows.

(i) We recall that gi j “ xFi, F jy, where Fi B ∇iF. Also, we denote as usual by gi j the
inverse matrix of gi j and F i “ gi j F j.

(ii) Assume Σt is a strictly convex graph solution of (˚α) in Rn`1. Then, we let ūp¨, tq :
Mn Ñ R denote the height function ūpp, tq “ xFpp, tq, ~en`1y.

(iii) Given constants M and β ě 0, we define the cut-off function ψβ by

ψβpp, tq “ pM ´ βt ´ ūpp, tqq` “ maxtM ´ βt ´ ūpp, tq, 0u.

In particular, we denote ψ0 B pM ´ ūpp, tqq` by ψ for convenience.
Also, given a constant R ą 0 and a point Y P Rn`1, we define the cut-off function sψ

by

sψpp, tq “ pR2
´ |Fpp, tq ´ Y|2q` “ maxtR2

´ |Fpp, tq ´ Y|2, 0u

(iv) Given a ball Bn`1
R pYq Ă Rn`1 and a complete hypersurface Σ Ă Rn`1 , we say that a

compact hypersurface Σc with boundary BΣc is cut off from Σ by Bn`1
R pYq, if Σc Ă Σ

and BΣc Ă BBn`1
R pYq hold. Moreover, Given an immersion F : Mn ˆ r0,T q Ñ Rn`1

defining FpMn, tq “ Σt and a ball Bn`1
R pYq cutting Σt, we define a cut-off function

η : Mn ˆ r0,T q Ñ Rn`1 by

ηpp, tq “ p|Fpp, tq ´ Y|2 ´ R2
q`.

(v) For a strictly convex smooth hypersurface Σt, we denote by bi j the the inverse ma-
trix ph´1qi j of its second fundamental form hi j, namely bi jh jk “ δi

k. Notice that the
eigenvalues of bi j on an orthonormal frame are the principal radii of curvature.
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Figure 1. Cutting ball

(vi) We denote by L the linearized operator

L “ αKαbi j∇i∇ j

Furthermore, x , yL denotes the associated inner product x∇ f ,∇gyL “ αKαbi j∇i f∇ jg,
where f , g are differentiable functions on Mn, and } ¨ }L denotes the L-norm given by
the inner product x , yL

(vii) We denote by υ “ x~n, ~en`1y
´1 the gradient function.

(viii) H and λmin denote the mean curvature and the smallest principal curvature, respec-
tively.

(ix) We will use in the sequel the functions Z : Mn Ñ R and W : Mn Ñ R defined by

Zppq “
´

Kαbi jgi j ´
nα´ 1

2α
|F|2

¯

ppq, Wppq “
´

Kαλ´1
min ´

nα´ 1
2nα

|F|2
¯

ppq.

2 Evolution equations
In this section we will derive some basic equations of the α-Gauss curvature flow.

Proposition 2.1. Assume that Σt is a complete strictly convex graph solution of (˚α). Then,
the following hold

Btgi j “ ´2Kαhi j(2.1)

Btgi j
“ 2Kαhi j(2.2)

Bt~n “ ´∇Kα B ´p∇ jKα
qF j(2.3)

Btψβ “ Lψ` pnα´ 1q υ´1Kα
´ β(2.4)

Btsψ ď L sψ` 2
`

nα` 1qpλ´1
min ` RqKα(2.5)

Bthi j “ L hi j ` αKα
pαbklbmn

´ bkmbnl
q∇ihmn∇ jhkl ` αKαHhi j ´ p1` nαqKαhikhk

j(2.6)

BtKα
“ LKα

` αK2αH(2.7)

Btbpq
“ L bpq

´ αKαbipb jq
pαbklbmn

` bkmbnl
q∇ihkl∇ jhmn ´ αKαHbpq

` p1` nαqKαgpq(2.8)

Btυ “ L υ´ 2υ´1
}∇υ}2

L ´ αKαHυ(2.9)
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Proof of (2.1). Observe Btgi j “ xBt∇iF,∇ jFy ` x∇iF, Bt∇ jFy “ x∇iBtF,∇ jFy ` x∇iF,∇ jBtFy.
Hence, x∇iF, BtFy “ 0 gives Btgi j “ ´2xBtF,∇i∇ jFy “ ´2xKα~n, hi j~ny “ ´2Kαhi j.

Proof of (2.2). From gi jg jk “ δi
k, we can derive Btgi j “ ´gikg jlBtgkl “ 2Kαgikg jlhkl “ 2Kαhi j.

Proof of (2.3). |~n|2 “ 1 implies xBt~n, ~ny “ 0. Also, x~n,∇iFy “ 0 leads to

xBt~n,∇iFy “ ´x~n, Bt∇iFy “ ´x~n,∇iBtFy “ ´x~n,∇ipKα~nqy “ ´∇i Kα

from which (2.3) readily follows.

Proof of (2.4). The definition of the linearized operator L— αKαbi j∇i∇ j gives

LF B αKαbi j ∇i∇ jF “ αKαbi j hi j ~n “ nαKα ~n “ pnαqBtF(2.10)

which yields that Lū “ pnαqBtū. Therefore,

Btψβ “ ´β´ Btū “ ´Lū` pnα´ 1qBtū´ β

holds on the support of ψβ B pM ´ βt ´ ūpp, tqq`. Substituting for Btū “ xBtF, ~en`1y “

xKα~n, ~en`1y “ Kαυ´1, where υ B x~n, ~en`1y
´1, yields (2.4).

Proof of (2.5). By (2.10), on the support of sψ— pR2 ´ |F ´ Y|2q` we have

Btsψ “´ 2xpLF ´ pnαqBtFq ` BtF, F ´ Yy “ ´2xLF, F ´ Yy ` 2pnα´ 1qxKα~n, F ´ Yy

ďL sψ` 2}∇F}2
L ` 2Kα

|nα´ 1||F ´ Y| ď L sψ` 2αKαbi jgi j ` 2pnα` 1qRKα

ďL sψ` 2nαλ´1
minKα

` 2pnα` 1qRKα
ď L sψ` 2pnα` 1qpλ´1

min ` RqKα.

Proof of (2.6). We have

Bthi j “Bt x∇i∇ jF, ~ny “ x∇i∇ jBtF, ~ny ` x∇i∇ jF, Bt~ny “ x∇i∇ jpKα~nq, ~ny ` xhi j ~n, Bt~ny

“∇i∇ jKα
` x∇ jKα∇i~n, ~ny ` x∇iKα ∇ j~n, ~ny ` Kα

x∇i∇ j~n, ~ny ` 0.

By x∇i~n, ~ny “ 0 and x∇i∇ j~n, ~ny “ ´x∇ j~n,∇i~ny “ ´himhm
j , we deduce

Bthi j “ ∇i∇ jKα
´ Kαhimhm

j .(2.11)

Applying K “ detphi jg jkq “ detphi jq detpgklq, ∇ log detphi jq “ bkl∇hkl and Bbkl{Bhmn “ ´bkmbln

on the first term on the right hand side of (2.11), yields

Bthi j “ ∇i∇ jKα
´ Kαhimhm

j “ ∇ipαKαbkl∇ jhklq ´ Kαhimhm
j

“ α2Kαbklbmn∇ihmn∇ jhkl ` αKα Bbkl

Bhmn
∇ihmn∇ jhkl ` αKαbkl∇i∇ jhkl ´ Kαhimhm

j

“ αKαbkl ∇i∇ jhkl ` αKα
pαbklbmn

´ bkmbln
q∇ihmn∇ jhkl ´ Kαhimhm

j .
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On the other hand,

αKαbkl∇i∇ jhkl “αKαbkl∇i∇kh jl “ αKαbkl∇k∇ih jl ` αKαbklRik jmhm
l ` αKαbklRiklmhm

j

“αKαbkl∇k∇lhi j ` αKα
phi jhkm ´ himhk jqhm

l blk
` αKα

philhkmbkl
´ himhklbkl

qhm
j

“Lhi j ` αKα
phi jhkm ´ himhk jqgmk

` αKα
phim ´ nhimq hm

j

“Lhi j ` αKαHhi j ´ nαKαhim hm
j

and (2.6) easily follows.

Proof of (2.7). From (2.11) we have

LKα
“ αKαbi j

pBthi j ` Kαhimhm
j q “ αKαbi j

Bthi j ` αK2αH.

Also, from K “ detphi jq detpgklq, we derive that

BtKα
“ αKα

Btplogpdet hi jq ` logpdet gkl
qq “ αKα bi j

Bthi j ` αKα gklBtgkl

“ LKα
´ αK2αH ` αKα gklBtgkl.

Aplying (2.2) on the last term yields (2.7).

Proof of (2.8). The identity bi jh jk “ δi
k leads to

Btbpq
“ ´bipb jq

Bthi j(2.12)

∇mbpq
“ ´bipb jq∇mhi j(2.13)

Therefore,

∇n∇mbpq
“ ´b jq∇nbip∇mhi j ´ bip∇nb jq∇mhi j ´ bipb jq∇n∇mhi j

“ 2b jqbikbpl∇nhkl∇mhi j ´ bipb jq∇n∇mhi j.

Hence, Lbpq B αKα bnm ∇n∇mbpq satisfies

Lbpq
“ 2αKαbnmb jqbikbpl∇nhkl∇mhi j ´ bipb jqLhi j “ 2αKαblpb jqbkibnm∇lhkn∇ jhim ´ bipb jqLhi j.

Combing the last identity with (2.6) and (2.12) yields

Btbpq
“ ´bipb jq

pLhi j ` αKα
pαbklbmn

´ bkmbnl
q∇ihkl∇ jhmn ` αKαH hi j ´ p1` nαqKαhikhk

jq

“ Lbpq
´ αKαbipb jq

pαbklbmn
` bkmbnl

q∇ihkl∇ jhmn ´ αKαHbpq
` p1` nαqKαgpq

which gives (2.8).
6



Proof of (2.9). By (2.3) we have Btυ “ ´υ
2 x~en`1, Bt~ny “ υ2 x~en`1,∇Kαy. Furthermore,

Lυ “ ´αKαbi j ∇ipυ
2
x~en`1,∇ j~nyq “ ´2αKαbi jυ∇iυ x~en`1,∇ j~ny ` αKαbi jυ2

x~en`1,∇iph jkFk
qy

“ 2υ´1
}∇υ}2

L ` αKαbi jh jkhk
i υ

2
x~en`1, ~ny ` υ2

x~en`1, αKαbi j
p∇ih jkqFk

y

“ 2υ´1
}∇υ}2

L ` αKαHυ` υ2
x~en`1,∇Kα

y

Combining the above yields (2.9).

3 Equations of Self-Shrinkers
In this section we will derive basic equations of the closed self-similar solutions Σ to the α-

Gauss curvature flow. Since pT´tq
1

nα`1Σ is a solution to the α-Gauss curvature flow, an immersion
F : Mn Ñ Rn`1 of FpMnq “ Σ satisfies (˚˚α)

Proposition 2.2. Given a strictly convex smooth solution F : Mn Ñ Rn`1 to (˚˚α), the fol-
lowing hold

∇ib jk
“´ b jlbkm∇ihlm,(2.14)

L |F|2 “2αKαbi j
pgi j ´ hi jKα

q “ 2αKαbi jgi j ´ 2nαK2α,(2.15)

∇iKα
“hi jxF, F j

y,(2.16)

LKα
“xF,∇Kα

y ` nαKα
´ αK2αH,(2.17)

L bpq
“K´αbprbqs∇rKα∇sKα

` αKαbprbqsbi jbkm∇rhik∇sh jm(2.18)

` xF,∇bpq
y ´ bpq

´ pnα´ 1qgpqKα
` αKαHbpq.

Proof. From ∇ipb jkhklq “ ∇iδ
j
l “ 0, we can derive hkl∇ib jk “ ´b jk∇ihkl. Hence, we have

(2.14) by

∇ib jm
“ blmhkl∇ib jk

“ ´blmb jk∇ihkl.

Also, by definition L B αKαbi j∇i∇ j we have

L |F|2 “ 2αKαbi j
xFi, F jy ` 2αKαbi j

xF,∇i∇ jF~ny “ 2αKαbi jgi j ` 2αKαbi j
xF, hi j~ny.

Thus, the given equation (˚˚α) implies (5.5).
Equation (2.16) can be simply obtained by differentiating (˚˚α)

∇iKα
“ hikxF, Fk

y.

Differentiating the equation above again we obtain

∇i∇ jKα
“ ∇ih jkxF, Fk

y ` hi j ` hikhk
jxF, ~ny “ xF,∇hi jy ` hi j ´ hikhk

jK
α.

7



On the other hand, (2.14) and direct differentiation yield

∇i∇ jKα
“ ∇ipαKαbpq∇ jhpqq “ αKαbpq∇i∇ jhpq ` α2Kαbrsbpq∇ihrs∇ jhpq ´ αKαbprbqs∇ihrs∇ jhpq.

Observing

∇i∇ jhpq “ ∇i∇ph jq “∇p∇ih jq ` Rip jmhm
q ` Ripqmhm

j

“∇p∇qhi j ` phi jhpm ´ himh jpqhm
q ` phiqhpm ´ himhpqqhm

j

we obtain

αKαbpq∇i∇ jhpq “ αKαbpq∇p∇qhi j ` αKαHhi j ´ nαKαhimhm
j “ L hi j ` αKαHhi j ´ nαKαhimhm

j .

Combining the equations above yields

L hi j “´ α2Kαbrsbpq∇ihrs∇ jhpq ` αKαbprbqs∇ihrs∇ jhpq(2.6)

` xF,∇hi jy ` hi j ` pnα´ 1qhikhk
jK

α
´ αKαHhi j.

We now observe

LKα
“αKαbi j∇ipαKαbpq∇ jhpqq

“α3K2αbi jbpqbrs∇ihrs∇ jhpq ´ α2K2αbi jbprbqs∇hrs∇ jhpq ` αKαbpqL hpq

which gives (2.17), since

LKα
“ αKαbi j

`

xF,∇hi jy ` hi j ` pnα´ 1qhikhk
jK

α
´ αKαHhi j

˘

“ xF,∇Kα
y ` nαKα

´ αK2αH.

Finally, by using (2.14), we can derive

L bpq
“ αKαbi j∇ip´bprbqs∇ jhrsq “ 2αKαbi jbpkbrmbqs∇ihkm∇ jhrs ´ bprbqsL hrs.

Applying (2.6) yields

L bpq
“α2Kαbprbqsbi jbkm∇rhi j∇shkm ` αKαbprbqsbi jbkm∇rhik∇sh jm

` xF,∇bpq
y ´ bpq

´ pnα´ 1qgpqKα
` αKαHbpq.

Thus, ∇Kα “ αKαbi j∇hi j gives the desired result. �

4 Euler’s formula
Finally, we recall Euler’s formula to use Pogorelov computations.

Proposition 2.3. Let Σ be a smooth hypersurface and F : Mn Ñ Rn`1 be a smooth immersion
with FpMnq “ Σ. Then, for all p P Mn and i P t1, ¨ ¨ ¨ , nu, the following holds

hiippq
giippq

ď λmaxppq.
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We can simply modify Euler’s formula to bi j as follows:

Proposition 2.4. Let Σ be a smooth strictly convex hypersurface and F : Mn Ñ Rn`1 be a
smooth immersion with FpMnq “ Σ. Then, for all p P Mn and i P t1, ¨ ¨ ¨ , nu, the following holds

biippq
giippq

ď
1

λminppq
.

Proof. Let tE1, ¨ ¨ ¨ , Enu be an orthonormal basis of TΣFppq satisfying LpE jq “ λ j E j, where
L is the Weingarten map and λ1, ¨ ¨ ¨ , λn are the principal curvatures of Σ at p. Denote by tai ju

the matrix satisfying Fippq B ∇iFppq “ ai jE j and by tci ju the diagonal matrix diagpλ1, ¨ ¨ ¨ , λnq.
Then, LFippq “ hi jppqF jppq implies

bi j
ppqLF jppq “ bi j

ppqh jkppqFk
ppq “ F i

ppq “ gi j
ppqa jmEm

Observing that for the sum a jkEk “
řn

k“1 a jkEk we have Lpa jkEkq “ a jkLpEkq “ a jkλkEk “

a jkckmEm, it follows that

gi j
ppqa jmEm “ bi j

ppqLF jppq “ bi j
ppqLpa jkEkq “ bi j

ppqa jkckmEm

Hence,
gi j
ppqa jm “ bi j

ppqa jkckm

Denoting by ai j and ci j the inverse matrices of ai j and ci j respectively, we have

gi j
ppqa jmcmlaln

“ bi j
ppqa jkckmcmlaln

“ bin
ppq

Thus, for each i P t1, ¨ ¨ ¨ , nu, the following holds

bii
ppq “

ÿ

j,l,m

gi j
ppqa jmcmlali

“
ÿ

j,l,m

xF i
ppq, F j

ppqya jmcmlali

By setting F ippq “ āi jE j, we observe a ji “ a jkxFkppq, F ippqy “ a jkxaklEl, āimEmy “ a jkaklāimδml “

āi j. Thus, we have xF ippq, F jppqy “ xakiEk, ar jEry “ akiak j, which yields

bii
ppq “

ÿ

j,k,l,m

akiak ja jmcmlali
“

ÿ

k,l,m

akiδk
mcmlali

“
ÿ

k,l

akicklali
“
ÿ

k

akiakiλ´1
k “

ÿ

k

paki
q

2λ´1
k

ď
ÿ

k

paki
q

2λ´1
min “ λ´1

min

ÿ

k, j

xakiEk, a jiE jy “ λ´1
minxF

i
ppq, F i

ppqy “ λ´1
mingii

ppq

�

9



Proposition 2.5. Let Σ be a strictly convex smooth hypersurface and F : Mn Ñ Rn`1 be a
smooth immersion with FpMnq “ Σ. Then, for all p P Mn and i P t1, ¨ ¨ ¨ , nu, the following holds

bi1gi jb j1ppq
g11ppq

ď
1

λ2
minppq

.

Proof. For a fixed point p P Mn, we choose an orthonormal basis tE1, ¨ ¨ ¨ , Enu of TΣFppq

such that LpE jq “ λ j E j, where L is the Weingarten map and λ1, ¨ ¨ ¨ , λn are the principal curva-
tures of Σ at p. Given a chart pϕ,Uq of p P ϕpUq Ă Mn, we denote by tai ju the matrix satisfying
Fippq B ∇iFppq “ ai jE j and by tci ju the diagonal matrix diagpλ1, ¨ ¨ ¨ , λnq. We also denote by
tai ju and tci ju the inverse matrices of tai ju and tci ju, respectively.

We observe gi jppq “ xFi, F jyppq “ xaikEk, a jlEly “ aika jk. Also, we can obtain F ippq “
a jiE j by a ji “ a jkxFkppq, F ippqy “ xa jkaklEl, F ippqy “ xE j, F ippqy. So, we have gi jppq “
xF i, F jyppq “ akiak j. In addition, LFippq “ hi jppqF jppq implies

amiEm “F i
ppq “ bi j

ppqh jkppqFk
ppq “ bi j

ppqLF jppq

“bi j
ppqLpa jkEkq “ bi j

ppqa jkLpEkq “ bi j
ppqa jkλkEk “ bi j

ppqa jkckmEm.

Hence, we have binppq “ bi jppqa jkckmcmlaln “ amicmlaln, and thus the following holds

b1rgrsbs1
ppq “ai1ci ja jrarkaskam1cmlals

“ ai1ci jδ
j
kδ

l
ka

m1cml
“ ai1ci jam1cm j

“
ÿ

j

pa j1
q

2λ´2
j

ď
ÿ

j

pa j1
q

2λ´2
min “ λ´2

min

ÿ

k, j

xak1Ek, a j1E jy “ λ´2
minxF

1
ppq, F1

ppqy “ λ´2
ming11

ppq,

which is the desired result for i “ 1 and we can obtain the same result for each i P t1, ¨ ¨ ¨ , nu. �
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Chapter 3

Regularity of strictly convex solutions

In this chapter, we study the regularity of strictly convex solutions. In particular, we will establish
the lower bounds for principal curvatures and the upper bounds for the Gauss curvature, which
yield the upper bounds for principal curvatures. By using the curvature estimates, the existence
results [10], [12] were obtained as follows:

Theorem 3.1 (Chow). Let Σ0 be a closed, smooth, and strictly convex hypersurface embedded
in Rn`1. Then, given an immersion F0 : Mn Ñ Rn`1 such that Σ0 “ F0pMnq, and for any
α P p0,`8q, there exists a closed smooth and strictly convex solution Σt :“ FpMn, tq of the α-
Gauss curvature flow (˚α) for finite time 0 ă t ă T, where Σt converges to a point as t approaches
to T .

Theorem 3.2 (Choi-Daskalopoulos-Kim-Lee). Let Σ0 be a complete, non-compact, and strictly
convex hypersurface embedded in Rn`1. Then, given an immersion F0 : Mn Ñ Rn`1 such that
Σ0 “ F0pMnq, and for any α P p0,`8q, there exists a complete, non-compact, smooth and
strictly convex solution Σt :“ FpMn, tq of the α-Gauss curvature flow (˚α) which is defined for all
time 0 ă t ă `8.

Σ0

(a) Ω “ Rn

Σ0

(b) Ω “ BRp0q

Σ0

(c) Ω “ Rn´1 ˆ R`

Figure 1. Examples of the initial graph Σ0 defined on a domain Ω Ă Rn.
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1 Lower bounds on the principal curvatures
In this section we will obtain lower bounds on the principal curvatures. One can easily

establish the following lower bounds by combining equations (2.1) and (2.8) and applying the
maximum principle.

Theorem 3.3. Given a closed, smooth, and strictly convex solution Σt to (˚α), the following
holds

bi jgi j ď max
Σ0

bi jgi j.

We will achieve the interior estimates by using Pogorelov type estimates with respect to bii.
Recall that bi j denotes the inverse matrix of the second fundamental form hi j. Since bii depends
on charts, we will find the relation between bii and the principal curvatures as [8]. We recall the
definition of the cut-off function ψβpp, tq B pM ´ βt ´ ūpp, tqq`, where ūpp, tq B xFpp, tq, ~en`1y

denotes the height function.

Theorem 3.4 (Local lower bound for the principal curvatures). Assume that Σt is a complete
strictly convex smooth graph solution of (˚α) defined on Mn ˆ r0,T s, for some T ą 0. Then,
given constants β ą 0 and M ě β, the following holds

`

ψ
´np1` 1

α q

β λmin
˘

pp, tq ě M´np1` 1
α q min

"

inf
QM
λminpp, 0q,

βpn´1q` 1
α

pn2pn` 1qpnα´ 1q`qpn´1q` 1
α

*

where QM “ tp P Mn : ūpp, 0q ă Mu, and pnα´ 1q´1
` “ `8, if nα ď 1.

Proof. Consider the cut-off function ψβ B pM´βt´ūpp, tqq`, where ūpp, tq “ xFpp, tq, ~en`1y

denotes the height function. Since Σt is a complete and strictly convex graph, ψβ is compactly

supported. Therefore, for a fixed T P p0,`8q, the function ψnp1` 1
α q

β λ´1
min attains its maximum on

Mn ˆ r0,T s at a point pp0, t0q. If t0 “ 0, then we obtain the desired result by the bound ψβ ď M
and the conditions on our initial data. So, we may assume in what follows that t0 ą 0.

We begin by choosing a chart pU, ϕq with p0 P ϕpUq Ă Mn, on which the covariant deriva-
tives

 

∇iFpp0, t0q B BipF ˝ ϕqpϕ´1pp0q, t0q
(

i“1,¨¨¨ ,n form an orthonormal basis of pTΣt0qFpp0,t0q

satisfying

gi jpp0, t0q “ δi j, hi jpp0, t0q “ δi jλipp0, t0q, λ1pp0, t0q “ λminpp0, t0q.

In particular, at the point pp0, t0q we have b11pp0, t0q “ λ´1
minpp0, t0q and g11pp0, t0q “ 1. Next, we

define the function w : ϕpUq ˆ r0,T s Ñ R by

w B ψ
np1` 1

α q

β

b11

g11 .

12



Notice that on the chart pU, ϕq, if t ‰ t0, then the covariant derivatives
 

∇iFpp0, tq
(

i“1,¨¨¨ ,n may
not form an orthonormal basis of pTΣtqFpp0,tq. However, since Proposition 2.4 holds for every

chart and immersion, we have w ď ψ
np1` 1

α q

β λ´1
min. Hence, for pp, tq P ϕpUq ˆ r0,T s, the following

holds

wpp, tq ď ψ
np1` 1

α q

β λ´1
minpp, tq ď ψ

np1` 1
α q

β λ´1
minpp0, t0q “ wpp0, t0q

which shows that w attains its maximum at pp0, t0q.
Observe next that since ∇g11 “ 0, the following holds on the support of ψβ

∇iw
w
“ n

´

1`
1
α

¯∇iψβ

ψβ
`
∇ib11

b11 .(3.1)

Let us differentiate the equation above, again.

∇i∇ jw
w

´
∇iw∇ jw

w2 “ n
´

1`
1
α

¯∇i∇ jψβ

ψβ
´ n

´

1`
1
α

¯∇iψβ∇ jψβ

ψ2
β

`
∇i∇ jb11

b11 ´
∇ib11∇ jb11

pb11q2
.

Multiply by αKα bi j and sum the equations over all i, j to obtain

Lw
w
´
}∇w}2

L

w2 “ n
´

1`
1
α

¯Lψβ

ψβ
´ n

´

1`
1
α

¯}∇ψβ}
2
L

ψ2
β

`
Lb11

b11 ´
}∇b11}2

L

pb11q2
.

On the other hand, on the support of ψβ, we also have

Btw
w
“ n

´

1`
1
α

¯Btψβ

ψβ
`
Btb11

b11 ´
Btg11

g11 .

Subtract the equations above. Then, w´2}∇w}2
L
ě 0 implies the following inequality

Lw
w
´
Btw
w
ě n

´

1`
1
α

¯´Lψβ

ψβ
´
Btψβ

ψβ

¯

´ n
´

1`
1
α

¯}∇ψβ}
2
L

ψ2
β

`

´

Lb11

b11 ´
Btb11

b11

¯

´
}∇b11}2

L

pb11q2
`
Btg11

g11 .

By 2.2 and (2.4) we have Btg11 “ 2Kαh11 and Lψβ ´ Btψβ “ β´ pnα´ 1qυ´1Kα, while by (2.8)

Lb11
´ Btb11

“ αKαbi1b j1
pαbklbmn

` bkmbnl
q∇ihkl∇ jhmn ` αKαHb11

´ p1` nαqKαg11.

Combining the above yields

Lw
w
´
Btw
w
ě ´n

´

1`
1
α

¯}∇ψβ}
2
L

ψ2
β

´
}∇b11}2

L

pb11q2
`
αKαbi1b j1pαbklbmn ` bkmbnlq

b11 ∇ihkl∇ jhmn

´ n
´

1`
1
α

¯

pnα´ 1q
Kαυ´1

ψβ
` n

´

1`
1
α

¯ β

ψβ
` αKαH ´ p1` nαqKαg11

b11 ` 2Kαh11

g11 .(3.2)

Now, at pp0, t0q, the following holds

αKαH ´ p1` nαqKαg11

b11 ` 2Kαh11

g11 ě nαKαλmin ´ p1` nαqKαλmin ` 2Kαλmin “ Kαλmin.

(3.3)
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In addition, if nα ě 1, then H ě nλmin gives

αKαH “ pα´
1
n
qKαH `

1
n

KαH ě pnα´ 1qKαλmin `
1
n

KαH.

Therefore, in the case that nα ě 1, we can improve (3.3) to obtain

αKαH ´ p1` nαqKαg11

b11 ` 2Kαh11

g11 ě
1
n

KαH.(3.4)

Also, at the maximum point pp0, t0q of w, ∇wpp0, t0q “ 0 holds. So, (3.1) leads to

np1` αq

α

}∇ψβ}
2
L

ψ2
β

`
}∇b11}2

L

pb11q2
“

´

1`
α

np1` αq

¯}∇b11}2
L

pb11q2
“

´

1`
α

np1` αq

¯

α
n
ÿ

i“1

biiKα|∇ib11|2

pb11q2
.

From (2.13), we get ∇ib11 “ ´b1kb1l∇ihkl “ ´pb11q2∇ih11 at pp0, t0q. Hence,

np1` αq

α

}∇ψβ}
2
L

ψ2
β

`
}∇b11}2

L

pb11q2
“ α

´

1`
α

np1` αq

¯

n
ÿ

i“1

bii
pb11

q
2Kα

|∇ih11|
2.

Defining, at pp0, t0q, we define

Ii “ bii
pb11

q
2Kα

|∇ih11|
2

Ji “ bii∇1hii.

We may rewrite the equation above as

np1` αq

α

}∇ψβ}
2
L

ψ2
β

`
}∇b11}2

L

pb11q2
“ αp1`

α

np1` αq
q

n
ÿ

i“1

Ii(3.5)

and also write

bklbmn∇1hkl∇1hmn “ |bmn∇1hmn|
2
“

ˇ

ˇ

ˇ

n
ÿ

i“1

bii∇1hii

ˇ

ˇ

ˇ

2
“

ˇ

ˇ

ˇ

n
ÿ

i“1

Ji

ˇ

ˇ

ˇ

2

which gives

α2Kαbi1b j1bklbmn

b11 ∇ihkl∇ jhmn “ α2Kαb11bklbmn∇1hkl∇1hmn “ α2Kαb11
ˇ

ˇ

ˇ

n
ÿ

i“1

Ji

ˇ

ˇ

ˇ

2
.

Since α2
ě

α2

1` α
, we conclude that

α2Kαbi1b j1bklbmn

b11 ∇ihkl∇ jhmn ě
α2

1` α
Kαb11

ˇ

ˇ

ˇ

n
ÿ

i“1

Ji

ˇ

ˇ

ˇ

2
.(3.6)
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Finally, at pp0, t0q, we also have

αKαbi1b j1bkmbnl

b11 ∇ihkl∇ jhmn “ αKαb11bkmbnl∇1hkl∇1hmn

“ αKαb11
p

n
ÿ

i“1

|bii∇1hii|
2
`
ÿ

i‰ j

biib j j
|∇1hi j|

2
q

ě αKαb11
p

n
ÿ

i“1

|bii∇1hii|
2
` 2

ÿ

i‰1

biib11
|∇1hi1|

2
q

“ αKαb11
n
ÿ

i“1

|Ji|
2
` 2α

ÿ

i‰1

Ii.

Using α ě
α2

1` α
, we may rewrite the inequality above as

αKαbi1b j1bkmbnl

b11 ∇ihkl∇ jhmn ě
α2

1` α
Kαb11

ÿ

i‰1

|Ji|
2
` αKαb11

|J1|
2
` 2α

ÿ

i‰1

Ii.(3.7)

Adding (3.6) and (3.7), gives that at pp0, t0q we have

αKαbi1b j1pαbklbmn ` bkmbnlq

b11 ∇ihkl∇ jhmn ě
α2

1` α
Kαb11

˜

ˇ

ˇ

ˇ

n
ÿ

i“1

Ji

ˇ

ˇ

ˇ

2
`
ÿ

i‰1

|Ji|
2

¸

`αKαb11
|J1|

2
`2α

ÿ

i‰1

Ii

and by the Cauchy-Schwarz inequality

n

˜

ˇ

ˇ

ˇ

n
ÿ

i“1

Ji

ˇ

ˇ

ˇ

2
`
ÿ

i‰1

|Ji|
2

¸

“ p12
` p´1q2 ` ¨ ¨ ¨ ` p´1q2q

˜

ˇ

ˇ

ˇ

n
ÿ

i“1

Ji

ˇ

ˇ

ˇ

2
`
ÿ

i‰1

|Ji|
2

¸

ě

ˇ

ˇ

ˇ

n
ÿ

i“1

Ji `
ÿ

i‰1

´Ji

ˇ

ˇ

ˇ

2
“ |J1|

2

and 2α ě αp1`
α

np1` αq
q, we obtain

αKαbi1b j1pαbklbmn ` bkmbnlq

b11 ∇ihkl∇ jhmn ě α
´

1`
α

np1` αq

¯´

Kαb11
|J1|

2
`
ÿ

i‰1

Ii

¯

.

Combining the last inequality with (3.5) while using that Kαb11|J1|
2 “ I1, yields

´
np1` αq

α

}∇ψβ}
2
L

ψ2
β

´
}∇b11}2

L

pb11q2
`
αKαbi1b j1pαbklbmn ` bkmbnlq

b11 ∇ihkl∇ jhmn ě 0.(3.8)

We conclude by (3.2), (3.3) and (3.8) that at pp0, t0q the following holds

0 ě
Lw
w
´
Btw
w
ě ´n

´

1`
1
α

¯

pnα´ 1q
Kαυ´1

ψβ
` n

´

1`
1
α

¯ β

ψβ
` Kαλmin.
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If nα ď 1, then the last inequality gives n
´

1 `
1
α

¯

ď 0, a contradiction. Hence t0 “ 0, and
therefore the desired result holds. If nα ě 1, then we use the improved inequality (3.4) instead
of (3.3) by and perform the same estimates for all the other terms, so that at pp0, t0q, we obtain

0 ě
Lw
w
´
Btw
w
ě ´n

´

1`
1
α

¯

pnα´ 1q
Kαυ´1

ψβ
` n

´

1`
1
α

¯ β

ψβ
`

1
n

KαH.

Hence

n
´

1`
1
α

¯

pnα´ 1q
υ´1

ψβ
ě n

´

1`
1
α

¯ β

ψβ
K´α `

1
n

H.

Since nα ě 1, we have 1`
1
α
ď 1` n, and using also that υ ě 1, ψβ ď M, and M ě β, we

conclude from the previous inequality that

n2
p1` nqpnα´ 1qψ´1

β ě n2
´

1`
1
α

¯

K´α
β

ψβ
` H ě

´

n2
´

1`
1
α

¯

K´α ` H
¯ β

M

Next, we employ the Young’s inequality

K´α

pn´ 1qα` 1
`

pn´ 1qαH
pn´ 1qα` 1

ě K´
α

pn´1qα`1 H
pn´1qα
pn´1qα`1 “

`

K´1Hn´1
˘

α
pn´1qα`1

and observe the following

K´1Hn´1
“

Hn´1

λ1λ2 ¨ ¨ ¨ λn
“

1
λ1

Hn´1

λ2 ¨ ¨ ¨ λn
ě

1
λ1
“ λ´1

min.

Combining the last three inequalities yields

n2
p1` nqpnα´ 1qMβ´1ψ´1

β ě n2
´

1`
1
α

¯

K´α ` H ě
K´α

pn´ 1qα` 1
`

pn´ 1qαH
pn´ 1qα` 1

ě
`

λ´1
min

˘
α

pn´1qα`1 .

We conclude, that if nα ě 1, the following holds at pp0, t0q

λ´1
min ψ

np1` 1
α q

β ď
`

n2
pn` 1qpnα´ 1qMβ´1

˘pn´1q` 1
α ψ

1` n´1
α

β .

Thus, ψβ ď M gives the desired result. �

2 Speed estimates
We establish upper bounds for the speed Kα. Andrews obtained the following result for

closed solutions to applying the maximum principle to the quantity t
nα

nα`1 Kαp2xF, ~ny´ρq´1 in [2].

Theorem 3.5 (Andrews). Let Σt be a closed, smooth and strictly convex solution to (˚α) de-
fined for t P p0,T s. Assume that ΣT encloses a pn ` 1q-ball Bn`1

ρ p0q of radius ρ ą 0 and Σ0 is
enclosed by Bn`1

R p0q. Then, the following holds

t
nα

nα`1 Kα
ď CpR, ρ,T, α, nq,
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for some constant CpR, ρ,T, α, nq depending on R, ρ,T, α, n.

To establish the interior estimate, we first derive the gradient estimate. We recall the notation
υ B x~n, ~en`1y

´1 (gradient function) and ψβpp, tq B pM ´ βt ´ ūpp, tqq` (cut-off function) where
ūpp, tq “ xFpp, tq, ~en`1y denotes the height function.

Theorem 3.6 (Gradient estimate). Assume that Σt is a complete strictly convex smooth graph
solution of (˚α) defined on Mn ˆ r0,T s, for some T ą 0. Given constants β ą 0 and M ě β,

υpp, tqψβpp, tq ď M max
 

sup
QM

υpp, 0q, β´1n
1

nα`1 pnα´ 1q`
(

where QM “ tp P Mn : ūpp, 0q ă Mu.

Proof. First use (2.4) and (2.9), that is

Btψβ “ Lψβ ` pnα´ 1qυ´1Kα
´ β

Btυ “ Lυ´ 2υ´1
}∇υ}2

L ´ αKαHυ

to compute

Btpψβυq “ ψβLυ´ 2ψβυ´1
}∇υ}2

L ´ αψβKαHυ` υLψβ ` pnα´ 1qKα
´ βυ

“ Lpψβυq ´ 2x∇ψβ,∇υyL ´ 2ψβυ´1
}∇υ}2

L ´ αψβKαHυ` pnα´ 1qKα
´ βυ

“ Lpψβυq ´ 2υ´1
x∇pψβυq,∇υyL ´ αψβKαHυ` pnα´ 1qKα

´ βυ.

Since ψβ is compactly supported, for a fixed T P p0,`8q the function ψβ υ attains its maximum
on Mn ˆ r0,T s at some pp0, t0q. If t0 “ 0, then we obtain the desired result. Assume that t0 ą 0.
Then, at pp0, t0q, we have

Btpψβυq ´Lpψβυq ě 0

which is equivalent to

pnα´ 1qKα
ě αψβKαH υ` βυ “ pαψβKαH ` βq υ.

Hence, an interior maximum can be achieved only if nα ě 1. From now on, we assume that
nα ě 1. If we multiply the last inequality by MK´α and use that M ě β we obtain

pnα´ 1qM ě pαMψβH ` βMK´αqυ ě βpαψβH ` MK´αqυ.

On the other hand, M ě ψβ implies αψβH`MK´α ě αψβH`ψβK´α ě pαH`K´αqψβ. Hence,

pnα´ 1qM ě βpαH ` K´αqψβυ ě
β

n

´ nα
nα` 1

H `
1

nα` 1
K´α

¯

ψβυ.

Next, we apply the Young’s inequality
nα

nα` 1
H `

1
nα` 1

K´α ě H
nα

nα`1 K´
α

nα`1 “ pHK´
1
n q

nα
nα`1 .
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Since H ě n K1{n, we conclude that in the case nα ě 1, t0 ą 0, the following holds at pp0, t0q

pnα´ 1q`M ě βn´1n
nα

nα`1ψβυ “ βn´
1

nα`1 ψβυ

from which the desired inequality readily follows.
�

We now apply the trick developed in [6].

Theorem 3.7 (Local speed bound). Assume that Σt is a complete strictly convex smooth graph
solution of (˚α) defined on Mn ˆ r0,T q. Then, given a constant M ě 1,

´ t
1` t

¯

pψ2 K
1
n qpp, tq ď p4nα` 1q2p2θq1`

1
2nα pθΛ` M2

q

where θ and Λ are constants given by

θ “ suptυ2
pp, sq : ūpp, sq ă M, s P r0, tsu,

Λ “ suptλ´1
minpp, sq : ūpp, sq ă M, s P r0, tsu.

Proof. Choosing a fixed time T0 P p0,T q, we redefine θ and Λ by

θ “ suptυ2
pp, tq : ūpp, tq ă M, t P r0,T0su, Λ “ suptλ´1

minpp, tq : ūpp, tq ă M, t P r0,T0su.

Also, we define η : r0,T q Ñ R by

ηptq “
t

1` t

which will be used later in this proof.
Following the well used idea by Caffarelli, Nirenberg and Spruck in [6] (see also in [17] and

[8]), we define the function ϕ “ ϕpυ2q, depending on υ2, by

ϕpυ2
q “

υ2

2θ ´ υ2 .

The evolution equation of υ in (2.9) gives

Btpυ
2
q “ Lpυ2

q ´ 2αKαH υ2
´ 6}∇υ}2

L.

Then, the evolution equation of ϕpυ2q is

Btϕ “ ϕ1pLυ2
´ 2αKαHυ2

´ 6}∇υ}2
Lq “ Lϕ´ ϕ2}∇υ2

}
2
L ´ ϕ1p2αKαHυ2

` 6}∇υ}2
Lq.

Also, the evolution equation of Kα in (2.7) leads to

BtK2α
“ LK2α

´
1
2

K´2α
}∇K2α

}
2
L ` 2αK3αH
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implying the following evolution equation for K2αϕpυ2q

BtpK2αϕq “LpK2αϕq ´ 2x∇K2α,∇ϕyL ` 2αK3αHpϕ´ ϕ1υ2
q

´
1
2
ϕK´2α

}∇K2α
}

2
L ´ p4ϕ

2υ2
` 6ϕ1qK2α

}∇υ}2
L.

Observe that

´2x∇K2α,∇ϕyL “´ x∇K2α,∇ϕyL ` ϕ´1K2α
}∇ϕ}2

L ´ ϕ´1
x∇ϕ,∇pK2αϕqyL

ď
1
2
ϕK´2α

}∇K2α
}

2
L `

3
2
ϕ´1K2α

}∇ϕ}2
L ´ ϕ´1

x∇ϕ,∇pK2αϕqyL.

Hence, the following inequality holds

BtpK2αϕq ďLpK2αϕq ´ ϕ´1
x∇ϕ,∇pK2αϕqyL ` 2αK3αHpϕ´ ϕ1υ2

q(3.9)

´ p4ϕ2υ2
` 6ϕ1 ´ 6ϕ´1ϕ12υ2

qK2α
}∇υ}2

L.

Now, we have

ϕpυ2
q ` 1 “

2θ
2θ ´ υ2 , ϕ1pυ2

q “
2θ

p2θ ´ υ2q2
, ϕ2pυ2

q “
4θ

p2θ ´ υ2q3
.

Therefore, by direct calculation we obtain

ϕ´ ϕ1υ2
“

υ2

2θ ´ υ2 ´
2θυ2

p2θ ´ υ2q2
“ ´

υ4

p2θ ´ υ2q2
“ ´ϕ2

and

ϕ´1∇ϕ “
2θ ´ υ2

υ2

4θυ∇υ
p2θ ´ υ2q2

“ 4θ ϕv´3∇υ

and also

4ϕ2υ2
` 6ϕ1 ´ 6ϕ´1ϕ12υ2

“
16θυ2

p2θ ´ υ2q3
`

12θ
p2θ ´ υ2q2

´
24θ2

p2θ ´ υ2q3
“

4θ
p2θ ´ υ2q2

ϕ.

Setting f B K2α ϕ in (3.9) and using the identities above yields

Bt f ď L f ´ 4θ ϕυ´3
x∇υ,∇ f yL ´ 2α f KαHϕ´

4θ
p2θ ´ υ2q2

f }∇υ}2
L.

On the other hand, (2.4) gives

Btψ “ Lψ` pnα´ 1qυ´1Kα
ď Lψ` nαKα.

Hence, on the support of ψ, we have

Btψ
4nα
ď Lψ4nα

´ 4nαp4nα´ 1qψ4nα´2
}∇ψ}2

L ` 4n2α2Kαψ4nα´1.

19



Thus, on the support of ψ, the following holds

Btp fψ4nα
q ďLp fψ4nα

q ´ 2x∇ψ4nα,∇ f yL ´ 4θ ϕυ´3ψ4nα
x∇υ,∇ f yL ´ 2α f KαHϕψ4nα

´
4θ

p2θ ´ υ2q2
fψ4nα

}∇υ}2
L ´ 4nαp4nα´ 1q fψ4nα´2

}∇ψ}2
L ` 4n2α2Kαψ4nα´1.

Next, we compute

´4θ ϕυ´3ψ4nα
x∇υ,∇ f yL “

“´ 4θ ϕυ´3
x∇υ,∇p fψ4nα

qyL ` 16nαθ ϕυ´3 fψ4nα´1
x∇υ,∇ψyL

ď´ 4θ ϕυ´3
x∇υ,∇p fψ4nα

qyL `
4θ fψ4nα}∇υ}2

L

p2θ ´ υ2q2
` 16n2α2θ p2θ ´ υ2

q
2ϕ2υ´6 fψ4nα´2

}∇ψ}2
L

“´ 4θ ϕυ´3
x∇υ,∇p fψ4nα

qyL `
4θ

p2θ ´ υ2q2
fψ4nα

}∇υ}2
L ` 16 n2α2θυ´2 fψ4nα´2

}∇ψ}2
L.

Moreover, we have

´2x∇ψ4nα,∇ f yL “ ´2ψ´4nα
x∇ψ4nα,∇p fψ4nα

qyL ` 32n2α2 fψ4nα´2
}∇ψ}2

L.

Combining the above gives

Btp fψ4nα
q ďLp fψ4nα

q ´ x2ψ´4nα∇ψ4nα
` 4θϕυ´3∇υ,∇p fψ4nα

qyL ´ 2α f KαHϕψ4nα

`
`

32 n2α2
` 16 n2α2θυ´2

´ 4nαp4nα´ 1q
˘

fψ4nα´2
}∇ψ}2

L ` 4n2α2Kαψ4nα´1.

In addition, on the support of ψ, we have ∇ψ “ ´∇ū “ ´∇xF, ~en`1y which leads to

}∇ψ}2
L “ }∇xF, ~en`1y}

2
L ď

n`1
ÿ

m“1

}∇xF, ~emy}
2
L “

n`1
ÿ

m`1

αKαbi j
xFi, ~emy xF j, ~emy

“

n
ÿ

i“1

n
ÿ

j“1

αKαbi j
´

n`1
ÿ

m“1

xFi, ~emy xF j, ~emy

¯

“

n
ÿ

i“1

n
ÿ

j“1

αKαbi jgi j ď nαKαλ´1
min ď nαΛKα.

Hence, υ ě 1 implies
`

32n2α2
`16n2α2θ υ´2

´4nαp4nα´1q
˘

fψ4nα´2
}∇ψ}2

L ď nα
`

16n2α2
pθ`1q`4nα

˘

fψ4nα´2ΛKα.

Thus, by the inequalities H ě nK
1
n and ϕ ě 1{p2θq, the evolution equation of fψ4nα can be

reduced to the following

Btp fψ4nα
q ďLp fψ4nα

q ´ x2ψ´4nα∇ψ4nα
` 4θϕυ´3∇υ,∇ fψ4nα

yL ´ nα θ´1Kα` 1
n fψ4nα

` 4n2α2
p4nαpθ ` 1q ` 1qΛKα fψ4nα´2

` 4n2α2Kαψ4nα´1.

Involving η— tp1` tq´1 and Bηt “ p1` tq´2 ď 1 yields

Btpη
2nα fψ4nα

q ďLpη2nα fψ4nα
q ´ x2ψ´4nα∇ψ4nα

` 4θϕυ´3∇υ,∇η2nα fψ4nα
yL ´ nα θ´1Kα` 1

nη2nα fψ4nα

` 4n2α2
p4nαpθ ` 1q ` 1qΛKαη2nα fψ4nα´2

` 4n2α2Kαη2nα fψ4nα´1
` 2nαη2nα´1 fψ4nα.
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Since ψ is compactly supported, η2nα fψ4nα attains its maximum in Mn ˆ r0,T0s at some pp0, t0q

with t0 ą 0. Then, the last inequality implies that at pp0, t0q

nα θ´1Kα` 1
nη2nα fψ4nα

ď 4n2α2
p4nαpθ ` 1q ` 1qΛKαη2nα fψ4nα´2

` 4n2α2Kαη2nα fψ4nα´1
` 2nαη2nα´1 fψ4nα.

Multiplying by pnαq´1θK´αη´2nα`1 f´1ψ´4nα`2 yields the bound

ηK
1
nψ2

ď 4nαθp4nαpθ ` 1q ` 1qΛ η` 4nαθηψ` 2θK´αψ2

and by θ ě 1, ψ ď M, 1 ď M, and η ď 1

ηK
1
nψ2

ď 4nαθ η
´

`

4nαpθ ` θq ` θ
˘

Λ` ψ
¯

` 2θηnαψ2`2nα
pηK

1
nψ2
q
´nα

ď 4nαθp8nα` 1qpθΛ` Mq ` 2θM2`2nα
pηK

1
nψ2
q
´nα

ď 2θp16n2α2
` 2nα` M2nα

pηK
1
nψ2
q
´nα
qpθΛ` M2

q.

Hence, in the case of ηK
1
nψ2 ě M2, the last inequality yields

ηK
1
nψ2

ď 2θp16n2α2
` 2nα` 1qpθΛ` M2

q ď 2θp4nα` 1q2pθΛ` M2
q.

In the other case, we can simply obtain ηK
1
nψ2 ď M2 ď 2θp4nα ` 1q2pθΛ ` M2q. Thus, at

pp0, t0q,

ηK
1
nψ2

ď 2θp4nα` 1q2pθΛ` M2
q.

Let Ψ denote the maximum value η2nα fψ4nαpp0, t0q “ η2nαϕK2αψ4nαpp0, t0q. Then, ϕ ď 1 gives

Ψ ď pηK
1
nψ2
q

2αn
pp0, t0q ď p2θq2αn

p4nα` 1q4αn
pθΛ` M2

q
2αn.

Using also that p2θq´1 ď ϕ, we finally conclude that for all p P Mn and t P r0,T0s the following
holds

η2nαK2αψ4nαpp, tq
2θ

ď η2nαϕK2αψ4nα
pp, tq ď Ψ ď p2θq2αn

p4nα` 1q4αn
pθΛ` Mq2αn.

Hence, setting t “ T0 yields

pηK
1
nψ2
qpp,T0q ď p2θq1`

1
2nα p4nα` 1q2pθΛ` M2

q

and the desired result simply follows by substituting T0 by t. �
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Chapter 4

Optimal regularity of translators

A solution Σt to the Gauss curvature flow in Rn`1 translating along a direction ~en`1 satisfies

Σt “ Σ` ct~en`1 C tY ` ct~en`1 P R
n`1 : Y P Σu,

where the speed c is a constant, and Σ is a complete convex hypersurface embedded in Rn`1. We
observe that there exist a convex open set Ω Ă Rn and a convex function u : ΩÑ R satisfying

Σ is the boundary of tpx, tq : x P Ω, t ě upxqu.
By the result in [27], the set Ω must be bounded . If ApΩq denotes the area of Ω, it follows that
u is a smooth function satisfying

(4.1)

$

’

&

’

%

det D2u

p1` |Du|2q
n`1

2

“
|S n´1|

ApΩq
in Ω,

lim
xÑBΩ

|Du|pxq “ `8 on BΩ.

where S n is the unit n-sphere.
Conversely, given an open bounded convex set Ω Ă Rn, there exists a solution u : Ω Ñ R

of (4.1), and any two solutions differ by a constant. (See [27] and Theorem 4.8 in [26]). Hence,
given a translator Σ in Rn`1 of the Gauss curvature flow, there exists an open bounded convex
set Ω P Rn such that Σ converges to the cylinder BΩ ˆ R, and the immersion F : Mn Ñ Rn`1 of
FpMnq “ Σ satisfies

(4.2) Kppq “
|S n´1|

ApΩq
x~nppq, ~en`1 y.

We recall the result of John Urbas in [27].

Theorem 4.1 (Urbas). Given an open bounded convex domain Ω Ă R2, there exists a convex
solution u : Ω Ñ R satisfying (4.1), and it is unique up to addition by a constant. In particular,

22



if for each x0 P BΩ, there exists a ball B Ă R2 satisfying Ω Ă B and x0 P BB, then the solution u
is a smooth function satisfying

lim
xÑBΩ

upxq “ `8.

This result guarantees that there exists a unique C1 translator Σ “ Btpx, tq : x P Ω, t ě upxqu
for any open bounded convex domain Ω. Also, if Ω is a uniformly convex domain, then Σ is
strictly convex, and thus C8 smooth by standard estimates. However, if Ω is weakly convex,
then Σ may not be strictly convex on the boundary of Ω. Richard Hamilton conjectured that if Ω
is a square, then Σ has flat sides on the boundary of Ω. This is shown in the next picture.

Ω

BΩzVV

y

x

(a) xy-plane

ΩV
BΩzV

u

ū

(b) Flat sides of hatches

Figure 1. Translator Σ on a square

The Hamilton’s conjecture and the optimal regularity of the translator was shown in [11].

Theorem 4.2 (Choi-Daskalopoulos-Lee). Let Ω :“ p´1, 1q ˆ p´1, 1q Ă R2 be the open
square and V be the set of the vertices p˘1,˘1q of BΩ. Assume u : Ω Ñ R is a convex smooth
solution of (4.1), and let Σ denote the boundary of tpx, tq : x P Ω, t ě upxqu. Then, Σ is a
complete convex hypersurface of class C1,1

loc , and there exists a smooth function ū :
`

BΩzV
˘

Ñ R

satisfying

lim
xÑy

upxq “ ūpyq, lim
xÑV

upxq “ lim
yÑV

ūpyq “ `8.
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Remark 4.3 (Optimal regularity). Let us show that if there exists a flat side on a translator Σ,
then Σ has at most C1,1 regularity. Assume that the graph px, hpx, zq, zq of a function hpx, zq is a
part of a translator. Then, we have

hvvhττ ě
det D2h

p1` |Dh|2q
3
2

ě ´
2π
A
|Dh|xv, e2y

where vpx, zq is the outward normal and τpx, zq is a tangential direction of the level set of
hpx, zq at a point px, zq. We denote by Lr the level set tpx, zq : hpx, zq “ ru, and denote by
κpx, zq the curvature of Lhpx,zq at px, zq. Since we have hττ “ |Dh| κ, the inequality above gives
hvv κ ě ´2πA´1xv, e2y. We will establish the local lower bound for ´xv, e2y in section 3, which
guarantees that

hvvκ ě c.

We choose a neighborhood U of a point px0, z0q on the free boundary Γ, namely px0, z0q P Γ C

BL´1. Since the level sets Lr monotonically converge to Γ, there exists a constant c such that
ş

LrXU ds ě c for r close enough to ´1, where s is the arc length parameter. Hence, the following
holds

2π ě
ż

Lr

κds ě
ż

LrXU
κds ě

c
maxLrXU hvv

.

Thus, maxLrXU hvv ě c holds for some uniform constant c. However, we have D2h “ 0 on L´1.
Therefore, D2h is not a continuous function.

1 Optimal C1,1 regularity
In this section, we will establish a local curvature estimate for smooth strictly convex com-

plete solutions of equation (4.2). In the last section we will use this estimate to obtain the optimal
C1,1 regularity for a weakly convex solution of (4.2) in the degenerate case. We recall that a so-
lution of (4.2) has an immersion F : M2 Ñ R3 of FpM2q “ Σ. Given a ball BRpYq we define the
associated cut-off function η by ηppq “ p|Fppq ´ Y|2 ´ R2q`. We have the following result.

Theorem 4.4 (Curvature bound). Let Σ be a smooth strictly convex complete solution of (4.2).
Let Σc be the cut off from Σ by a ball BRpYq Ă Rn`1. Then, for any p P M2 with Fppq P Σc, the
maximum principal curvature Λppq :“ maxtλ1ppq, λ2ppqu satisfies

ηΛppq ď
9π
ApΩq

sup
FpqqPΣc

|Fpqq ´ Y|3.
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Proof. We may assume, without loss of generality, that Y “ 0. Recall the definition of the
cutting ball. The continuous function ηΛ attains its maximum on the compact set Σc at some
point Fpp0q P Σ

c,

ηΛpp0q “ max
FppqPΣc

ηΛppq.

Then, because we have η “ 0 on BΣc, Fpp0q is an interior point of Σc. Thus, ηΛ attains a
local maximum at p0. Moreover, we can choose an open chart pU, ϕq with p0 P ϕpUq and
FpϕpUqq Ă Σc such that the covariant derivatives t∇1Fpp0q,∇2Fpp0qu form an orthonormal
basis of TΣFpp0q satisfying

gi jpp0q “ δi j, hi jpp0q “ δi jλipp0q, λ1pp0q “ Λpp0q.

Next, we define the function w : U Ñ R by

w “ η
h11

g11
.

Then, the Euler formula, Proposition 2.3 guarantees w ď ηΛ. Therefore, for all p P U, the
following holds

wppq ď ηΛppq ď ηΛpp0q “ wpp0q.

Thus, w also attains its maximum at p0.
Now, we consider the derivative of w. Then, ∇g11 “ 0 gives

∇iw
w
“
∇ih11

h11
`
∇iη

η
.(4.3)

Differentiating the equation above yields

∇i∇ jw
w

´
∇iw∇ jw

w2 “
∇i∇ jh11

h11
´
∇ih11∇ jh11

ph11q
2 `

∇i∇ jη

η
´
∇iη∇ jη

η2

and multiplying by Kbi j, we obtain

Lw
w
´
}∇w}2

L

w2 “
L h11

h11
´
}∇h11}

2
L

ph11q
2 `

L η

η
´
}∇η}2

L

η2 .(4.4)

Observing next that L F :“ Kbi j ∇ j∇ jF “ Kbi j hi j ~n “ 2K ~n, we compute L η on the support of
η as follows:

L η “ L |F|2 “ 2xF,LFy ` 2x∇F,∇FyL “ 4KxF, ~ny ` 2Kbi jgi j “ 4KxF, ~ny ` 2H.

Thus, 4K “ 8πA´1x~e3, ~ny ď 8πA´1 and 2H ě 2Λ imply

L η ě ´8πA´1
|F| ` 2Λ.(4.5)
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Since w attains its maximum at p0, we have ∇wpp0q “ 0, and thus (4.3) gives

}∇h11}
2
L

ph11q
2 pp0q “

}∇η}2
L

η2 pp0q.

Hence, combining Lwpp0q ď 0, (4.4), (4.5) and the equation above yields the following at p0

0 ě
L h11

h11
`

2Λ
η
´

8π|F|
Aη

´
2}∇h11}

2
L

ph11q
2 .(4.6)

To compute L h11, we begin by differentiating K,

∇1K “ Kbi j∇1hi j.(4.7)

By differentiating the equation above again, we obtain

∇1∇1K “ Kbi j∇1∇1hi j ` Kbi jbkl∇1hi j∇1hkl ´ Kbikb jl∇1hi j∇1hkl.(4.8)

We can derive L h11 from the first term Kbi j∇1∇1hi j as follows

Kbi j∇1∇1hi j “ Kbi j∇1∇ih j1 “ Kbi j
p∇i∇1h j1 ` R1i jkhk

1 ` R1i1khk
jq(4.9)

“ Kbi j∇i∇ jh11 ` Kbi j
ph1 jhik ´ h1khi jqhk

1 ` Kbi j
ph11hik ´ h1khi1qhk

j

“ L h11 ´ 2Kh1khk
1 ` KHh11.

On the other hand, differentiating (4.2) yields

∇1K “
2π
A
x∇1~n, ~e3y “ ´

2π
A

h1k xFk, ~e3 y.(4.10)

To get the right hand side of (4.8), we differentiate the equation above,

∇1∇1K “ ´
2π
A
∇1h1kxFk, ~e3y ´

2π
A

h1khk
1 x~n, ~e3y “ ´

2π
A
∇kh11xFk, ~e3y ´ Kh1khk

1.(4.11)

Combining (4.8), (4.9), and (4.11), we obtain the following at p0

L h11 “2|∇2h11|
2
´ 2∇1h11∇1h22 ´

2π
A
∇kh11xFk, ~e3y ´ K2.

Hence, at p0, applying the equation above to (4.6) and the definition of the norm } ¨ }2
L

yield

0 ě
1

h11

`

2|∇2h11|
2
´ 2∇1h11∇1h22 ´

2π
A
∇kh11xFk, ~e3y ´ K2

˘

´
2h22|∇1h11|

2 ` 2h11|∇2h11|
2

ph11q
2 `

2Λ
η
´

8π|F|
Aη

“´
2∇1h11ph22∇1h11 ` h11∇1h22q

ph11q
2 `

1
h11

`

´
2π
A
∇kh11xFk, ~e3y ´ K2

˘

`
2Λ
η
´

8π|F|
Aη

.

However, (4.7) and (4.10) imply the following at p0

h22∇1h11 ` h11∇1h22 “ ∇1K “ ´
2π
A

h11xF1, ~e3y.
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Therefore, the last inequality can be reduced to

0 ě ´
2π
A

∇2h11

h11
xF2, ~e3y `

2π
A

∇1h11

h11
xF1, ~e3y ´

K2

h11
`

2Λ
η
´

8π|F|
Aη

.

Observing ph11q
´1∇ih11pp0q “ ´η

´1∇iηpp0q by (4.3) and ∇wpp0q “ 0, we have

0 ě
2π
A

∇2η

η
xF2, ~e3y ´

2π
A

∇1η

η
xF1, ~e3y ´

K2

h11
`

2Λ
η
´

8π|F|
Aη

.

Applying h11pp0q “ Λpp0q and (4.2) to the inequality above, we obtain

0 ě
4π
Aη
xF2, FyxF2, ~e3y ´

4π
Aη
xF1, FyxF1, ~e3y ´

4π2|x~n, ~e3y|
2

A2Λ
`

2Λ
η
´

8π|F|
Aη

.

We next multiply by ηΛ the last inequality and apply |xFi, FyxF i, ~e3y| ď |F| and x~n, ~e3y ď 1.
Then, by also using the definition η C p|F|2 ´ R2q, we obtain

0 ě ´
16π
A
|F|Λ´

4π2η

A2 ` 2Λ2
ě 2Λ2

´
16π
A
|F|Λ´

4π2

A2 |F|
2 .

Solving the quadratic inequality of Λ, we obtain an upper bound of Λ at p0,

Λ ď
p4` 3

?
2qπ|F|
A

ď
9π
A
|F|.

Therefore, multiplying by η ď |F|2 yields the desired result,

ηΛppq ď ηΛpp0q ď
9π
A
|F|3pp0q ď

9π
A

sup
FpqqPΣc

|F|3pqq.

�

2 Partial derivative bound
Definition 4.5 (Axial symmetry). We say that a surface Σ Ă R3 has axial symmetry, if

px, y, zq P Σ guarantees p´x, y, zq, px,´y, zq P Σ. Similarly, a set Ω Ă R2 has axial symmetry, if
px, yq P Ω guarantees p´x, yq, px,´yq P Ω.

Notation 4.6 (To be used in sections 4 and 5). Also, we summarize some further notation.

(i) Given a set A Ă R3 and a constant s, we denote the x “ s level set by Lx
spAq “

tps, y, zq P Au. Similarly, we denote y “ s and z “ s level set by Ly
spAq and Lz

spAq,
respectively.

(ii) Given a constant s and a function f : Ω Ñ R with Ω Ă R2, we denote by Lsp f q the
s-level set tpx, yq P Ω : f px, yq “ su.

(iii) We let e1 and e2 the unit vectors p1, 0q and p0, 1q, respectively.
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(iv) For a complete and convex curve Γ Ă R2, its convex hull ConvpΓq is given by

ConvpΓq “ tptx` p1´ tqy : x, y P Γ, t P r0, 1su.

If A is a subset of ConvpΓq, then we say A is enclosed by Γ and use the notation

A ă Γ.

(v) Given a set A Ă R2, clpAq and IntpAq mean the closure and the interior of A, respec-
tively.

Assume that Ω is an open bounded strictly convex and smooth domain of R2 and assume in
addition that Ω is axially symmetric. Let u be the unique solution of (4.1) on Ω which defines
the surface Σ. The following simple property readily follows from the uniqueness of solutions.

Proposition 4.7 (Symmetry of solutions). Let Ω be an open bounded strictly convex and
smooth subset of R2 which is axially symmetric. Then, a solution u of (4.1) also is axially
symmetric.

The symmetry of u implies that the half surface tpx, y, zq P Σ : y ď 0u is the graph of a
function h : Ωy Ñ R, that is

tpx, y, zq P Σ : y ď 0u “ tpx, hpx, zq, zq : px, zq P Ωyu, where Ωy “ tpx, zq : px, y, zq P Σu.

Moreover, the function h satisfies the following equation

(4.12)
det D2h

p1` |Dh|2q
3
2

“ K
`

1` |Dh|2
˘

1
2 “

2π
ApΩq

x~e3, ~ny
`

1` |Dh|2
˘

1
2 “ ´

2π
ApΩq

hz.

The right hand side of the equation above can written as p2π{Aqhv x´e2, vy, where v is the out-
ward normal direction of the level set of h. Thus, the degenerate Monge-Ampere equation (4.12)
has two degenerating factors hv “ |Dh| and x´e2, vy. In this section, we study the lower bound
for x´e2, vy which corresponds to the upper bound of |Bxu|, the partial derivative bound. Notice
that |Bxu| is bounded even on the flat sides.

To obtain the lower bound for x´e2, vy, we will construct an one parameter family of very
wide but short supersolutions ϕα of equation (4.12) with ApΩq ă 8. We will then cut the graph
of ϕα so that each of them each contained in a narrow cylinder. By sliding ϕα along the z-axis we
will estimate the partial derivative Bxu at a touching point which will lead to the desired upper
bound for Bxu as stated in Theorem 4.10.

Definition 4.8 (Barrier construction). Given a constant α P p0, 1{6q, denote by ∆α the convex
set

∆α “

#

px, zq P R2 : x P
´

´
2
α
` 1´ 3α, 1´ 3α

¯

, z ě ´
2
απ

log cos
ˆ

απ

2

´

x´ 1` 3α`
1
α

¯

˙

+

.
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∆α

x “ 1´ 3α, y “ ´1

x “ 1´ α, y “ ´1` 2α

xy

z

(a) Shaded flat side ∆α

∆α

p∆αq
2α

1´ 3α
1´ α

x

z

(b) xz-plane

Figure 2. Supersolution ϕα

We denote by d∆αpx, zq the distance function dppx, zq,∆αq. In particular, if px, zq P ∆α, then
d∆αpx, zq “ 0. By using d∆αpx, zq, we define the 2α-extension p∆αq2α of ∆α by

p∆αq
2α
“ tpx, zq P R2 : d∆αpx, zq ď 2αu.

Finally, we define the function ϕα : cl
`

p∆αq
2αz∆αq Ñ R by

ϕαpx, zq “ ´1` 2α´
b

4α2 ´ d2p∆αqpx, zq .

This is all shown in Figure 3.

Lemma 4.9 (Supersolution). Given a constant α P p0, 1{6q, the function ϕα in Definition 4.8
is a convex function satisfying

det D2ϕ

p1` |Dϕ|2q
3
2

ď ´
π

4
ϕz .

Proof. For convenience, we let ϕ and d denote ϕα and d∆α respectively. For each point p P R2

with dppq ą 0, we denote by τppq and vppq the tangential and the normal direction of a level set
Ldppqpdq of the distance function d satisfying xτ, e1y ě 0 and xv, e2y ď 0, respectively. Then, we
have

Dd “ v, dv “ |Dd| “ 1, dτ “ 0.(4.13)

We observe vppq “ vpp` εvppqq for all ε P R with dpp` εvppqq ą 0, which implies

dvv “ dvτ “ 0.(4.14)

To derive dττppq, given a point p0, we consider the immersion γ : R Ñ R2 satisfying dpγpsqq “
dpp0q with γp0q “ p0, where s is the arc length parameter of the level set, γpRq “ Ldpp0qpdq. By
differentiating dpγpsqq “ dpp0q twice with respect to s, we obtain

xγs, pD2dqγsy ` xDd, γssy “ 0
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We can observe that γsp0q “ τpp0q and γssp0q “ ´κpp0qvpp0q, where κppq ą 0 is the curvature
of Ldppqpdq at p. Hence, Ddpγp0qq “ vpp0q implies xτ, pD2dqτy ` x´κv, vy “ 0 at p0. Thus,

dττppq “ κppq.(4.15)

Hence we can directly derive from (4.13). (4.14) and (4.15) the following holding at each p P
cl
`

p∆αq
2αz∆αq

ϕv “ dp4α2
´ d2

q
´ 1

2 , ϕτ “ 0, ϕvv “ 4α2
p4α2

´ d2
q
´ 3

2 , ϕvτ “ 0, ϕττ “ κ ϕv.

Therefore, ϕ is a convex function.
Next, combining the equalities above yields

det D2ϕ

p1` |Dϕ|2q
3
2

“
ϕvvϕττ

p1` ϕ2
vq

3
2

“
1

2α
ϕττ “

1
2α

κ ϕv.(4.16)

Now, we consider the point p0 “ p´ dppqvppq P B∆α. Then, the convexity of B∆α leads to

κppq ď κpp0q.(4.17)

We recall that the Grim Reaper curve B∆α is the graph of the convex function fαpxq defined by

fαpxq “ ´
2
πα

log cos
ˆ

απ

2

´

x´ 1` 3α`
1
α

¯

˙

.(4.18)

Hence, at x0 with p0 “ px0, fαpx0qq, the following holds

κpp0q “
f 2α px0q

p1` | f 1αpx0q|
2q

3
2

“
πα{2

p1` | f 1αpx0q|
2q

1
2

“ ´
πα

2
xvpp0q, e2y.

Thus, vpp0q “ vpp´ dppqvppqq “ vppq implies

κppq ď κpp0q “ ´
πα

2
xvpp0q, e2y “ ´

πα

2
xvppq, e2y.(4.19)

Therefore, given a point p P cl
`

p∆αq
2αz∆αq, (4.16), (4.17), and (4.19) give the desired result

det D2ϕ

p1` |Dϕ|2q
3
2

“
1

2α
ϕvκ ď ´

π

4
ϕvxv, e2y “ ´

π

4

`

ϕvxv, e2y ` ϕτxτ, e2y
˘

“ ´
π

4
ϕz .

�

Theorem 4.10 (Partial derivative bound). Let Ω be an open strictly convex smooth subset of
R2 which is in additionally axially symmetric and satisfies

r´1, 1s ˆ r´1, 1s Ă Ω Ă
”

´
4
3
,

4
3

ı

ˆ

”

´
4
3
,

4
3

ı

.

Then, a solution u : ΩÑ R of (4.1) satisfies

Bxup1´ 5α,´1` εq ď 2` 3 cot
πα2

2
,

for all ε P p0, 1{2q and α P p0, 1{6q.
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Proof. Since the domain Ω has strictly convex and smooth boundary, Theorem 4.1 implies
that the graph Σ “ tpx, y, upx, yqq : px, yq P Ωu of the function u is a strictly convex complete
smooth solution of (4.2). In addition by Proposition 4.7 the function u is axially symmetric and
we can define a convex set Ωy and a convex function h : Ωy Ñ R by

Ωy “ tpx, zq : px, y, zq P Σu, tpx, y, zq P Σ : y ď 0u “ tpx, hpx, zq, zq : px, zq P Ωyu.

Then, px, y, upx, yqq “ px, hpx, zq, zq implies that the function h satisfies (4.12). Thus, by the
given condition ApΩq ď p8{3q2 ă 8 and Lemma 4.9, the function ϕα in Definition 4.8 is a
supersolution for (4.12).

To construct a barrier Φtε,α
ε,α, we will cut the graph of ε`ϕα by t1´4αuˆR2 (the blue section

in Figure 3(a)) and slide it along z-direction until it touches Σ at a point P0. We will show that
the contact point P0 is contained in t1 ´ 4αu ˆ R2, namely P0 is a point on the front part of the
boundary BΦtε,α

ε,α of the barrier. (See the blue curve ΓF in Figure 3(a)). Then, we will estimate the
partial derivative Bxu at P0 by comparing with the barrier Φtε,α

ε,α at P0. After obtaining the bound
on Bxu at P0, we will use the convexity of the solution Σ the barrier Φtε,α

ε,α to show the desired
bound of Bxu at p1´ 5α,´1` εq.

P1

P0

P2

ΓT

ΓBΓF
y “ y0

x “ 1´ 4α

xy

z

(a) Blue section cutting the supersolution ϕα

px̄0, z̄0q

P2

P1x “ 1´ 4α

P0

ΓT

ΓB

ΓF

f 0
ε,α

fε,α

x

z

(b) xz-plane

Figure 3. Sliding barrier

Step 1 : Sliding barrier construction. We denote by Φα the graph of ϕα in r1´ 4α,`8q ˆ R2,

Φα “
 

px, ϕαpx, zq, zq : px, zq P cl
`

p∆αq
2α
z∆αq, x ě 1´ 4α

(

.

Then, given constants ε P p0, 1{2q and t P R, we translate Φα by ε~e2 ` t~e3,

Φt
ε,α “

 

px, y` ε, z` tq : px, y, zq P Φαu.

Notice that definition of ϕα guarantees

Φt
ε,α Ă r1´ 4α, 1´ αs ˆ r´1` ε,´1` ε ` 2αs ˆ r´t ´ 2α,`8q.
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Hence, there exists a constant tε,α P R and a point P0 “ px0, y0, z0q P R
3 satisfying

Σ
č

Φt
ε,α “ H for t ą tε,α, P0 P Σ

č

Φ
tε,α
ε,α.(4.20)

We denote by ∆ε,α the projection of Φtε,α
ε,α into the xz-plane, and consider Φtε,α

ε,α as the graph of
a function ϕε,α : ∆ε,α Ñ R

∆ε,α “ tpx, zq : px, y, zq P Φtε,α
ε,αu, Φ

tε,α
ε,α “ tpx, ϕε,αpx, zq, zq : px, zq P ∆ε,αu.

Step 2 : Position of the contact point P0. In this step, we will show that the contact point P0 is
contained in the front part Lx

1´4αpΦ
tε,α
ε,αq of the boundary BΦtε,α

ε,α.
First of all, the contact point P0 can not be an interior point of Φtε,α

ε,α, because ϕε,α is a super-
solution. Thus, P0 is a point on the boundary BΦtε,α

ε,α of Φtε,α
ε,α. We observe that the boundary BΦtε,α

ε,α

can be decomposed into the top ΓT , bottom ΓB, and front ΓF boundary as following

BΦ
tε,α
ε,α “ ΓT

ď

ΓB

ď

ΓF , ΓT “ Ly
´1`ε`2αpΦ

tε,α
ε,αq, ΓB “ Ly

´1`εpΦ
tε,α
ε,αq, ΓF “ Lx

1´4αpΦ
tε,α
ε,αq.

(4.21)

We denote by P1 and P2 the end point of the top ΓT and the bottom ΓB boundary, respectively

P1 “ px1, y1, z1q “ ΓT

č

ΓF “ p1´ 4α,´1` ε ` 2α, z1q,(4.22)

P2 “ px2, y2, z2q “ ΓB

č

ΓF “ p1´ 4α,´1` ε, z2q.

On the other hand (4.20) gives clp∆ε,αq C ∆ε,α Ă IntpΩyq and hpx, zq ď ϕε,αpx, zq on ∆ε,α.
Also, we have |Dϕε,α| “ `8 on ΓT . Hence, if P0 P

`

ΓTztP1u
˘

, then |Dh| “ `8 holds at P0 by
h ď ϕε,α, which contradicts to clp∆ε,αq Ă IntpΩyq. Thus,

P0 R
`

ΓTztP1u
˘

Moreover, we have |Dϕε,α| “ 0 on ΓB. Thus, if P0 P
`

ΓBztP2u
˘

, then |Dh| “ 0 holds at P0.
However, Σ is a strictly convex complete surface, which means |Dh| ‰ 0. Therefore,

P0 R
`

ΓBztP2u
˘

Hence, by (4.21) and (4.22), P0 is a point on the front boundary ΓF

P0 “ px0, y0, z0q “ p1´ 4α, y0, z0q P ΓF .(4.23)

Step 3 : Distance between P0 and P2. In this step, we will estimate z2 ´ z0 in terms of α.
We recall that the Grim reaper curve B∆α is the graph of the function fαpxq defined by (4.18)

and ∆ε,α is a subset of ∆ε,α C ∆α` tε,αez. Hence, B∆ε,α is the graph of the function fε,α defined by

fε,αpxq “ tε,α ` fαpxq “ tε,α ´
2
πα

log cos
ˆ

απ

2

´

x´ 1` 3α`
1
α

¯

˙

.(4.24)
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By definition of ϕα, there exists a unique point px̄0, z̄0q P B∆ε,α such that

dppx0, z0q,∆ε,αq “ dppx0, z0q, px̄0, z̄0qq ď 2α.(4.25)

We know x0 “ x2 “ 1´ 4α by (4.22) and (4.23). Hence, for all x P rx̄0, x2s, we can derive from
(4.24) the following inequality

f 1ε,αpx̄0q ď f 1ε,αpxq ď f 1ε,αpx2q “ tan
ˆ

πα

2

´

x0 ´ 1` 3α`
1
α

¯

˙

“ cot
πα2

2
.(4.26)

Therefore, combining (4.25) and (4.26) yields

z2 ´ z0 ď pz̄0 ´ z0q ` pz2 ´ z̄0q ď 2α` pz6 ´ z̄0q ď 2α`
ż x2

x̄0

f 1ε,αpxqdx ď 2α` 2α cot
πα2

2
.

(4.27)

z4

z3

x “ 1´ 5α

x “ 1´ 4α

z1

z0

z5

z2

z

x

up¨ ,´1` εq

up¨, y0q
f 0
ε,α

Figure 4. Level sets of the solution h

Step 4 : Partial derivative Bxu bound at the contact point P0. We can consider the level set
Ly0pϕε,αq as the graph of a convex function f 0

ε,α : r1 ´ 4α, 1 ´ αq Ñ R, namely Ly0pϕε,αq “

tpx, f 0
ε,αpxqq : x P r1 ´ 4α, 1 ´ αqu. Then, by the definitions of ϕα and px̄0, z̄0q, we have

p f 0
ε,αq

1px0q “ f 1ε,αpx̄0q. Thus, (4.26) yields the bound

p f 0
ε,αq

1
px0q ď cotpπα2

{2q .

On the other hand, (4.20) implies Ly0pϕε,αq ă Ly0phq, namely upx, y0q ď f 0
ε,αpxq holds for all

x P r1´ 4α, 1´ αq. Therefore,

Bxupx0, y0q ď p f 0
ε,αq

1
px0q ď cotpπα2

{2q.(4.28)

Step 5 : Partial derivative Bxu bound at the given point. We define the points P3, P4, P5 on Σ by

P3 “ px3, y3, z3q C p1´ 5α, y0, up1´ 5α, y0qq,

P4 “ px4, y4, z4q C p1´ 5α,´1` ε, up1´ 5α,´1` εqq,

P5 “ px5, y5, z5q C p1´ 4α,´1` ε, up1´ 4α,´1` εqq.
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Since we know P0, P3 P Ly
y0pΣq, the inequality (4.28) and the convexity of u give

z0 ´ z3 “

ż x0

x3

Bxupx, y0qdx ď
ż x0

x3

Bxupx0, y0qdx “ α
`

Bxupx0, y0q
˘

ď α cot
πα2

2
.

By adding (4.27) and the inequality above, we obtain

z2 ´ z3 ď 2α` 3α cotpπα2
{2q.(4.29)

On the other hand, (4.20) implies that L´1`εpϕε,αq ă L´1`εphq. Therefore, x2 “ x5 “ 1 ´ 4α,
px2, z2q P L´1`εpϕε,αq, and px5, z5q P L´1`εphq guarantee

z2 “ ϕε,αpx2q ě upx2,´1` εq “ upx5,´1` εq “ z5.

Also, the convexity and symmetry of Σ give that

z3 ď z4

Thus, subtracting the inequalities above yields z5 ´ z4 ď z2 ´ z3. Applying (4.29) , we have

z5 ´ z4 ď 2α` 3α cotpπα2
{2q.

Hence, the desired result follows by the following computation

z5 ´ z4 “

ż x5

x4

Bxupx,´1` εqdx ě
ż x5

x4

Bxupx4,´1` εqdx “ α
`

Bxup1´ 5α,´1` εq
¯

.

�

3 Distance from the tip to flat sides
Let Σ be the translating solution to the Gauss curvature flow over the square Ω as in Theorem

4.2. In this final section we will show that this solution has flat sides, as stated in Theorem 4.12
below. To this end, we will study the distance from the tip of a solution Σ to each point on the free
boundary, that is the boundary of the flat sides. To estimate this distance one needs to establish a
gradient bound for solutions to the equation (4.1) at a certain point near the flat sides. Since the
gradient bound depends on the global structure of Ω, we will establish an integral estimate by
deriving a separation of variables structure from (4.1) as in the proof of the following Lemma.

Lemma 4.11 (Gradient bound). Let Ω satisfy the conditions in Theorem 4.10 and let u be a
solution of (4.1) onΩ. Assume that ra, bsˆr´1,´1`σs Ă Ω, for some constants a, b, σ P p0, 1q.
Then, there exists a point x0 P ra, bs satisfying

´Byupx0,´1` σq ď

d

2M
πσpb´ aq

,

where M “ sup
yPp0,σq

Bxupb,´1` yq.
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Proof. Since the domain ω satisfies the assumptions of Theorem 4.10, we have A ď 64{9.
Hence, the following inequality holds

uyyuxx

p1` u2
yq

3
2

ě
uyyuxx ´ u2

xy

p1` u2
x ` u2

yq
3
2

“
det D2u

p1` |Du|2q
3
2

“
2π
A
ě
π

4
.

which combined with Holder inequality yields
´

ż b

a

uyy

p1` u2
yq

3
2

dx
¯´

ż b

a
uxx dx

¯

ě

´

ż b

a
pπ{4q

1
2 dx

¯2
“
π

4
pa´ bq2.

Since a ě 0 and Proposition 4.7 guarantee that uxp¨, aq ě 0, we have
ż b

a
uxx dx “ uxpy, bq ´ uxpy, aq ď uxpy, bq ď M.

Hence,

1
b´ a

ż b

a

ż ´1`σ

´1

uyy

p1` u2
yq

3
2

dydx ě
πσ

4M
pb´ aq.

Therefore, there exists a constant x0 P ra, bs satisfying
ż ´1`σ

´1

uyy

p1` u2
yq

3
2

px0, ¨ qdy ě
πσ

4M
pb´ aq.

Moreover, by |uy| ď p1` u2
yq

1
2 , we have

ż ´1`σ

´1

uyy

p1` u2
yq

3
2

px0, ¨ q dy “
uy

p1` u2
yq

1
2

px0, ¨ q

ˇ

ˇ

ˇ

ˇ

ˇ

´1`σ

´1

ď
uy

p1` u2
yq

1
2

px0,´1` σq ` 1.

Hence, at px0,´1` σq, the following holds

|uy|

p1` u2
yq

1
2

px0,´1` σq “
´uy

p1` u2
yq

1
2

px0,´1` σq ď 1´
πσ

4M
pb´ aq

implying the bound

1` u´2
y px0,´1` σq ě

`

1´
πσ

4M
pb´ aq

˘´2
ě
`

1`
πσ

4M
pb´ aq

˘2
ě 1`

πσ

2M
pb´ aq.

Solving this last inequality for ´uypx0,´1` σq ě 0 leads to the desired result. �

The distance between the tip of the translating solution Σ over the square and its flat sides is
estimated in the following result.

Theorem 4.12 (Distance between the tip and flat sides). Let Ω satisfy the conditions in The-
orem 4.10 and let u be a solution of (4.1). Given α P p0, 1{6q, there exists a constant C ą 0
satisfying

up1´ 6α,´1q ´ up0, 0q ď 6
´

1`
1
α2

¯

.
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y “ ´1` 1{2

y “ ´1` 1{4

y “ ´1` 1{8

y “ ´1` 1{16

x

y

a0 b0x0

x1a1 b1

x2a2 b2

x3a3 b3

Figure 5. Converging points on domain Ω

Proof. We begin by setting a0 “ 1´6α, b0 “ 1´5α, σ0 “
1
2 , and M “ sup

yPp0,1{2q
Bxupb0,´1`

yq. Then, by Lemma 4.11, there exists a point x0 P ra0, b0s satisfying

´Byupx0,´1` 1{2q ď 2pM{παq
1
2 .(4.30)

We choose an interval ra1, b1s satisfying x0 P ra1, b1s Ă ra0, b0s and b1 ´ a1 “ 2´1{3α. Then, for
σ1 “ 2´2, we have sup

yPp0,σ1q

Bxupb1,´1 ` yq ď M. Hence, Lemma 4.11 gives a point x1 P ra1, b1s

satisfying

´Byupx1,´1` 1{22
q ď 21` 2

3 pM{παq
1
2 .

By setting σn “ 2´1´n, we can inductively choose intervals ran, bns satisfying xn´1 P ran, bns Ă

ran´1, bn´1s and bn ´ an “ 2´n{3α so that we obtain a point xn P ran, bns satisfying

´Byupxn,´1` 1{2n`1
q ď 21` 2n

3 pM{παq
1
2 .

Then, integrating along y yields
ˇ

ˇ

ˇ

ˇ

upxn,´1`
1

2n`1 q ´ upxn,´1`
1
2n q

ˇ

ˇ

ˇ

ˇ

ď

ż ´1`1{2n

´1`1{2n`1
´Byupxn, yqdy ď 2´n{3

pM{παq
1
2 .

On the other hand, xn´1, xn P ran, bns and an ´ bn “ 2´n{3α imply
ˇ

ˇ

ˇ

ˇ

upxn,´1`
1
2n q ´ upxn´1,´1`

1
2n q

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ż xn

xn´1

Bxupx,´1`
1
2n qdx

ˇ

ˇ

ˇ

ˇ

ď 2´
n
3 Mα.

Therefore,
ˇ

ˇ

ˇ

ˇ

upxn,´1`
1

2n`1 q ´ upxn´1,´1`
1
2n q

ˇ

ˇ

ˇ

ˇ

ď 2´
n
3
`

pM{παq
1
2 ` Mα

˘

.
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By definition of xn, the sequence txnunPN converges to a point x̄ P ra0, b0s. Hence, we can sum
up the inequality above for all n P N so that we have

upx̄,´1q ´ upx0,´
1
2
q ď

8
ÿ

n“1

2´
n
3
`

pM{παq
1
2 ` Mα

˘

ď 4
`

pM{παq
1
2 ` Mα

˘

.(4.31)

Next, we consider the linear function

f px, yq “
`

Bxupx0,´1{2q
˘

px´ x0q `
`

Byupx0,´1{2q
˘

py` 1{2q ` upx0,´1{2q

whose graph is the tangent hyperplane of Σ at px0,´1{2, upx0,´1{2qq. Then, the convexity of Σ
gives f p0, 0q ď up0, 0q. Hence, (4.30) and definition of M show

upx0,´
1
2
q ´ up0, 0q ď f px0,´

1
2
q ´ f p0, 0q ď pM{παq

1
2 ` M.

Thus, Theorem 4.10, (4.31), and the inequality give

upx̄,´1q ´ up0, 0q ď 5
´ M
πα

¯
1
2
` 2M ď 5

´ 2
πα
`

3
πα

cot
πα2

2

¯
1
2
` 2

´

2` 3 cot
πα2

2

¯

.

Applying 1{α ě 6 and cotpπα2{2q ď 2{pπα2q, we have

upx̄,´1q ´ up0, 0q ď 5
´ 2
πα
`

6
π2α3

¯
1
2
`

12
πα2 ` 4 ď 6

´

1`
1
α2

¯

.

Finally, combining Proposition 4.7, the convexity of u, and x̄ ě b0 “ 1 ´ 6α ě 0 yields
upx̄,´1q ě up1´ 6α,´1q, which leads to the desired result. �

We will now give the proof of the main Theorem 4.2. This redily follows from the following
result.

Theorem 4.13 (Existence of flat sides). Let Ω “ p´1, 1q ˆ p´1, 1q and u be a solution of
(4.1) on Ω. Then, there exists a function ū : pBΩzVq Ñ R satisfying

ūpx0q “ lim
xÑx0

upxq.

Also, the corresponding complete solution Σ of (4.2) is a convex surface of class C1,1
loc , and u

satisfies
lim
xÑV

upxq “ `8.

Proof. Let tΩnunPN be a sequence of sets satisfying the conditions in Theorem 4.10, and let
tununPN and tΣnunPN be the sequence of corresponding solutions of (4.1) with unp0, 0q “ 0 and
their graphs, respectively. We denote the convex hull of Σn by En “ ttX ` p1 ´ tqY : X,Y P

Σn, t P r0, 1su, and define a convex body E by

E “
č

nPN

En.
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Observe that E is not an empty set, because Theorem 4.12 gives that p1´6α,´1, 6p1`α´2qq P En

which means that p1´ 6α,´1, 6p1` α´2qq P E. Now, we denote by Σ the boundary of E. Then,
Σ is naturally a convex complete and non-compact surface, since tp0, 0, tq : t ě 0u Ă En implies
tp0, 0, tq : t ě 0u Ă E.

We define u : Ω Ñ R by px, y, upx, yqq P Σ. Then, the symmetry of Ωn, the convexity of
E, and p1 ´ 6α,´1, 6p1 ` α´2qq P E guarantees that there exists a function ū : pBΩzVq Ñ R
satisfying

ūpx0q “ lim
xÑx0

upxq.

Moreover, Theorem 4.4 shows the local C1,1 regularity of Σ. Now, we assume that there
exists a point p1, 1, t0q in E, then the mean curvature of Σ attains `8 at p1, 1, tq for t ą t0. This
contradicts to the local C1,1 regularity of Σ. Hence, we have Σ

Ş

pVˆRq “ H, namely u satisfies

lim
xÑV

upxq “ `8.

�
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Chapter 5

Asymptotic Behavior of closed solutions

In this chapter, we show the following Theorem proven in [9].

Theorem 5.1 (Choi-Daskalopoulos). Given α P p 1
n , 1 `

1
nq, the unit n-sphere is the unique

closed strictly convex smooth solution to (˚˚α).

Notice that jointly with Brendle, the result was extend to α ě 1
n`2 in [5].

Theorem 5.2 (Brendle-Choi-Daskalopoulos). Given α ą 1
n`2 , the unit n-sphere is the unique

closed strictly convex smooth solution to (˚˚α). If α “ 1
n`2 , closed strictly convex smooth solu-

tions to (˚˚α) are ellipsoids.

Theorem 5.2 combined with the results in [4, 19] imply the convergence of the α-Gauss cur-
vature flow to the round sphere (or ellipsoids), which in particular proves the higher dimensional
Firey’s conjecture.

Theorem 5.3. Let Σt be a strictly convex, closed and smooth solution to the α-Gauss curvature
flow with α P 1

n`2 , n ě 2. Then, there exists a finite time T at which the solution Σt converges
after rescaling to the round sphere. If α “ 1

n`2 , the solution converges after rescaling to an
ellipsoid.

Remark 5.4 (Pogorelov estimate on powers of a matrix). Pogorelov type estimates in this
context have been frequently applied in the past by using b11, the first entry of a matrix A´1 B

tbi ju. However, if one applies the Pogorelov estimate for b11Kα ´ nα´1
2nα |F|

2, one can obtain the
result of Theorem 5.5 only for α P p1

n ,
1
2s. In this work, by using instead pb1igi jb j1q

1
2 , the root of

the first entry of the square A´2 of the matrix A´1, we are able to extend the result of Theorem 5.5
to the range of exponents α P p1

n , 1`
1
nq, which includes the classical case of the Gauss curvature

flow α “ 1.
In [5], a Pogorelov type estimate was developed in viscosity sense which extends the result

of Theorem 5.5 for all α ą 1
n .
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1 Pogorelov type computation
We consider the function W : Mn Ñ R given by

Wppq B
`

Kαλ´1
min ´

nα´ 1
2nα

|F|2
˘

ppq.

We will employ in this section a Pogorelov type computation to show that the maximum point of
Wppq is an umbilical point. We begin with the following standard observation which we include
here for the reader’s convenience.

We will now show that one of the Pogorelov type expressions of the function W plays a role
as a subsolution of (˚˚α) at a given maximum point, to imply that the maximum point of Wppq is
an umbilical point.

Theorem 5.5 (Pogorelov type computation). Let Σ be a strictly convex smooth closed solution
of (˚˚α) for an exponent α P p1

n , 1`
1
nq. Assume that F : Mn Ñ Rn`1 is a smooth immersion such

that FpMnq “ Σ, and the continuous function Wppq attains its maximum at a point p0. Then,
Fpp0q is an umbilical point and ∇|F|2pp0q “ 0 holds.

Proof. We begin by choosing a coordinate chart pU, ϕq of p0 P ϕpUq Ă Mn such that the co-
variant derivatives

 

∇iFpp0q B BipF ˝ ϕqpϕ´1pp0qq
(

i“1,¨¨¨ ,n form an orthonormal basis of TΣFpp0q

satisfying

gi jpp0q “ δi j, hi jpp0q “ δi jλipp0q, λ1pp0q “ λminpp0q,

which guarantees b11pp0q “ λ´1
minpp0q and g11pp0q “ 1. Next, we define the function sW : ϕpUq Ñ

R by

sWppq B Kα
´b1igi jb j1

g11

¯
1
2
ppq ´

nα´ 1
2nα

|F|2ppq.

Then, by Proposition 2.5 we have

sWppq ď Wppq ď Wpp0q “ sWpp0q,

which means that sW attains its maximum at p0.

We will now calculate L sW B αKαbi j∇i∇ j sW at the point p0. First we derive the following
equation from (2.18)

L
`

b1
pbp1

˘

“2αKαbi j∇ibp1∇ jb1
p ` 2K´αb1

pbprb1s∇rKα∇sKα
` 2αKαb1

pbprb1sbi jbkm∇rhik∇sh jm

` xF,∇pb1
pbp1

qy ´ 2b1
pbp1

´ 2pnα´ 1qKαb11
` 2αKαHb1

pbp1.
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Thus, we obtain

L

´b1
pbp1

g11

¯
1
2
“´

αKαbi j∇ipb1
pb1pq∇ jpb1

qb1qq

4pb1
r br1q

3
2 pg11q

1
2

`
αKαbi j∇ibp1∇ jb1

p

pb1
qbq1g11q

1
2

`
b1

pbprb1s∇rKα∇sKα

Kαpb1
qbq1g11q

1
2

`
αKαb1

pbprb1sbi jbkm∇rhik∇sh jm

pb1
qbq1g11q

1
2

`
@

F,∇
`

b1
pbp1

{g11
˘

1
2
D

´

´b1
pbp1

g11

¯
1
2
´
pnα´ 1qKαb11

pb1
pbp1g11q

1
2

` αKαH
´b1

pbp1

g11

¯
1
2
.

Combining this with (2.17) yields

L sW “´
nα´ 1

2nα
L |F|2 ` 2

A

∇Kα,∇
´b1

pbp1

g11

¯
1
2
E

L
´
αK2αbi jb1

pb1
q∇ib1p∇ jb1q

pb1
r br1q

3
2 pg11q

1
2

(5.1)

`
αK2αbi j∇ibp1∇ jb1

p

pb1
qbq1g11q

1
2

`
b1

pbprb1s∇rKα∇sKα

pb1
qbq1g11q

1
2

`
αK2αb1

pbprb1sbi jbkm∇rhik∇sh jm

pb1
qbq1g11q

1
2

`

A

F,∇
´

Kα
`

b1
pbp1

{g11
˘

1
2

¯E

` pnα´ 1qKα
´b1

pbp1

g11

¯
1
2
´
pnα´ 1qK2αb11

pb1
pbp1g11q

1
2

.

Observe that

2
A

∇Kα,∇
´b1

pbp1

g11

¯
1
2
E

L
“ 2αKαbi j

pg11
q
´ 1

2
`

b1
qbq1

˘´ 1
2 b1

p∇iKα∇ jbp1,

and

∇

´

Kα
`

b1
pbp1

{g11
˘

1
2

¯

“ ∇ sW `
nα´ 1

2nα
∇|F|2.

Hence, applying the equations above, (2.15) and ∇swpp0q “ 0 to (5.1) yields that the following
holds at the maximum point p0

0 ě 2αKα
n
ÿ

i“1

bii∇iKα∇ib11
´ αK2α

n
ÿ

i“1

biih11|∇ib11
|
2
` αK2α

ÿ

j,p

b j jh11|∇ jbp1
|
2
` |b11∇1Kα

|
2

(5.2)

` αK2α
pb11

q
2
ÿ

i, j

biib j j
|∇1hi j|

2
`

nα´ 1
2nα

xF,∇|F|2y ` pnα´ 1qKα
`

b11
´

1
n

n
ÿ

i“1

bii
˘

.

By (2.14), the second and third terms on the right hand side of the inequality above (5.2) satisfy

´

n
ÿ

i“1

biih11|∇ib11
|
2
`
ÿ

j,p

b j jh11|∇ jbp1
|
2
“ ´

n
ÿ

i“1

bii
pb11

q
3
|∇ih11|

2
`
ÿ

j,p

b j jb11
pbpp

q
2
|∇ jhp1|

2

“

n
ÿ

j“1

ÿ

p‰1

b j jb11
pbpp

q
2
|∇ jhp1|

2
ě

ÿ

p‰1

pb11bpp
q

2
|∇ph11|

2
“

ÿ

p‰1

pbpph11q
2
|∇pb11

|
2.
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Also, by (2.14) the fifth term on the right hand side of (5.2) satisfies

pb11
q

2
ÿ

i, j

biib j j
|∇1hi j|

2
ě pb11

q
4
|∇1h11|

2
` 2

ÿ

i‰1

pb11
q

3bii
|∇ih11|

2
“ |∇1b11

|
2
` 2

ÿ

i‰1

biih11|∇ib11
|
2.

Furthermore, we have

αK2α
|∇1b11

|
2
` 2αKαb11∇1Kα∇1b11

ě ´α|b11∇1Kα
|
2.

Hence, by applying the inequalities above, we can reduce (5.2) to

0 ě 2α
ÿ

i‰1

bii∇iKα
`

Kα∇ib11
˘

` α
ÿ

p‰1

pbpph11q
2
|Kα∇pb11

|
2
` 2α

ÿ

i‰1

biih11|Kα∇ib11
|
2(5.3)

` p1´ αq|b11∇1Kα
|
2
`

nα´ 1
2nα

xF,∇|F|2y ` pnα´ 1qKα
`

b11
´

1
n

n
ÿ

i“1

bii
˘

.

We now employ (2.16) to obtain the following at the point p0

bii∇iKα
“ biihiixF, F i

y “ xF, F i
y.(5.4)

In addition, at the point p0, ∇i sWpp0q “ 0 yields

Kα∇ib11
“ ´b11∇iKα

`
nα´ 1

2nα
∇i|F|2 “ ´b11hiixF, F i

y `
nα´ 1

nα
xF, Fiy “ pβ´ θiqxF, Fiy,

where θi “ b11hiipp0q and β “ nα´1
nα . We also have

xF,∇|F|2y B xF, p∇i|F|2qF i
y “ xF, F i

yp∇i|F|2q “ 2xF, FiyxF, F i
y.(5.5)

Hence, we can rewrite (5.3) as

0 ě
ÿ

i‰1

xF, Fiy
2Ji ` xF, F1y

2I1 ` pnα´ 1qKα
`

b11
´

1
n

n
ÿ

i“1

bii
˘

,(5.6)

where

I1 “
nα´ 1

nα
` 1´ α, Ji “ 2α

´

β´ θi

¯

` α
`

θ´2
i ` 2θ´1

i

˘`

β´ θi
˘2
` β.

We observe that I1 ą 0 holds, and also Ji satisfies

Ji “2αβ´ 2αθi ` αβ2θ´2
i ` 2αβ2θ´1

i ´ 2αβθ´1
i ´ 4αβ` α` 2αθi ` β

“αp1´ βq ` βp1´ αq ` 2αβpβ´ 1qθ´1
i ` αβ2θ´2

i “
1
n
` βp1´ αq ´

2β
n
θ´1

i ` αβ2θ´2
i

“βp1´ αq `
1
n
` α

´

βθ´1
i ´

1
nα

¯2
´

1
n2α

ě βp1´ αq `
1
n

´nα´ 1
nα

¯

“ βp1´ α`
1
n
q ą 0.

Since we have b11pp0q “ λ´1
minpp0q ě λ´1

i pp0q ě biipp0q and xF, Fiy
2pp0q ě 0 for all i P

t1, ¨ ¨ ¨ , nu, the inequality (5.6) and I1, Ji ą 0 give the desired result. �
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2 Strong maximum principle
In this section, we will show how Theorem 5.5 can be modified to give us the proof of our

main result, Theorem 5.1. To this end, we will introduce the new geometric, chart-independent
quantity

Zppq “
`

Kαbi jgi j ´
nα´ 1

2α
|F|2

˘

ppq

and apply the strong maximum principle. If we use Wppq, hi j can be diagonalized only at one
given point. However, if we employ Zppq, we can diagonalize hi j at each point. We begin with
the following observation which simply follows from Theorem 5.5.

Proposition 5.6. Let Σ be a strictly convex smooth closed solution of (˚˚α) for an exponent
α P p 1

n , 1 `
1
nq. Assume that F : Mn Ñ Rn`1 is a smooth immersion such that FpMnq “ Σ ,

and the continuous function Zppq attains its maximum at a point p0. Then, Fpp0q is an umbilical
point and ∇|F|2pp0q “ 0 holds.

Proof. We observe bi jgi jppq “
řn

i“1 λ
´1
i ppq, where λ1ppq, ¨ ¨ ¨ , λnppq are the principal curva-

tures of Σ at Fppq. Therefore, we have Zppq ď n Wppq. However, if Wpp0q “ maxpPMn Wppq,
then Zpp0q “ n wpp0q holds, because Fpp0q is an umbilical point by Theorem 5.5. Hence, we
have

Zppq ď n Wppq ď max
pPMn

n Wppq “ max
pPMn

Zppq.

Thus, if Z attains its maximum at a point p0, then W also attains its maximum at p0, and thus we
can obtain the desired result by Theorem 5.5. �

We will now employ the strong maximum principle to prove Theorem 5.1.

Proof of Theorem 5.1. We define a set MZ Ă Mn by

MZ “ tp P Mn : Zppq “ max
Mn

Zu.

Since Zppq is a continuous function defined on a closed manifold Mn, Z attains its maximum,
and thus MZ is not an empty set. We now define the continuous function Λ : Mn Ñ R and the
open set V Ă Mn by

Λppq “
ÿ

i, j

´λi

λ j
´
λ j

λi

¯2
ppq, V “

!

p P Mn : Λppq ă
´10

9
´

9
10

¯2)

.

We now begin by combining (2.17) and (2.18) to obtain

L
`

Kαbpq
˘

“2x∇Kα,∇bpq
yL ` bprbqs∇rKα∇sKα

` αK2αbprbqsbi jbkm∇rhik∇sh jm

` xF,∇pKαbpq
qy ` pnα´ 1qKα

pbpq
´ gpqKα

q.
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Therefore, we can derive the following from (2.15) and ∇gpq “ 0

LZ “2gpqx∇Kα,∇bpq
yL ` bprbs

p∇rKα∇sKα
` αK2αbprbs

pbi jbkm∇rhik∇sh jm ` xF,∇pKαbpqgpqqy.

By using (5.5), we can obtain

xF,∇pKαbpqgpqqy “ xF,∇Zy `
nα´ 1

2α
xF,∇|F|2y “ xF,∇Zy `

`

n´ α´1
˘

xF, FiyxF, F i
y.

Hence, we have

LZ ´ xF,∇Zy “2αpbi j∇iKα
qpKαgpq∇ jbpq

q ` bprbs
p∇rKα∇sKα(5.7)

` αK2αbprbs
pbi jbkm∇rhik∇sh jm `

`

n´ α´1
˘

xF, FiyxF, F i
y.

Given a fixed point p0 P V , we choose an orthonormal frame at Fpp0q satisfying

gi jpp0q “ δi j, hi jpp0q “ λipp0qδi j.

Then, at the point p0, we can rewrite (5.7) as

LZ ´ xF,∇Zy “2α
ÿ

i, j

pbii∇iKα
qpKα∇ib j j

q `
ÿ

i

|bii∇iKα
|
2(5.8)

` αK2α
ÿ

i, j,k

pbii
q

2b j jbkk
|∇ih jk|

2
`
`

n´ α´1
˘

ÿ

i

xF, Fiy
2.

Since p0 P V and the definition of V guarantees that biih j jpp0q ě
9

10 , by using (2.14) we can
derive

αK2α
ÿ

i, j,k

pbii
q

2b j jbkk
|∇ih jk|

2
ěα

ÿ

i

|Kα∇ibii
|
2
` 2α

ÿ

i‰ j

b j jhii|Kα∇ jbii
|
2
` α

ÿ

i‰ j

pbiih j jq
2
|Kα∇ib j j

|
2

ěα
ÿ

i

|Kα∇ibii
|
2
`

5
2
α
ÿ

i‰ j

|Kα∇ib j j
|
2.

We also have

α
ÿ

i

|Kα∇ibii
|
2
` 2α

ÿ

i

pbii∇iKα
qpKα∇ibii

q ě ´ α
ÿ

i

|bii∇iKα
|
2

and
5
2
α
ÿ

i‰ j

|Kα∇ib j j
|
2
` 2α

ÿ

i‰ j

pbii∇iKα
qpKα∇ib j j

q ě ´
2
5
α
ÿ

i‰ j

|bii∇iKα
|
2
“ ´

2
5
αpn´ 1q

ÿ

i

|bii∇iKα
|
2.

Applying the inequalities above and (5.4) to (5.8) yields

LZ ´ xF,∇Zy ě
´

p1´ αq ´
2
5
αpn´ 1q ` pn´ α´1

q

¯

ÿ

i

xF, Fiy
2

“
1

5α

´

´ p2n` 3qα2
` 5pn` 1qα´ 5

¯

ÿ

i

xF, Fiy
2.
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Let us consider the function ypαq “ ´p2n` 3qα2 ` 5pn` 1qα´ 5. Then, we have

yp1` 1{nq “ 3n´ 2´ p3{nq ´ p3{n2
q ě 0, yp1{nq “ p3{nq ´ p3{n2

q ě 0,

which implies ypαq ě 0 for α P r1
n , 1`

1
ns. Therefore, on V the following holds

LZ ´ xF,∇Zy ě 0.

Notice that LZ ´ xF,∇Zy is a chart-independent function. Hence, the Hopf maximum principle
and MZ Ă V show that MZ “ V . However, MZ is a closed set and V is an open set by the
continuity of Z and Λ, respectively. So, we conclude that MZ “ Mn, and thus Proposition 5.6
gives the desired result. �
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