2016 Articles
Recommended Thermal Rate Coefficients for the C + H3+ Reaction and Some Astrochemical Implications
We incorporate our experimentally derived thermal rate coefficients for C + ${{\rm{H}}}_{3}^{+}$ forming CH+ and CH2 + into a commonly used astrochemical model. We find that the Arrhenius–Kooij equation typically used in chemical models does not accurately fit our data and instead we use a more versatile fitting formula. At a temperature of 10 K and a density of 104 cm−3, we find no significant differences in the predicted chemical abundances, but at higher temperatures of 50, 100, and 300 K we find up to factor of 2 changes. In addition, we find that the relatively small error on our thermal rate coefficients, ~15%, significantly reduces the uncertainties on the predicted abundances compared to those obtained using the currently implemented Langevin rate coefficient with its estimated factor of 2 uncertainty.
Subjects
Files
-
Vissapragada2016ApJ832_31.pdf application/pdf 255 KB Download File
Also Published In
- Title
- The Astrophysical Journal
- DOI
- https://doi.org/10.3847/0004-637X/832/1/31
More About This Work
- Academic Units
- Astrophysics Laboratory
- Published Here
- September 8, 2017