Academic Commons

Theses Doctoral

Geo-Chemo-Physical Studies of Carbon Mineralization for Natural and Engineered Carbon Storage

Gadikota, Greeshma

Rising concentration of CO2 in the atmosphere is attributed to increasing consumption of fossil fuels. One of the most effective mechanisms to store CO2 captured from power plants is via geological injection of CO2 into formations that contain calcium and magnesium silicate and alumino-silicate minerals and rocks. The mechanism that ensures permanent storage of CO2 within rocks is mineral carbonation. When CO2 is injected into mineral or rock formations rich in calcium or magnesium silicates, they react with CO2 to form calcium or magnesium carbonates, which is also known as carbon mineralization. Calcium and magnesium carbonates are stable and insoluble in water. However, the kinetics of in-situ mineral carbonation involve CO2 hydration, mineral dissolution and formation of carbonates, and the relative rates of these phenomena when coupled, are not very well understood. In this study, the coupled interactions of CO2-reaction fluid-minerals were investigated to determine the optimal conditions for carbon mineralization, and to identify the chemical and morphological changes in the minerals as they react to form carbonates. Carbon mineralization in various minerals and rocks such as olivine ((Mg,Fe)2SiO4)), labradorite ((Ca, Na)(Al, Si)4O8), anorthosite (mixture of anorthite (CaAl2Si2O8), and basalt (rock comprising various minerals) were studied at high temperatures (Tmax = 185 oC) and high partial pressures of CO2 (PCO2, max = 164 atm) which are relevant for in-situ conditions. These minerals and rocks differ considerably in their chemical compositions and reactivity with CO2. A systematic comparison of the effects of reaction time, temperature, partial pressure of CO2, and fluid composition on the conversion of these magnesium and calcium bearing minerals and rocks showed that olivine was the most reactive mineral followed by labradorite, anorthosite, and basalt, respectively. Previous studies at Albany Research Center (Gerdemann et al., 2007; O'Connor et al., 2004) reported that a solution of 1.0 M NaCl + 0.64 M NaHCO3 was effective in achieving high extents of carbonation in olivine, heat-treated serpentine, and wollastonite. However, the independent effects of NaCl and NaHCO3 and their role in mineral carbonation were not sufficiently explained. In this study, the role of varying concentrations of NaCl and NaHCO3 on carbon mineralization of various minerals was elucidated. NaHCO3 buffered the pH and served as a carbon carrier, resulting in higher carbonate conversions. Except in the case of olivine, NaCl had a negligible effect on enhancing mineral carbonation. Unlike NaHCO3, NaCl does not buffer the pH or serve as a carbon carrier, but Cl- may serve as a weak chelating agent can complex with Mg or Ca in the mineral matrix to enhance dissolution. The competing effects of ionic strength and pH swings as the mineral dissolves and carbonation further complicate the role of NaCl on mineral carbonation. Based on the experimental methodologies developed to study carbon mineralization in minerals and rocks at high temperatures and pressures, alternative applications such as the remediation of hazardous alkaline wastes such as asbestos containing materials were identified. Asbestos is composed of chrysotile, a fibrous hydrated magnesium silicate mineral and a form of serpentine known to cause respiratory illnesses. By treating asbestos containing materials with CO2 in the presence of 0.1 M Na-oxalate, dissolution of chrysotile and precipitation of newer phases such as glushinkite (Mg(C2O4)* 2H2O) and magnesite (MgCO3) occurred, which reduced the chrysotile content in asbestos. Based on the methodologies for studying mineral dissolution and carbonation kinetics, and coupled mineral dissolution and carbonation behavior, a scheme for connecting laboratory scale experiments with simulations to estimate the uncertainties associated with carbon mineralization was developed. The effects of temperature, different dissolution rates, and varying levels of surface area changes due to passivation or reactive cracking on the rates of carbon mineralization were simulated using PhreeqC, a computer program developed for geochemical speciation calculations (Parkhurst & Appelo, 1999). Various studies proposed that microfractures and cracks may occur in geologic formations due to the extensive growth of carbonate crystals (Kelemen & Hirth, 2012; Kelemen & Matter, 2008; Matter & Kelemen, 2009; Rudge et al., 2010). Other studies have suggested that the formation of carbonates may plug the pore spaces and limit further reactivity (Hövelmann et al., 2012; King et al., 2010; Xu et al., 2004). The effects of changes in surface area due to the formation of microfractures or passivation due to carbonate growth on the rates of carbon mineralization were also simulated. Overall the results of these studies demonstrate the effect of various parameters on carbon mineralization and how these parameters can be connected to predict CO2 storage in mineral formations. The frameworks to connect laboratory scale experiments with simulations to determine carbon mineralization rates and to assess the risks associated with CO2 injection in reactive formations, can be used to direct future research efforts to predict the fate of injected CO2 with greater accuracy for sensor placement and optimization of CO2 monitoring technologies.


  • thumnail for Gadikota_columbia_0054D_11799.pdf Gadikota_columbia_0054D_11799.pdf application/pdf 3.51 MB Download File

More About This Work

Academic Units
Chemical Engineering
Thesis Advisors
Park, Ah-hyung A.
Ph.D., Columbia University
Published Here
January 24, 2014
Academic Commons provides global access to research and scholarship produced at Columbia University, Barnard College, Teachers College, Union Theological Seminary and Jewish Theological Seminary. Academic Commons is managed by the Columbia University Libraries.