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ABSTRACT
Video surveillance is one of the fastest-growing class of net-
worked embedded systems. An increasing number of cameras
are networked to support various applications including secu-
rity in city streets, emergency evacuation in large buildings
and direct marketing in department stores. The large num-
ber of networked cameras motivates the need for automatic
video analysis, which, as of today, relies mostly on central-
ized computation. Still, trends in embedded computing en-
able the cost-effective realization of smart camera nodes and,
consequently, the distribution of part or all of the computa-
tion.

Starting from a particular application of automatic video
surveillance for building automation, we derive a system-
level model of the main computational tasks that are neces-
sary to process a collection of video streams together with
their requirements in terms of computation and communi-
cation resources. Then, we define a set of alternative im-
plementation platforms based on a detailed analysis of the
possible choices in terms of off-the-shelf components and
interconnection network technologies. Finally, we present
a methodology and supporting CAD tool that assists us in
evaluating alternative partitioning/mapping of the computa-
tional tasks onto the various platforms.

1. INTRODUCTION
Video surveillance systems are one of the fastest-growing

class of networked embedded systems. These systems are
made possible by the combination of several technologies in-
cluding microelectronics, networking, control systems, and
embedded software. The miniaturization of image sensors
(cameras) combined with powerful embedded processors al-
lows engineers to build smart video-nodes that can process
a video stream and transmit it to a central gateway through
an interconnection network. Such systems can be used for
a variety of applications from security in open spaces such
as city streets or university campuses to direct marketing in
large department stores.

In this paper we focus on one particular application, i.e.
video-based real-time estimation of building occupancy. This
application holds the promise of dramatically improving the
quality of emergency evacuation procedures in large build-
ings [1]. Furthermore, to be able to collect real-time informa-
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tion on the occupancy of people in a building would enable
major improvements in the operations of HVAC (“heating,
ventilating, and air conditioning”) systems. In turn, this
would allow reducing the building energy costs and raising
the level of comfort of its occupants.

The occupancy estimation application requires the deploy-
ment of a set of cameras around the building to detect and
count people as well as a mechanism to collect and process
this information. This high-level specification can lead to
many different actual implementations thanks to the large
variety of technology solutions, both in terms of embedded
computing and networking. In particular, while most video
surveillance systems presently rely on centralized computa-
tion, the trends in embedded computing are enabling the
cost-effective realization of smart video-nodes and, conse-
quently, the distribution of part or all of the computation.

Contributions. In this paper, we first provide a system-
level task decomposition of the occupancy estimation ap-
plication. Then, we present five alternative computation
platforms to implement video-nodes of different computa-
tional capabilities. This allows us to consider five alternative
mappings, each characterized by a different partitioning of
the tasks between the video-nodes and the central gateway.
Further, each mapping imposes different communication re-
quirements on the interconnect network. We study the com-
munication/computation design trade-offs by developing an
analytical model that allows us to estimate the implementa-
tion costs across various combinations of the five computa-
tion platforms with two network technologies (ARCnet and
Ethernet). Finally, we refine the design exploration with the
help of a network synthesis algorithm that we have devel-
oped within COSI (a software infrastructure for the design
of interconnection networks) to find the best implementation
matching the physical constraints of a given building.

Related work. A first attempt to count people by means
of over-head stereo cameras is presented in [2]. A similar ap-
proach is described in detailed by Beymer et al. in [3]. It
employs a stereo vision sensor, developed by [4], which pro-
vides 160 × 120 pixels frames with 16 depth level. The pro-
cessing unit, 400-MHz Pentium II executes two main tasks:
(1) computing the disparity map and (2) tracking people in
each frame. The system showed excellent accuracy in peo-
ple estimation (∼ 2% as counting error) with 20 − 25 frame
per second. State-of-the-art sensors [5, 6, 7, 4], which elabo-
rate internally every 3D images, allow reaching much higher
frame rates. The utilization of time-of-flight sensors to count
people was first proposed by Bevilacqua et al. [8] who use
a modified version of the algorithms presented in [3] and a
2-GHz Pentium to run detection and tracking algorithms on
64 × 64 pixel array at 12 frame per second. Snidaro et al.
presented a set of algorithms to record and process off-line
CIF (348 × 288) images from a color camera [9] but didn’t
provide a discussion on computational platforms and real-



time constraints.
There are many commercial products for both general

video-surveillance applications and people counting, but most
of these are not based on camera sensors, Axis [10] is one of
the leader in video surveillance based on Internet protocol
(IP) cameras. The Axis People-Counter comes in the form
of a software extension for one of their “Video Server”: the
AXIS 242S IV. The 242S IV receives one (or more) video
streams on a coaxial cable or on a S-video. It can encode
the image with MPEG-4 and/or M-JPEG. The output are
directed to an Ethernet 10/100 connector. Other ports (RS-
232/RS-485) can be used for other purpose (e.g.: controlling
a Pan Tilt Zoom (PTZ) camera, connection to other sen-
sors). A dedicated processor (ETRAX 100LX) encodes in
real time the video stream. A DSP (TMS320DM642) exe-
cutes all the other tasks (e.g.: people counting, I/O man-
agement, video streaming, etc.). Both the “ETRAX 100LX”
and the“TMS320DM642” come with additional 8Mbit Flash
and 32MBit memory each.

Biodata [11] offers a scalable solution for counting people.
There are two main products: the Video Tally and the Video
Turnstile. The first product is a low cost solution able to
process up to two-input images. The second product can
be extended to allow an indefinite number of camera to be
monitored. and it contains a wide set of network interfaces:
Ethernet, RS-232, RS-485, WiFi and a modem.

Neuricam [12, 13] (an Eurotech [14] company) offer a peo-
ple counter based on StereoVision image processing. This
solution is completely embedded and it has the option of fus-
ing the measurements of multiple sensors in order to cover
wide gate.

LASE PeCo Systems [15] adopts two technologies for sen-
sors: one based on infra-red (IR) and one based on a CCD
camera with a resolution of 510 × 480 pixels.

2. SYSTEM-LEVEL MODELING OF THE
OCCUPANCY ESTIMATION APPLICA-
TION

Fig. 1 illustrates the decomposition of the target appli-
cation, i.e. real-time building occupancy estimation, in a
sequence of eight main tasks. This system-level application
graph helps us to: (a) identify the key parameters that gov-
ern the computation and communication requirements for
each stage of such system (b) select the alternative choices
in terms of commercial off-the-shelf (COTS) components to
build the implementation platform, and (c) complete the
design exploration process.

In a centralized implementation each video-node contains
just the video sensor (the camera) and the hardware that is
necessary to interface the node with the network and trans-
mit the video stream to a network gateway that acts as data
collector. Depending on the number of streams to be pro-
cessed the gateway contains one or more microprocessors
running the application software for each of the following
tasks and for each stream.

In a distributed implementation, each video-node pro-
cesses part or all of its video stream by executing a subset
of these tasks that are implemented as embedded software
running on a microcontroller or a microprocessor. Some-
times it may be more efficient to use a specialized hardware
component for a particular task, e.g. H.264 encoding. In
general, the number of data that is transferred between one
task and the next one decreases as we move down the se-
quence of tasks. Hence, the more tasks are executed locally
on a video-node the lower the bandwidth requirement that
a node imposes on the network.

This decomposition is general enough that is applicable
to an entire class of distributed video surveillance problems.

Video Sensor. It has been shown that good results
for people counting can be achieved even with low resolu-
tion gray-scale or 3D image [8, 3, 9, 16, 17]. However, 3D
sensors [8, 3, 18] generally provide better performances. For
our analysis we assume a 3D video sensor like the one pro-
posed in [3]. The average data bandwidth produced by this
sensor is

BTraw = NX · NY · FR · PB

where

• PB = 4 is the bit encoding of the 3D image;

• NX = 160 is the width of the frame in pixels;

• NY = 120 is the height of the frame in pixels;

• FR = 25fps is the number of frames per second.

Computation required at this stage, if present, is minimal.
The main workload is to transfer all the pixels from the
sensor to memory. This can be performed by simple micro-
controllers or DSPs that have dedicated hardware to control
image sensors and DMA mechanisms to load pixels in mem-
ory without involving a more powerful processor.

Motion Detection. Continuously processing a video
stream is a demanding computational task. Designers con-
sider various techniques to save energy and/or transmission
bandwidth. A simple idea is based on the observation that
the events that need to be detected by the video analysis
system do not occur at all times. For instance, in the case
of our application, adding a low-cost Pyroelectric InfraRed
(PIR) sensor to the video-node makes it possible to detect
the presence/absence of a person in the field of view of the
camera. In case of absence of people there is no reason to
process a video stream and the video-node can remain in
a sleep mode. Hence, if E denotes the probability of oc-
currence of an event of interest, then the average output
bandwidth of this stage is: BTMD = BTraw · E.

Image Preprocessing. In the majority of current tech-
niques a background reference image is first subtracted to
each frame. The purpose is to separate the foreground from
background. The pixel blobs present inside the foreground
are likely to represent people. Especially in case of 2D-
images the background can not be considered static. In fact
variations in illumination condition and in shadows can sig-
nificantly change it. This means that if the sensors can not
operate in a controlled environment, the background has to
be dynamically adjusted over time. Several techniques are
described in literature for this purpose. The simplest so-
lution is to refresh periodically the background with a new
frame. More sophisticated approaches employ probabilis-
tic evolution model of the background (e.g.: Kalman filter,
Gaussian mixture). The more complex the techniques the
more time/memory is needed to process it. In case of 3D
sensors the background can be more safely considered static:
they are quite immune to illumination conditions [19]. The
difference image obtained from the previous step shows un-
avoidably a certain amount of noise which needs to be re-
moved. To this end a set of filters are usually applied. Ty-
pology and filter order may vary among different algorithms
and authors. Widely used are median, erosion and dilative
filters. A “distortion correction” filter has been proposed for
3D images [8, 3]. All these filters do not significantly reduce
the image dimension. Therefore, the required bandwidth
to transmit the image (BTpre) remains the same as in the
previous stage, i.e. BTpre = BTraw .



Stage Payload (Kbps)

Video Sensor BTraw
= 1920

Motion Detection BTmd
= 1920

Preprocessing BTpre
= 1920

H.264 Encoding BTcomp
=∼ 25

Blob Extraction BTblob
= 4 − 12

People Detection BTdct
= 4 − 8

People Tracking BTtrack
= 0.008

Occupancy Estimation BTest
= 0.008

Figure 1: System-level task decomposition of the building occupancy estimation application highlighting the
average data bandwidth transferred between each task.

Image compression. Instead of transmitting the whole
raw image, one can insert a stage that compresses the video
stream to reduce the required bandwidth of a video-node
while experiencing a moderate loss in image quality. Com-
pressing algorithms based on the H.264 standard are cur-
rently the most efficient in terms of both compression ra-
tio and image quality. On the other hand, they require a
significant amount of computational resources: CPU cycles
in case of software implementation, logic gates in case of
a hardware implementation based on a dedicated chip or
an FPGA design [20]. Since H.264 uses motion-estimation
techniques to encode the stream at a fixed image quality, its
output data bandwidth BTcomp depends on the particular
sequence of frames. For our application an average value of
about BTcomp = 25Kbps can be estimated based on a peak
signal-to-noise ratio (PSNR) of ∼ 30 dB.

Blob extraction. This stage performs a search on the
image to detect the presence of blobs, regions of adjacent
pixels that have the common property of being brighter than
a given level. Depending on the requirement imposed by
the subsequent ’people detection’ stage, each blob can be
expressed as a vector of some scalars. Possible examples
are: coordinate of the centroid (x, y, z), average width and
height (w, h), average grey (av) level, and the histogram, i.e.
a vector whose elements are the number of pixels per each
level present in the blob. Other algorithms detect people
with only the X and Y projections of each blob [21, 17].
Given that a blob can be encoded with few bytes and that
a limited number of blobs is present in each frame then the
data bandwidth produced by this stage is on the order of
BTblob = 4 − 12Kbps.

People detection. This stage processed the blobs re-
ceived from the previous stage by discarding those that are
not compatible with the image of a person and splitting the
others based on the number of persons that it is able to
detect. In some implementation the people detection is im-
plicit in the blob extraction or in the people tracking [3].
The output bandwidth BTdet of this stage is comparable
with BTblob , even if it is reasonable to assume that the fol-
lowing stage needs just a few features.

If the field of view of one camera is unable to cover all
the regions of interest, then a solution is to install multiple
sensors. In this case the present stage must properly fuse
the video streams produced by different sensors: if N sensors
are grouped together, then the overall BTdet becomes equal
to the sum of the N individual bandwidth values.

People tracking. This stage tracks each person across
subsequent frames to establish how many persons have moved
from one room to the other (on a frame base) Usually a
Kalman filter is the core function at this stage. The result-
ing output data bandwidth is of the order of few bits, i.e.
BTtrack ∼ 8bps.

Occupancy estimation. The last task in Fig. 1 can be

seen as the front-end of the video surveillance system for
our target application. It has to process the output of the
sensors and to establish the actual status of the building.
An implementation example is presented in [1]. Due to its
nature, we have this task always mapped on the processors
that are part of the central gateway, which collects the data
from all video-nodes.

3. EMBEDDED PLATFORMS
Starting from the application task graph of Fig. 1 we de-

rived a set of alternative embedded platforms to implement
the video-nodes for our distributed video surveillance ap-
plication. The platforms are based on available off-the-shelf
components and standard interconnection network technolo-
gies. The choice of a particular platform instance corre-
sponds to a possible mapping of the application tasks. This
mapping translates into a different set of requirements in
terms of both computational power and the communication
requirements that the network connecting the video-nodes
must satisfy.

Specifically, for the network implementation we consid-
ered two field busses that are widely used in building au-
tomation and are well suited for this class of application:
ARCnet (with EIA-485 as physical layer) and Ethernet.

Figure 2 summarizes the collection of five alternative im-
plementation architectures for the video nodes whose main
details we describe in the following sections.

3.1 Raw Transmission Central Computation
(RTCC)

The video-node consists of a video sensor and a low-cost
micro-controller. Each pixel of each frame is forwarded di-
rectly from the sensor to the communication channel. This
platform implements just the first task of Fig. 1. The other
tasks are executed by the gateway processor.

Embedded Computation. The computation require-
ments are minimal: the micro-controller implements the en-
tire communication stack and oversees the video sensor. The
choice of the particular device is driven by the choice of the
network technology because the micro-controller must be
able to sustain the necessary communication bandwidth.

Communication. Since the entire frame is transmitted
without compression, the network bandwidth requirement
is the highest possible for our application, corresponding to
the value BTraw =∼ 2Mbps. This constraint rules out the
effective utilization of ARCnet with the EIA-485 physical
layer when the system consists of more than one video-node.

Memory. A frame buffer is not required, because we
assume the channel is always available and free. In fact
when communications are only in up-link, as in our case
study, a switched Ethernet becomes collision free [22]. The
necessary memory is integrated in the micro-controller.
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Figure 2: Block diagrams of the video-node embedded platforms described in Section 3.

Embedded Micro-controller Memory
PHY PHY Chip PIR ($) Total ($)

Payload
Platform DSPs FLASH (Mb) SDRAM (Mb) Kbps

ARCnet enabled
RTCC LPC2131 @ 3.84$ - -

EIA-485 ADM1485 @ 1.98$

- 5.82 1920
DMCC LPC2131 @ 3.84$ - 64 @ 4$ 2 11.82 192
PDC AT91SAM9260@ 10$ 1000 @ 5.64$ 64 @ 4$ - 21.62 4 − 12
CDC ADSP-531@ 15.33$ 1000 @ 5.64$ 128 @ 8$ - 30.95 0.008
ETCC i.MX27 @ 15$ 1000 @ 5.64$ 128 @ 8$ - 30.62 25

Ethernet enabled
RTCC LPC2364 @ 6.5$ - -

Eth 10/100 PC82562EP @ 3.02$

- 9.52 1920
DMCC LPC2364 @ 6.5$ - 64 @ 4$ 2 15.52 192
PDC AT91SAM9260@ 10$ 1000 @ 5.64$ 64 @ 4$ - 22.66 4 − 12
CDC ADSP-536 @ 20.72$ 1000 @ 5.64$ 128 @ 8$ - 37.38 0.008
ETCC i.MX27 @ 15$ 1000 @ 5.64$ 128 @ 8$ - 31.66 25

Table 1: Summary of the embedded platforms components with the associated bill-of-material cost.

3.2 Distributed Motion Detection and Central
Computation (DMCC)

With this architecture we move the second task of Fig. 1
into the video node by providing the latter with a motion-
detection device such as a simple Pyroelectric Infrared Sen-
sor (PIR). The introduction of this component makes it pos-
sible to save dynamically some computational power. Specif-
ically, if the PIR does not detect any movement, then the
whole image processing/transmission can be avoided. The
cost of this additional sensor and the required circuitry and
lenses is about 2 dollars [23].

Embedded Computation. Differently from the first
platform this architecture forwards the image to the gate-
way only when it is needed, e.g. when there is some people
movement. The microcontroller, however, must now process
also the signal from the PIR.

Communication. The transmission rate is no more con-
stant. The average payload can be estimated as BTraw · E

where E is the probability of detecting a movement. This
reduction of the required bandwidth allows ARCnet to be
taken into consideration for actual installations.

Memory. Because of the change detection stage, a frame
buffer is mandatory. In fact, the captured image can be di-
rectly transferred to memory. Only when some movements
are detected then a certain number of previous and following
frames are transmitted to the collector for further process-
ing. In order to allow this behavior, we provide the video-
node with 64Mbit of SDRAM. This value can be considered
as an upper bound. It can be refined and customized on the
particular case.

3.3 Partially Distributed Computation (PDC)
This is the most hierarchical among the possible imple-

mentation platforms. It requires a video-node with more
computational power than in RTCC implementations but
still not as much as in the CDC ones. Referring again to
the diagram of Fig. 1, the video-node now completes all the
tasks up to ‘Blob Extraction‘. The gateway processor exe-
cutes the remaining tasks and whenever necessary completes

the data fusion of streams arriving from distinct nodes.
Embedded Computation. The video-node is in charge

of extracting relevant information from the video stream. It
detects blobs in each frame and forwards only some of theirs
features to the next processing unit (see Section 2). The na-
ture of these computational tasks demands devices that are
able to perform fixed-point arithmetic and run at moderate
clock frequency. Our choice is an Atmel micro-controller:
the AT91SAM9260, which is built around an ARM9 proces-
sor running at 200MHz and has native support for Ethernet
(MAC) and CAN protocols. Further, as an additional fea-
ture it contains an integrated camera interface.

Communication. Since only a few bytes are transmitted
for each frame, the resulting output bandwidth is on the
order of a few Kbps depending on the number of features
required by the subsequent task. All the communication
standards mentioned here are viable alternatives.

Memory. With respect to the previous architectures it
is necessary to add an external Flash memory to store the
embedded software. The video-node now includes 64Mbit

of SDRAM and 1Gbit of Flash.

3.4 Completely Distributed Computation (CDC)
In this case, the computational effort is fully performed by

the video-node that must be able to completely analyze the
scene and to count people. Only the last task in the diagram
of Fig. 1 runs on the central gateway. Each video-node sends
to the gateway a few bytes per second. A problem with this
solution is the lack of flexibility.

Embedded Computation. Considering that the whole
video processing must be executed on the video-node we
choose a member of the family of Blackfin DSPs by Ana-
log Devices, i.e. the ADSP-53xx running at 400MHz. No-
tice that there are many devices with similar computational
power but with a different set of integrated I/O interfaces.
Thus, the choice of the preferred device depends on the
adopted communication channel.

Communication. There is no a priori restriction on the
network standard. In fact there are no constraints imposed



by the application: both Ethernet and ARCnet can be con-
sidered for the implementation of the CDC solution.

Memory. In order to execute more complex algorithms
we must increase the video-node SDRAM to 128Mbit while
the non-volatile memory remains equal to 1Gbit.

3.5 Encoded Transmission Central Computa-
tion (ETCC)

If one needs to implement a video-surveillance application
that requires the collection of some or all the streams from
the video-nodes, then other platforms should be considered.
A possible solution is the one we describe here that imple-
ments the chain of tasks in the graph of Fig. 1 up to the
’H.264 Encoding’ stage. In order to overcome the bandwidth
issue that is inherent to the RTCC platform an alternative
is to encode each video stream. This allows employing a
cheaper network infrastructure. A drawback of this choice is
that more computational resources must be included in the
video-node to encode and decode each stream. In fact, the
computational effort required for image compression may be
comparable with the one for people counting. On the other
hand, building a general-purpose programmable video-node
could lead to higher production volumes.

Embedded Computation. The task of encoding a se-
quence of video frames is pervasive across many applications
and many solutions are available. Indeed, there are many
products, such as intellectual-property (IP) synthesizable
cores for FPGA and/or ASIC, that are actually too pow-
erful for many video-surveillance applications in the sense
that are much more expensive than the architectures that
we considered so far. As a reference device for this ETCC
platform we use Freescale’s i.MX27, which consists of one
ARM9E core running at 400 MHz and features an integrated
H.264 CODEC as well as support for Ethernet MAC 10/100
and CAN protocols.

Communication. The bandwidth of the compressed im-
age stream is of the order of ∼ 25Kbps, which can be sus-
tained both by ARCnet and by Ethernet.

Memory The i.MX27 needs a FLASH memory to store
the embedded software programs and an external memory to
execute it. Hence, we need to include 128Mbit of SDRAM
and 1Gbit of FLASH memory in the video-node for ETCC.

4. ANALYTICAL MODEL
We develop a parametric model of the embedded plat-

forms presented in Section 3 and we combine it with a sim-
plified analytical model of the network interconnecting the
video-nodes. We consider two candidate network technolo-
gies for our application: ARCnet and Ethernet. ARCnet is
widely adopted in building automation systems as it offers
low installation costs and high flexibility and predictability.
Ethernet is a more expensive technology that, however, of-
fers a much wider communication bandwidth, thus making
it more attractive for video streaming applications.

4.1 Cost Model for Embedded Platforms
The task graph T depicted in Fig. 1 can be divided in

two main parts. Let T1 be the first part that comprises of
the ’Video Sensor’ and ’Motion Detection’ tasks while let
T2 be the second part that groups together the remaining
tasks 1. The two tasks in T1 are always active in each video-
node since it is always necessary to load the image from the
camera sensor into the memory and to establish whether the
next task T2 must be invoked based on the detection of some
people movement. Hence, we denote with E the probability

1We do not include ’H.264 Encoding’ because it is outside
the scope of the present model.

Figure 3: Abstract model of camera deployment.

parameter definition value

G gateway processor
s ratio of SG over SCDC 10
k ratio of T2 over T1 4
E execution probability of task T2 0.10
F frame period 40ms

A area of the building 2100m2

d density of sensor per m2

N number of sensors

A = N
d

area of the circle

CARC [$/m] : cost per meter of an ARCnet cable $8
CET H [$/m] : cost per meter of an Ethernet cable $12

Sp number of port in the Ethernet switch 8
CG cost of G $400

CESp
p port switch cost $150

CAR ARCnet router cost $760
arcn max number of node on an ARCnet chain 8 or 32

Table 2: Analytical model parameters with their ref-
erence values.

of execution of T2 which depends on the frequency of the
observed events (in our example people movements through
a door). While T1 mainly involves algorithms for change
detection or object detection, T2 consists of algorithms for
object classification/recognition and tracking, which usually
are computationally intense. We capture the different com-
putational loads of the the task groups with the variables
LT1 and LT2 , respectively. For the purpose of this anal-
ysis, only the relative values of LT1 and LT2 are relevant.
Also, since in practical cases LT1 < LT2 , we can safely write:
LT1 = 1 and LT2 = kLT1 with the value of k rounded to an
integer number. Next, we examine in details three embed-
ded platforms.

CDC. This implementation is based on fully-distributed
computation. Hence, in order to guarantee real-time em-
bedded computing, the processing speed SCDC of the CDC
video-node must be sufficient to complete the execution of
T = T1 + T2 within the frame period F , i.e. SCDC ≥
1+k
F

. On the other hand, the gateway processor G must just
gather the outputs of the computation in each video camera
without doing any major processing. The cost CCDC

comp of the
hardware to implement the embedded software required by
the CDC platform is given by:

C
CDC
comp = CG + N · CCDCj (1)

where CG is the cost of the gateway processor, N is the
number of cameras, and CCDCj is the cost of a CDC video-
node, which includes an installation cost of about $100. The
index j distinguishes a video-node supporting the ARCnet
protocol (j = 0) from one supporting the Ethernet protocol
(j = 1).

RTCC. This implementation is based on fully-centralized
computation. Hence no significant processing is embedded
in the video-nodes, while the gateway processor G must be
able to elaborate a set of streams in a given frame period F .
A reasonable assumption is that G has a processing speed
SG that is s times higher than the processing speed SCDC

of a CDC video node. Thus, the maximum number PRTCC

of streams which can be processed by G is

PRTCC =

⌊

s · (1 + k)

1 + k · E

⌋
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Figure 4: Implementation costs (as function of the number of nodes) obtained with the analytical model.

The component cost to implement the computation is:

C
RTCC
comp = N · CRTCCj + CG

⌈

N

PRTCC

⌉

(2)

DMCC. This implementation is an intermediate choice
between CDC and RTCC. It assumes that the task subset T1

is performed in the video-nodes while T2 is executed by the
gateway processor G only when necessary, i.e. depending
on the event probability E. Hence, generally, the number
PDMCC of streams that can be processed by G in the unit
of time becomes higher than in the RTCC case:

PDMCC =

⌊

s · (1 + k)

k · E

⌋

and the overall computation cost is:

C
DMCC
comp = N · CDMCCj + CG ·

⌈

N

PDMCC

⌉

(3)

4.2 Network Cost Models
A significant fraction of the cost of a wired networked em-

bedded system is constituted by the cabling. Many factors
influence the cabling cost: e.g. the number and position of
the embedded nodes, the physical dimension of the system,
the environment constraints and the chosen interconnection
technology. We present five high-level analytical models
for the following network technologies: ARCnet@78kbps,
ARCnet@2.5Mbps, Ethernet, and two hierarchical hetero-
geneous networks: Ethernet over ARCnet@78kbps and Eth-
ernet ARCnet@2.5Mbps. We assume that N camera sensors
are uniformly distributed over a given region (Fig. 3). Let
A be the area of the region and d = N

A
be the density of

the distribution of the sensors in the region. Under these
hypothesis the distance between two adjacent sensors can

be approximated as l = 2
√

1

πd
. For simplicity, we place the

network gateway at the center of this region.
ARCnet. A network based on ARCnet technology con-

nects all the nodes with one (or more) daisy-chain bus.
While various physical layer technologies are compatible with
the standard, a common choice is EIA-485. The cabling cost
is proportional to the length of the chain:

C
A
cab = (N − 1) · l · CARC

ARCnet @78kbps and ARCnet @2.5Mbps use the same wiring
medium and connection topology so they have the same ca-
bling cost. An important difference is that on an ARC-
net @78kbps chain there can be at most 32 stations, whereas
on an ARCnet @2.5Mbps chain this number is reduced to
8. A router must be used to connect multiple chains. In
summary the network equipment costs required by the two

technologies are respectively:

C
A78
dev = CG +

⌈

N

32

⌉

· CAR

C
A25
dev =

⌈

N

8

⌉

· CAR

Switched Ethernet. A switched Ethernet is a two-tier
network. At the first level signals from Sp sensors are merged
together by the switch. The second tier connects all the
switches to the gateway by means of an additional switch.
We assume to install each switch in the middle of its group of
sensors. Hence, the Ethernet cable length lS(I) to connect
I sensors to a switch is approximated by:

lS(I) = 2 · l · dI

where dI is the I-th element of DI . In case of an 8-port
Ethernet switch DI = (0, 1, 2, 5, 8, 10, 13, 16). The total ca-
ble cost in a switched Ethernet is:

C
Eth
cab = [l · lS(Sp) ·

⌊

N

Sp

⌋

+l · lS(N mod Sp)+
1

2
·

√

N

πd
·

⌈

N

Sp

⌉

] ·CETH

The first two terms account for the wiring needed by N cam-
eras, whereas the third term represents the cable to connect
the switches to the gateway. CETH summarizes both instal-
lation and cable cost per meter. The contribute of switches
to the global cost is given by:

C
ETH
dev =

⌈

N

Sp

⌉

· CESp

Hierarchical heterogeneous networks. In these net-
works the first tier, i.e. the one closer to cameras, is im-
plemented with one technology and the second tier with an-
other. The cabling and component cost of the first-tier net-
works are the same as above. It is a common design practice
to employ a wide bandwidth field bus for the second-tier net-
work (e.g. Ethernet or ARCnet @2.5Mbps). In our analysis
we take into consideration the following combinations:

• ARCnet @2.5Mbps over ARCnet @78Kbps. The cost
functions for this network are:

C
AII
cab = (M − 1) · lII · CARC + C

A
cab

C
A25II
dev =

⌈

M

8

⌉

· CAR + C
A78
dev

where M =
⌈

N
32

⌉

is the number of routers instanti-

ated for the first-tier network and lII = 2
√

N
Mπd

is the

distance between two routers.



• ARCnet@2.5Mbps over ARCnet@2.5Mbps. Similar to
the previous case, except for the value of M which is
now M =

⌈

N
8

⌉

.

• Ethernet over ARCnet@78Kbps. When Ethernet is
the second=tier network we have:

CEth arc78
cab = [lII · lS(Sp) ·

⌊

M
Sp

⌋

+ lII · lS(M mod Sp)+

1

2
·

√

N
πd

·

⌈

M
Sp

⌉

] · CETH + CA
cab

C
ETH arc78
dev =

⌈

M

Sp

⌉

· CESp + C
A78
dev

• Ethernet over ARCnet@2.5Mbps. Here we have:

CEth arc25
cab = [lII · lS(Sp) ·

⌊

M
Sp

⌋

+ lII · lS(M mod Sp)+

1

2
·

√

N
πd

·

⌈

M
Sp

⌉

] · CETH + CA
cab

C
Eth arc25
dev =

⌈

M

Sp

⌉

· CESp + C
A25
dev

where M =
⌈

N
8

⌉

4.3 Model-Based Estimation of Implementa-
tion Costs

We are particularly interested in two aspects of the imple-
mentation cost of our target distributed indoor video surveil-
lance system: (1) how the cost changes with the number of
video-nodes deployed in a building of and (2) how this cost
depends on the platforms of communication and computa-
tion components. Using the reference values reported in Ta-
ble 4.1 we computed model-based estimates of these costs
for various implementation technologies and as function of
the number of video-nodes in the building.

In particular, Fig. 4(a) reports the estimate of the cabling
costs. These show that an Ethernet network is clearly more
expensive than any other equivalent network based on the
other technologies. The reason is twofold: (1) Ethernet uses
a star topology that generally requires more cable than the
ARCnet daisy chain busses and (2) the Ethernet cable has
an higher installation cost than the ARCnet twisted pair.
While a pure ARCnet network appears to be the most cost
effective, the curves relative to the hierarchical heteroge-
neous networks show that combining the two technologies
may offer a good compromise between bandwidth and price.

Using Equations (1), (2), and (3) we plotted the compu-
tation cost for the platforms CDC, RTCC, and DMCC in
Fig. 4(b) 2. These curves suggest that a centralized archi-
tecture is advantageous only for systems having a limited
number of video-nodes. In fact, beyond a certain threshold
(about 30 sensors in this case) a partial distributed solution
becomes more convenient. A completely distributed solu-
tion is less efficient from a computation perspective and for
this reason more expensive.

Finally, in order to understand the tradeoffs between com-
munication and computation we combined the curves of
Fig. 4(a) and Fig. 4(b) to derive those of Fig. 4(c). Generally,
this trade-off should reflect the fact that cheaper video-node
platforms perform less computation locally and, therefore,
impose higher bandwidth constraints on the communication
network, which in turn ends up requiring a more expensive
communication technology. Still, the estimations based on
the given analytical model with the parameters of Table 4.1

2The other two platforms are not present because their com-
putational cost is always dominated by these three platforms
for the target application.
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Figure 5: Software organization of COSI

suggest that the cabling costs plays a critical role to tilt the
balance in favor of a distributed implementation. In fact, the
CDC embedded platform combined with ARCnet @78Kps

appears as the most convenient solution regardless of the
number of sensors in the system.

5. NETWORK SYNTHESIS
The analytical model presented in Section 4 allows us to

explore some of the computation and communication trade-
offs in the design of our video-surveillance application. Some
trade-offs are evident: the cost of CDC video-nodes commu-
nicating over an ARCnet network is clearly smaller than
the cost of RTCC video-nodes communicating over Ether-
net. In other cases, however, the cost difference is not as
large, which makes design decisions less obvious. For these
cases, it is necessary to further refine the models and explore
different solutions at a lower level of abstraction. In partic-
ular, we want to take into account the physical constraints
imposed by the geometry of the particular building which
impacts the cabling costs and sometimes even the feasibility
of a particular solution. In order to do so, we take advantage
of COSI [24, 25], a public-domain design framework that al-
lows researchers and designers to contribute, combine, and
compare optimization algorithms, communication protocols,
partial designs, and models for the design of interconnection
networks.

We first present the design flow that we implemented in
COSI and then we provide details about the synthesis algo-
rithm that we develop to generate heterogeneous hierarchical
interconnection networks for our target application.

5.1 Communication Synthesis Infrastructure
The Communication Synthesis Infrastructure (COSI) is a

framework for modeling and design of interconnection net-
works. It is based on the principles of platform-based de-
sign [26] and it advocates a clear separation of the speci-
fication of a communication problem from the possible al-
ternative network implementations. The set of possible im-
plementations, also referred as the platform, are implicitly
captured by the definition of a library of communication
components and composition rules. The problem specifica-
tion and the communication library are the two main inputs
given to a particular communication synthesis algorithm.
The algorithm returns the optimal implementation by se-
lecting an element of the platform, called platform instance.
The platform instance is obtained through the instancing
and the assembling of a set of components that are specified
in the communication library.

Figure 5 shows the software organization of COSI. Based
on this organization we developed a design flow for the syn-
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Figure 6: Network synthesis algorithm.

thesis of embedded networks for building automation. Our
flow accepts the problem specification in a SVG format that
includes: the description of the building floorplan including
walls and cable ladders, the fixed location of the sensor nodes
(video-nodes) and the candidate locations for the network
routers and switches. An internal representation of the spec-
ification is generated as a labelled graph NC that includes
the node VC and the end-to-end communication constraints
represented by a set of edges EC . Each node is annotated
with a position in the physical space. Each edge e(u, v) is
annotated with a period t(u, v), a message length in number
of bits, and a maximum latency constraint l(u, v). The pe-
riod and the message length are used to derive a bandwidth
requirement b(u, v).

The set of the cable ladders constitutes a set of restrictions
on the possible layouts for the network wires. In particular,
a wire connection between a source node and a destination
node must be laid out as much as possible on cable ladders
only. Since the wiring cost has a big impact on the total
network cost, wiring constraints play an important role in
the optimal network design.

The communication library contains the definition of the
components that can be used to build the network. Each
component is characterized by its interface ports and sup-
ported protocols. Performance and cost models are associ-
ated to each component to annotate quantities like band-
width and latency. The models capture the details of the
communication protocol like overhead and medium access
control. The definition of the components includes the com-
position rules. These are captured by an operation that
defines the performance of a composite network as function
of the performance of its components together with a set
of constraints that define when a composition is valid. Ex-
ample of constraints are restrictions on the topology of the
network (e.g. a daisy-chain bus, a tree topology, or a star).

The synthesis algorithm returns an optimal implemen-
tation NI that satisfies all end-to-end communication con-
straints given in the specification while respecting the com-
positional properties of the network components and the
physical constraints imposed by the physical geometry of
the building. Notice that there may be problem instances
for which a solution does not exist, i.e. using the compo-
nents in the communication library it is not possible to syn-
thesize a network that satisfies all input constraints. If a
solution does exist, COSI returns detailed information on
the position of each network components (wires, switches,
repeaters,...) as well as a comprehensive report on the cost
of the network.

5.2 Synthesis Algorithm
The synthesis algorithm that we developed in COSI is

composed of seven steps (Figure 6):

1. The end-to-end communication constraints are first
analyzed to derive a complete graph on the set of nodes
of the specification that is called the weight graph. The
edges of the weight graph are labeled with a number
that captures the cohesion of two nodes. The weight
between two nodes u and v is defined as follows:

w(u, v) = λbb(u, v) +
λl

l(u, v)
+

λd

d(u, v)

where b(u, v) is the bandwidth requirement, l(u, v) is
the latency requirement and d(u, v) is the distance be-
tween the nodes (this distance takes into account the
wiring constraints).

2. The second step is the partitioning of nodes in sub-
groups. Partitioning is computed using hmetis [27].
This is a hyper-graph partitioning tool that divides
the nodes of a hyper-graph in groups such that the
total weight of the cuts is minimized. The weight
graph can be partitioned at different levels of gran-
ularity by changing the size of the partitions. Each
group of nodes obtained during the partitioning step
is a candidate sub-network.

3. After partitioning is completed, each sub-group is pro-
cessed sequentially to derive a network among its nodes
based on the target communication library. The ex-
ample of Figure 6 assumes the use of ARCnet, which
constraints the topology of each sub-network to be a
daisy-chain bus. Notice that it is not necessarily the
case that a sub-graph can be implemented with a given
network technology. This depends on the technology
and the constraints of the synthesis problem. The con-
straints that are taken into account in this step are
the length of the wires used to implement the physi-
cal connections, the total number of nodes in a sub-
network, the bandwidth constraints, and the latency
constraints. During this step, switches are also instan-
tiated for the sub-networks (represented by white dots
in Figure 6).

4. A subset of the sub-networks generated in the previ-
ous step must be selected for the final implementation.
This step entails solving an instance of the binate cov-
ering problem. The objective is to select a subset of
sub-networks such that each node in the specification
is covered by one sub-network, all end-to-end latency
constraints are satisfied, and the total network cost
is minimized. The selection of one sub-network may
prevent the selection of another one because the end-
to-end constraints between two nodes in the two sub-
networks may be violated. The binate covering prob-
lem can be written as follows:

min

n
∑

j=1

fjzj

s.t.

n
∑

j=1

xvjzj = 1, ∀v ∈ VC (1)

n
∑

j=1

xrjzj = 1, ∀r ∈ R (2)

zizj = 0, ∀(u, v) ∈ EC , ∀i 6= j s.t.

xui = xvj = 1, l(u, ri) + l(rj , v) ≥ l(u, v) (3)

zi, xvi, xri ∈ {0, 1}, ∀v ∈ VC , ∀r ∈ R, ∀i ∈ [1, n] (4)



In this formulation, fj is the cost of the j-th sub-
network and zj is a binary variable that is one if the
j-th sub-network is picked in the final solution and
zero otherwise. Binary variable xvi is one if node v

belongs to the i-th sub-network and zero otherwise.
Binary variable xri is one if switch r serves the i-th
sub-network and zero otherwise. Constraint (1) makes
sure that a node is covered by exactly one sub-network.
Constraint (2) makes sure that each sub-network is
covered by exactly one of the candidate switches. Fi-
nally, Constraint (3) is the latency constraint. Sub-
networks i and j cannot belong to the same solution
(i.e. zi · zj = 0) if the delay from node u to switch ri

(that serves sub-network i) plus the delay from switch
rj (that serves sub-network j) to node v is greater or
equal than the maximum delay constraint l(u, v) that
is given in the specification.

To solve this binate covering problem we use Min-
iSat+ [28]. In the example of Figure 6, sub-networks
N2, N9 and N10 are selected and composed.

5. The set of sub-networks selected in Step 4 must be
interconnected by a higher-level network linking the
switches. Hence a new specification that captures the
end-to-end communication requirements among the switches
must be generated. This is done by analyzing automat-
ically the solution obtained in the previous step in the
context of the specification of the original problem.

6. The higher-level network is synthesized with an al-
gorithm similar to the one described in Step 3 and
Step 4. Notice however, that the user may indicate a
different platform to implement the higher-level net-
work. Hence, hierarchical heterogeneous networks can
be synthesize, e.g. an Ethernet network connecting
many ARCnet sub-networks.

7. The final network implementation is derived by com-
posing the results of Step 4 with the higher level net-
work obtained in Step 6.

The algorithm presented in this section is very general and
can be used to synthesize networks for a large class of dis-
tributed embedded systems using various networking plat-
forms. Notice that only Steps 3 and 6 are technology depen-
dent steps. All other steps do not depend on the network
components (i.e. the platform).

6. EXPERIMENTAL RESULTS
In this section we present the results obtained by running

COSI to synthesize a set of alternative hierarchical networks
for two different buildings (Building A and Building B) and
we compare the results with the costs computed by the an-
alytical model and shown in Figure 4. The floor-plan of the
two buildings are reported in Figure 7.

We manually distributed a number of video-nodes ranging
from 1 up to 60 in proximity of doors and points of access.
We also selected 14 possible locations for the installation of
switches and routers. These points are uniformly distributed
in the building and in proximity of cable ladders. Figure 8
and 9 report the cost of the optimal network synthesized by
COSI for five different combinations of network technology
as function of the number of video-nodes in the system.

Figure 8 shows some differences with the cost predicted
by the analytical model and reported in Figure 4(c). The
synthesis result does confirm the clear advantage of using a
CDC embedded platform combined with a low-cost network

(a) (b)

Figure 7: Floor-plan of the two buildings used in
our experiments: (a) Building A; (b) Building B.
.
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Figure 8: Total cost of computation and communi-
cation for Building A of Figure 7(a).

like ARCnet@78Kbps. This may be partially due to the fact
that the regular structure of Building A matches fairly well
the abstract model of indoor camera deployment of Fig. 3
However, the separation between the DMCC platform with
ARCnet and the other implementation platforms is not so
clear anymore, especially for systems with a small number of
sensors. Also, it is arguable whether a DMCC with ARCnet
must always be preferred to the other solutions.

Different considerations must be made when comparing
the synthesize results for Building B with the estimates
based on the analytical model. The latter is still useful
for a coarse-grain evaluation of the trade-offs among solu-
tions. However, using COSI allows us to better determine
the impact of combining the DMCC and RTCC computa-
tion platforms with different communication technologies.
Specifically, for Building B the DMCC computation plat-
form with ARCnet is a more expensive proposition than the
RTCC computation platform with Ethernet. This is mainly
due to the geometry of the building, which has a different
impact on the wiring layout for daisy-chain busses and star
topologies. An ARCnet sub-network at 2.5Mbps can con-
nect at most 8 video nodes. An Ethernet switch has at most
8 ports, i.e. an Ethernet sub-network can also connect at
most 8 video-nodes. While in Building A a daisy-chain bus
is much shorter than an Ethernet star, this is not necessar-
ily the case for Building B. Therefore, Ethernet stars end
up costing less than the ARCnet busses. Even the contri-
bution of the central computation is not enough to increase
the cost of the RTCC platform and make it comparable to
the one of the DMCC platform. The difference in cost can
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Figure 9: Total cost of computation and communi-
cation for the Building B of Figure 7(b).

be as high as 15% for the case of 20 video-nodes. The CDC
solution is still the most cost-effective thanks to the higher
number of sensors that can be interconnected by the same
sub-network.

7. CONCLUSION
Video-nodes, computers, and the network interconnecting

them are integral parts of a video surveillance system. The
video-node implementation choice impacts the cost of the
central computation unit and of the communication net-
work. Therefore, finding an optimal implementation re-
quires to solve a system-level design exploration problem
by considering the computation and communication costs
trade-offs. When more intelligence is embedded in the video-
nodes, less data need to be sent across the network. Hence,
more cost-effective network technology can be used with
high-end video-nodes. On the other hand, simpler and less
expensive video-nodes can be used with a more expensive
network that is able to support the bandwidth for the trans-
mission of raw images.

We proposed an analytical model to explore the imple-
mentation of the video-nodes and the communication net-
work. We applied this model to the design of a particular
video-surveillance application and we found that it is con-
venient to combine an embedded platform supporting fully-
distributed computation with a low-bandwidth network.

While the analytical model can clearly discern the dif-
ference between centralized and distributed computation,
ranking the cost of less distributed solutions requires a more
refined approach that accounts for the impact of the actual
building geometry on the network design. Hence we develop
an ad hoc synthesis algorithm based on the COSI infrastruc-
ture for network synthesis and we showed that the cost of
the optimal solution depends on the characteristics of the
building at hand.

Our future research direction is two-pronged. We plan to
tackle the problem of deciding the position and the number
of video-nodes given a higher level requirement on the safety
and security of the video-surveillance system and a model of
the people movement. We will also explore heterogeneous
solution that combine distributed and centralized computa-
tion to satisfy the more dynamic behavior requirements of
other distributed embedded applications.
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