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ABSTRACT

The paper studies a simple voting system that can increase the power of minorities
without sacrificing aggregate efficiency or treating voters asymmetrically. Storable
votes grant each voter a stock of votes to spend as desired over a series of binary
decisions and thus elicit voters’ strength of preferences. The potential of the mech-
anism is particularly clear in the presence of systematic minorities: by accumulating
votes on issues that it deems most important, the minority can win occasionally.
But because the majority typically can outvote it, the minority wins only if its
strength of preference is high and the majority’s strength of preference is low. The
result is that the minority’s preferences are represented, while aggregate efficiency
either falls little or in fact rises, relative to simple majority voting. The theoretical
predictions of our model are confirmed by a series of experiments: the frequency
of minority victories, the relative payoff of the minority versus the majority, and
the aggregate payoffs all match the theory.

Recent decades have witnessed historic efforts at designing democratic institutions, at
many levels. New constitutions were created in much of Eastern Europe and the for-
mer Soviet Republics. International organizations such as the European Union and the
World Trade Organization have been evolving rapidly, and many developing countries
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have moved from autocratic regimes to regimes based on elected representation with
majoritarian principles.

While majoritarian principles provide a solid foundation for democracy, there are
imperfections. This paper focuses on one particular imperfection that has presented
a challenge to designers of democratic institutions for centuries: the tyranny of the
majority, or the risk of excluding minority groups from representation. At least since
Madison, Mill, and Tocqueville, political thinkers have argued that a necessary condi-
tion for the legitimacy of a democratic system is for no group with socially acceptable
goals to be disenfranchised. In the history of US constitutional law, ensuring fair rep-
resentation to each group is seen as the crucial second step in the evolution of demo-
cratic institutions, after granting the franchise: once all individuals are guaranteed the
right to participate in the political process, should separate weights be given to each
group’s political interest? The core of the difficulty is that the two goals seem inherently
contradictory.

The 1965 Voting Rights Act and the debate that continues to accompany its imple-
mentation focus on the need to guarantee that minorities, in particular racial minorities,
have some direct representation. The obstacle is the possibility that their vote be de facto
diluted by their minority status in all districts. In this paper, we study a related but dif-
ferent problem: the respect of minority preferences not in the choice of representatives,
but in the very act of decision-making. We argue for it not only on the basis of fairness
and legitimacy, but also on grounds of aggregate efficiency. Chwe (1999) took a similar
perspective and proposed granting special voting power to the minority to ensure its
participation when voting aggregates diffuse information. The voting system we analyze
treats everyone identically, and we base our analysis on private value considerations —
voting in our model aggregates divergent preferences, not diffuse information. But the
efficiency rationale remains. A simple example illustrates why.

Suppose there are just two groups in a polity comprised of 100 citizens. Group A
has 55 members and group B has 45 members. There are 3 proposals on the table. All
citizens in group A have identical preferences and strictly prefer to pass all proposals;
all citizens in group B have identical preferences and strictly prefer the status quo on
all 3 issues. The table below gives a specific utility function for each member on each
issue, and preferences are assumed to be additive. For each citizen, the utility of the less
preferred option is normalized to 0.

Issue UA (pass) UA (sq) UB (pass) UB (sq)
1 3 0 0 1
2 2 0 0 2
3 1 0 0 3

Note that the intensity of preferences varies across the issues, and on a given issue
the preference intensity for a group A member may be different from the intensity of
a group B member. Issue 1 is important to group A but not to group B, and issue 3 is
important to group B but not to group A.
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Now consider what would happen with simple majority rule when issues are decided
independently: since group A has a majority, all three proposals pass. Indeed, even if
there were a million different issues, group A would always have a majority on all issues,
so the B citizens are effectively disenfranchised — the outcome is exactly the same as it
would be in a political system where only A citizens were allowed to vote.

Why is this outcome undesirable? First, equity considerations demand that the minor-
ity be able to win on at least some issues. But in addition, from a purely utilitarian
standpoint, there are plausible welfare criteria according to which the outcome is socially
inefficient. In our example, if each individual is treated equally and decisions are evalu-
ated ex ante, before membership into the groups is known, the status quo should prevail
on issue 3. Thus, the tyranny of the majority imposes costs both in terms of equity
and in terms of efficiency. The equity problem stems from the existence of a smaller
group whose preferences are systematically in the opposite direction of the larger group’s
preferences. The efficiency problem stems from differences in the strength of preferences
of the two groups. Nothing fundamental depends on all citizens in a group having the
same intensity of preferences on every issue, a simplification adopted only to keep the
example transparent.1

How can the tyranny of the majority problem be solved, or at least mitigated? Any
solution must deviate from issue-by-issue simple majority voting. An immediate pos-
sibility might be vote trading or some corresponding log-rolling scheme: members of
one group could trade their vote on one issue in exchange for votes on other issues.
But, in the simple example we constructed above, there are no gains to trading across
groups, because every A citizen is already winning on all issues. Any system that allows
the minority group to win on even one issue will make all A citizens worse off, and thus
would not emerge spontaneously. With the perfect correlation of preferences we have
posited above, an explicit institution re-enfranchising the minority is necessary.

Consider then endowing every voter with an initial stock of votes, and rather than
requiring voters to cast exactly one vote on each issue, allowing them to lump their votes
together, casting heavier votes on some issues and lighter votes on other issues. It is this
voting mechanism, called storable votes, that we study in this paper. Even if the initial
stock of votes is identical for all voters, storable votes allow the minority to win some of
the time, and in particular, to win when its preferences are most intense. But because the
majority generally holds more votes, it is in a position to overrule the minority if it cares
to do so: the minority can win only those issues over which its strength of preferences is
high and, at the same time, the majority’s preference intensity is weak. These are exactly
the issues where the minority should win from an efficiency viewpoint: the equity gains
resulting from the possibility of occasional minority’s victory need not come at a cost to
aggregate efficiency.

In most of the specifications of the environment that we study in this paper, we find
that standard economic measures of aggregate efficiency rise with storable votes. The
main contribution of this paper then is not to suggest a new reason to increase minority’s

1 The central idea also does not depend on the direction of preferences within the group being
perfectly correlated either — there may be some conflicting preferences within groups.
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representation but to propose a specific voting scheme with the potential to achieve this
goal even in the case of a systematic minority, when other voting mechanisms would fail,
and to do so without violating the equal treatment of all voters.

The topic of minorities is felt so intensely, and the terms are so emotionally loaded, that
there is a need to be scrupulously clear in terminology. As the example makes clear, we
define a minority as a clearly identifiable group characterized by two features: first,
a relatively small numerical size; second, preferences that are systematically different
from the preferences of the rest of the polity. Thus, a minority in this paper is a political
minority, which may, but need not, correspond to a minority according to racial, ethnic,
religious or any other type of considerations. In terms of political decisions, what matters
in the present context are the coherent and idiosyncratic preferences of the group, as
opposed to the specific source of its identity.

The use of storable votes was initially proposed in Casella (2005), in a model that
ignored systematic minorities. The desirable efficiency properties of storable votes
remain true there, because the basic principle of bunching one’s votes on more salient
decisions continues to apply, with the implication that the probability of obtaining the
desired outcome shifts away from decisions that matter little and toward decisions that
matter more, with positive welfare effects. Storable votes are a particularly natural appli-
cation of the idea that preferences can be elicited by linking independent decisions
through a common budget constraint, an idea that can be exploited quite generally, as
shown by Jackson and Sonnenschein (2007).2 From a practical point of view, storable
votes seem particularly well-suited to the protection of minority interests, where they
have the potential to increase efficiency while improving equity at the same time.

A voting system similar to storable votes is cumulative voting, a mechanism used in
single multi-candidate elections. It grants each voter a budget of votes, with the proviso
that the votes can spread or concentrated on as many or as few of the candidates as the
voter wishes. Cumulative voting has been advocated for the protection of minority rights
(Guinier 1994) and has been recommended by the courts to redress violations of fair
representation in local elections (Issacharoff et al. 2002). There is theoretical (Cox 1990),
experimental (Gerber et al. 1998), and empirical (Pildes and Donoghue 1995; Bowler
et al. 2003) evidence that cumulative voting does indeed help minorities. The general
motivation behind the storable votes mechanism is similar to cumulative voting, but
storable votes apply to a sequence of independent binary decisions, a substantively dif-
ferent strategic problem, with different applications. In addition, we explicitly study the
efficiency properties of the mechanism, as well as its distributional effects on minorities.

The desirable properties of storable votes are features of the equilibrium of the result-
ing voting game — they emerge if every voter chooses the correct number of votes,

2 Jackson and Sonnenschein propose a specific mechanism that converges to the first best allocation as
the number of decisions grows large. The mechanism allows individuals to assign different priority
to different actions but constrains their choices in a tightly specified manner. The design of the
correct menu of choices offered to the agents is complex, but the mechanism achieves the first best.
Storable votes are simple but in general do not achieve the first best. A mechanism very similar to
storable votes was developed independently in Horta-Vallve (2006).
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given what he rationally expects others to do. In practice there is a need to consider
the robustness of the mechanism. Could the outcome be much worse if voters made
mistakes? This is an appropriate concern here because the storable votes game is quite
complex: voters need to trade-off the different probabilities of casting the pivotal vote
along the full logical tree of possible scenarios, a task further complicated by coordination
problems within the two groups, and multiple equilibria. If actual voters were confronted
with the problem, what type of decisions would they make?

The second part of the paper presents the results of a set of experiments showing that
under storable votes, the minority does indeed win on a significant number of issues.
Both the minority payoff and the aggregate efficiency of the mechanism match the
theoretical predictions, indicating that the equity gains accrue with little or no loss of
efficiency. Voters use responsive strategies, consistently casting more votes when valua-
tions are higher, a behavior that appears sufficient to take them most of the way toward
their equilibrium payoffs, even when the number of votes they cast differs from the
theoretical equilibrium. Previous experiments with storable votes in symmetric envi-
ronments (Casella et al. 2006) had found a similar robustness of efficiency properties
to strategic mistakes. Here the introduction of minorities complicates the game very
significantly, and the robustness we observe in the experiments is a by the different
cost of mistakes faced by majority members, who are likely to win anyway, and minor-
ity members, whose deviations are particularly costly (and rarer in the data). Whether
because of the inherent robustness of storable votes, or because the minority made few
mistakes, we see the minority’s success in appropriating a significant share of the surplus
with little if any aggregate cost as an encouraging sign of the practical viability of the
mechanism.

THE MODEL

A committee with n members meets for T periods to vote over a series of binary proposals
{P1, . . . , PT }, each of which can either pass or fail. Voter i’s preferences over proposal
Pt are summarized by a valuation vit ∈ R. A positive valuation means that the voter is
in favor of the proposal, a negative valuation means that the voter is against, and voter
i’s payoff from each proposal is given by |vit| ≡ vit if the outcome of the vote is as he
desires, and 0 otherwise. Thus voter i’s utility function has the form:

Ui(P1, . . . , PT ) =
T∑

t−1

uit(Pt),

where

uit(Pt) = vit if
{

vit > 0 and Pt passes
vit < 0 and Pt fails

= 0 otherwise.
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The magnitude of the valuation, vit , is called the preference intensity of voter i on
proposal t. The profile of valuations, v = (v11, . . . , v1T , . . . , vn1, . . . , vnT ), is a random
variable that is distributed according to the commonly known distribution �(v), satisfying
the assumptions we detail below.

The committee is composed of two groups, the Majority group M, with M members
and the Minority group m, with m < M members. The two groups differ systematically
in their preferences: members of m are in favor of all proposals, and members of M are
against. For all t:

vit > 0 if i ∈ m
vit < 0 if i ∈ M.

All members of the minority have valuations drawn from a distribution Gm with sup-
port [0, 1] , identical across proposals, while all members of the majority have valuations
drawn from a distribution GM with support [−1, 0], again identical across proposals. We
assume symmetry in the distributions across the two groups and call G′

M = Gm ≡ F
defined over the support [0, 1] the distribution of intensities for each group. F is common
knowledge.

Intensities are always drawn independently across proposals and across the two groups.
With respect to the correlation of the intensities within each group, we consider two polar
cases. In the first case (case B), intensities are drawn independently for each member of
a group; in the second case (case C) intensities are identical for all members within a
group. Hence, although all members of a group always agree on the preferred outcome,
in the B case they may have conflicting priorities, while they do not in the C case. The
correlation of within group intensities (or lack thereof ) is common knowledge, as is the
independence of intensities across proposals and groups.

At the beginning of period t, i privately observes vit but does not observe vit′ for
t′ > t: intensities are revealed privately and sequentially. Because draws are independent
across issues, voter i’s observation of vit does not provide information about vit′ , and
because draws are independent across groups, observation of vit , i ∈ m, does not provide
information about vjt , j ∈ M (and vice versa). Whether it provides information about
the intensity of other voters in the same group, vjt , with j ∈ m, depends on which
case we consider. In case C, members of the same group have identical preferences and
observation of one’s own intensity allows a voter to perfectly infer the preferences of the
other members of his group. In case B, a voter’s own intensity provides no information
about any other voter’s intensity.

The Storable Votes Mechanism

At the beginning of period 1, each voter is endowed with an account of B0 bonus votes,
where B0 is an integer.3 In the first period, the voter casts his regular vote plus as

3 Because we want to study the effect of bonus votes per se in strengthening the minority’s position,
it seems appropriate to give the same initial allocation to all voters.
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many discrete bonus votes as he wishes out of his endowment. The bonus votes cast are
deducted from his endowment, which is then carried over to the next period. The current
endowment of bonus votes for every voter in period t, denoted Bt = (B1t , . . . , Bnt),
is common knowledge at the beginning of period t. Thus each voter i independently
decides how many votes, xit , to cast after observing his private intensity vit and Bt , subject
to xit ≤ 1 + Bit . The proposal passes if there are more votes in favor of the proposal than
against, and fails in the opposite case. Ties are resolved randomly. In the next period,
t + 1, voters’ intensities over the new proposal are again privately observed, and voting
proceeds as before, now subject to the constraint, xit+1 ≤ 1 + Bit+1 = 2 + Bit − xit .
Since xit ≥ 1, this is at least as tight a constraint as in period t. The voting continues in
this fashion until the end of period T .

THEORETICAL RESULTS

Given F, m, M, B0, T , the storable votes mechanism defines an asymmetric multistage
game of incomplete information. We study the properties of the Perfect Bayesian equi-
libria of this game, where at each period t and for each possible intensity, vit , and profile of
endowments, Bt , individuals choose how many votes to cast so as to maximize expected
utility, given the strategies of the other players. Because the sign of each group’s prefer-
ences is common knowledge and intensities are independent over time, voting decisions
cannot be used to manipulate other players’ beliefs about future preferences. Assuming,
in addition, that voters do not use weakly dominated strategies, the direction of each
individual vote is always chosen sincerely: all the minority members’ votes are cast in
favor of each proposal, and all majority votes are cast against each proposal. The state of
the game at t is defined to be the profile of bonus votes each voter has still available, Bt ,
and the number of remaining periods, T − t. We focus on strategies such that, given F,
m, and M, the number of votes each individual chooses to cast each period, xit , depends
only on i’s intensity of preferences at time t, vit , and on the state of the game. We denote
such strategies by xit(vi , Bt , t).

The C2 Game

When characterizing the equilibria of our model, the correlation of intensities within
each group in model C can be a source of complications. But matters can be simplified
by a simple observation. Consider the following 2-player storable votes game, which
we call C2. Voter M has M regular votes each period and a stock of MB0 bonus votes;
his valuation over each proposal is MvMt , where vMt is independently drawn from the
distribution function GM with support [−1, 0]. Voter m has m regular votes each period
and a stock of mB0 bonus votes; his valuation over each proposal is mvmt , where vmt is
independently drawn from the distribution function Gm with support [0, 1]. Then the
following result holds:
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Lemma 1 If game C2 has an equilibrium, then the game described by model C also has an
equilibrium. In addition, call x∗

Mt(vi , Bt , t) and x∗
mt(vi , Bt , t) the equilibrium strategies of voter

M and voter m in game C2, and {x∗
it(vi , Bt , t)} the equilibrium strategies in C. If C2 has an

equilibrium, then there exist equilibrium strategies of model C such that
∑

i∈m x∗
it(vi , Bt , t) =

x∗
mt(vi , Bt , t) and

∑
i∈M x∗

it(vi , Bt , t) = x∗
Mt(vi , Bt , t).

Proof: See Appendix. �

Lemma 1 makes a simple point. In model C voters’ interests within each group are
perfectly aligned; if there is an equilibrium where each group coordinates its strategy so
as to maximize the group’s payoff, given the aggregate strategy of the other group, then
no individual voter can gain from deviating.4 In the n-person game described by model
C, we will call equilibrium group strategies the equilibrium individual strategies of the
2-voter game C2.

Equilibrium

The particular feature of storable votes is that they allow individuals to reflect the inten-
sity of their preferences in the number of votes they cast. Lemma 1 allows us to show:

Lemma 2 For any F, M, m, and T, both model B and model C have an equilibrium in
monotone cutpoint strategies: at any state (Bt , t) and for any i with Bi + 1 available votes
there exists a set of cutpoints {ci1(Bt , t), ci2(Bt , t), . . . , ciBi+1(Bt , t)}, 0 ≤ cix ≤ cix+1 ≤ 1,
such that i will cast x votes if and only if vit ∈ [cix, cix+1]. In model B, the strategies are
individual equilibrium strategies and i ∈ {1, . . . , n}; in model C, the strategies are group
strategies and i ∈ {M, m}.
Proof: See Appendix. �

Lemma 2 establishes that an equilibrium exists, although it does not rule out the possi-
bility of multiple equilibria. Notice also that the lemma states that strategies may respond
to valuations, as we expect intuitively, but allows for equilibria where the monotonicity is
only weak — for example, possible equilibria where bonus votes are equally split among
proposals, or where strategies depend on the timing of the proposals alone.

Storable votes open the possibility of minority victories. We can derive:

Theorem 1 In both models B and C: (i) For any F, T, M, and m > 1 there is a finite
B′

0(M, m, T ) such that for all B0 > B′
0 there exist equilibria of the storable votes mechanism

where the minority wins some of the time with strictly positive probability. (ii) If T > M
and B0 > B′

0, then the minority wins some of the time with strictly positive probability in all
equilibria of the mechanism.

4 This is the logic exploited by McLennan (1998) to show that whenever sincere voting is efficient in
common value decision problems, then it must be a Nash equilibrium.
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Proof: See Appendix. �

The first part of the theorem establishes the existence of equilibria with a positive
probability of minority victories, in direct contrast to the outcome with simple majority
voting. The potential of storable votes to help the minority is very intuitive, although for
arbitrary T the result cannot be established for all equilibria. The problem is coordina-
tion: in both models B and C (although not in C2, where coordination is imposed) if the
other members of the minority follow a given strategy, it is difficult for a single deviat-
ing voter to be able to affect the final outcome, and thus strategies where the minority
always loses can be supported in equilibrium. As an illustration, consider one possible
equilibrium mentioned above, where every voter, both in the majority and in minority,
distributes the bonus votes equally over all proposals: xi = 1+B0/T for all i ∈ {1, . . . , n}.
Because everyone always casts the same number of votes, the game becomes identical to
simple majority voting, and the minority always loses. But unless a single minority voter
deviating alone can lead to at least one proposal passing, the strategies are an equilibrium
for both models B and C.5 Notice that if T = 2 this equilibrium exists for all values
of B0: a deviating minority voter can shift at most B0/2 votes, but over each proposal
the majority is always winning by at least 1 + B0/2 votes (since M ≥ m + 1). Thus,
for T = 2 there is always at least one equilibrium where the minority always loses,
regardless of the existence and of the number of bonus votes (although, as the theorem
states, for appropriate values of B0 there are also equilibria where the minority can win
with positive probability).

Efficiency

Making it possible for the minority to win occasionally favors fairness and representation,
but in principle could have efficiency costs because it implies that the larger group
occasionally loses. However, even from a pure efficiency criterion, storable votes can be
desirable. In equilibria where strategies are strictly monotonic, the minority wins when
minority intensities outweigh majority intensities: the minority wins when it should.

We measure the efficiency of the storable votes mechanism in terms of ex ante effi-
ciency: a voter’s expected utility from all T proposals before any of his valuations is
realized, and before knowing whether he belongs to M or to m. We call our efficiency
measure EV0 and contrast it with the equivalent measure under simple majority voting,
denoted by EW0.6

5 As mentioned, the strategies described are not equilibrium strategies for model C2. Lemma 1 states
that the equilibria of model C2 are equilibria of model C; the reverse does not hold.

6 An important question is whether the cardinal valuations and our notion of efficiency force us into
comparisons of interpersonal utilities. This is where the assumption of symmetrical distributions
of intensities across all voters plays its role. The intensity draws over any specific decision should
be read as normalized by a common numeraire. In our model with multiple decisions, the natural
numeraire is the individual’s mean intensity over the universe of all decisions that could be brought
to a vote. In fact, by imposing not only the same mean but the same distribution, we are forcing the
voters to adopt an equal scale and to organize the different decisions according to a fixed ordinal
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The positive impact on efficiency of monotonic strategies applies to both models, but
the properties of the voting mechanism are more robust and easier to characterize in
model C.

Theorem 2 In model C, for all F, M, and m > M/2, if T < T (M, m) there exists a value
of B0 and an equilibrium of the storable votes mechanism such that storable votes are ex ante
superior to simple majority voting (i.e., EV0 > EW0).

Proof: See Appendix. �

A few remarks will clarify the result. Note first of all that the difference in expected
utility can occur only if the minority is expected to win some of the times; thus, in
the equilibrium discussed in the theorem the minority itself necessarily fares better, in
expected utility terms, than under simple majority voting. Note too that the minor-
ity could never win if the horizon were shorter than 2 periods; thus, again trivially,
T (M, m) > 2 for all M and m. The existence of an upper bound on T comes not from
the logic of the mechanism but from the need to respect integer constraints: for all M
and m, we require that the number of votes cast be always an integer. The proof shows
that if integer constraints are ignored, T (M, m) can be made arbitrarily large for all M
and m, and the result then holds for arbitrary T .

The result in the theorem requires not only that the minority be expected to win
with positive probability, but also that equilibrium strategies be responsive to valua-
tions: at least in some states strategies must be strictly monotonic. The difficulty in
establishing the theorem is identifying equilibrium majority and minority cutpoints at
each state such that expected minority gains and majority losses can be computed and
compared for all F, M, m, and T . This is particularly true for model B, where the
lack of information about the valuations of other members of one’s own group makes
coordination impossible. If we specialize our assumptions on F, M, m, and T the task is
made much easier. The next subsection discusses the theoretical properties of the model
when we restrict the set of parameter values, in line with the choices that we make in the
experiment.

Theoretical Properties of the Experimental Design

In designing the experiment, the challenge is to specify a class of environments simple
enough to be easily understood and replicated in the laboratory, but rich enough to
preserve the main properties of the mechanism. The following specification satisfies
these requirements: the total number of voters n is odd; the distribution F is Uniform;
there are two consecutive proposals and each voter is endowed with two bonus votes:

ranking, with the same proportion of decisions in any given subinterval of the support. It is this
normalization that allows us to avoid interpersonal comparisons. In this model, granting individual
voters different distributions would be equivalent to taking a stance on the relative intensity of their
preferences.
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T = B0 = 2. The strategy chosen by each voter is simply the number of bonus
votes to cast over the first proposal, as a function of his valuation. The proposition
below characterizes equilibria for our experimental environment, where strategies are
responsive to intensities and are an equilibrium not only for models B and C but also
for model C2.7 Its proof can be found in Casella et al. (2007) and in the supplementary
material on the Quarterly Journal of Political Science web page.

Proposition 1 Suppose n odd; F Uniform, and T = B0 = 2. Then:

In model B :

a. There is an equilibrium where: xi1 = 1 if vi1 < 0.5 and xi1 = 3 if vi1 > 0.5 for all i.
In such an equilibrium:

b. If M > 3m, the majority always wins, but for all M < 3m the minority wins one of the two
proposals with probability

∑m
s=k

[∑m−s
r=0

(M
r

)( m
r+s

)
2−n

]
> 0, where k ≡ (M − m + 1)/2.

Ex ante, each of the two proposals has the same probability of a minority victory.
c. If M > 3m, storable votes are identical to simple majority voting, and EV0 = EW0.

But for M < 3m, there exist m′, m′′, and M′ with m′′ > m′ such that EV0(m′, M′) <

EW0(m′, M′) but EV0(m′′, M′) > EW0(m′′, M′).

In model C:

a. There is an equilibrium where the minority’s strategy is: xm1 = m if vm1 < 0.5 and
xm1 = 3m if vm1 > 0.5. The majority’s strategy is: if 2M > 3m, xM1 = 2M for all vM1;
if 2M ≤ 3m, xM1 = max{M, m+3} if vM1 < 0.5 and xM1 = min{3M, 4M−(m+3)}
if vM1 > 0.5.
In such an equilibrium:

b. If 2M > 3m, the majority always wins, but for all 2M ≤ 3m the minority wins one of
the two proposals with probability 0.25. Ex ante, each of the two proposals has the same
probability of a minority victory.

c. Storable votes are always ex ante weakly superior to simple majority voting: EV0 = EW0
if 2M > 3m, and EV0 > EW0 if 2M ≤ 3m.

Together, restricting n, F, and T allows us to identify the equilibrium cutpoints and
derive stronger efficiency results than in the general case discussed in Theorem 2.

The properties of these equilibria are illustrated in Figure 1, using the case of M =
m + 1 as an example. Efficiency is maximized when each decision is resolved in favor
of the side with higher total valuation, and in the figure we compare equilibrium and
efficient outcomes.

Figure 1(a) shows, for both models, the probability of a minority victory over one
of the two proposals in equilibrium — the black dots — and in the first best — the
grey dots. The minority can never win both proposals because the majority always

7 Recall, from earlier discussion, that there can also be nonresponsive equilibria.
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(a)

(b)

(c)

Figure 1. T = B0 = 2; F(v) Uniform; M = m + 1. (a) Frequency of minority victories.
(b) Expected payoff for majority and minority members (per capita). (c) Expected aggre-
gate payoff as share of the available surplus. The large black dots plot equilibrium payoffs
with storable votes; the grey dots efficient payoffs, and the small black dots payoffs with
simple majority voting.

has a larger total number of votes. As m increases, the equilibrium probability of a
minority victory increases. In model B, the increase is smooth, and the probability of
a minority victory converges to 0.5 as the number of voters becomes large and the
relative difference in size between the majority and the minority becomes negligible.
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The efficient frequency of minority victories is slightly higher than the equilibrium
frequency. In model C, the change in the equilibrium probability of minority victories is
discontinuous, jumping from 0 to 0.25 when the majority becomes unable to guarantee
itself victory on both proposals, and then remaining constant at that level. The point
at which the jump occurs depends on the absolute difference between the two groups,
M−m. The efficient frequency of minority victories on the other hand increases smoothly
with the relative size of the minority and again is always higher than the equilibrium
frequency.

Figure 1(b) plots the expected per capita payoff for majority and minority members.
With simple majority rule, the respective values are 1 and 0 in both models. With storable
votes, the expected payoffs of the two groups are closer, unless the majority can ensure
itself victory, although the minority’s payoff remains lower than under efficiency (the
grey dots in Figure 1(b)). In model C, equilibrium per capita payoffs remain constant
for each group, regardless of m, once the threshold where the majority always wins has
been passed.8

Figure 1(c) plots a normalized measure of expected surplus for both models, where
expected aggregate payoff is expressed as a share of the expected first best payoff. The
figure compares storable votes and simple majority voting to each other and to first best
efficiency. Because we want to measure the added value over purely random decision-
making (where each proposal is equally likely to pass or fail), we normalize both numer-
ator and denominator by the expected payoff in the random mechanism. Thus if we call
EV ∗

0 the expected efficient aggregate payoff and R the expected payoff under random
decision-making, we define the normalized aggregate surplus as (EV0 − R)/(EV ∗

0 − R)
with storable votes and (EW0 − R)/(EV ∗

0 − R) with simple majority. Over the two pro-
posals, EW0 = M and R = (M + m)/2 in both models, while EV0 and EV ∗

0 can be
found in the Appendix of Casella et al. (2007) and in the supplementary material on the
Quarterly Journal of Political Science web page. As the figure shows, when the number
of voters is small and the difference in size between the two groups relatively important,
the possibility of minority victories in the storable votes mechanism is accompanied by
some loss of efficiency in model B, but not in model C, where efficiency is always at least
as high as under simple majority rule. The loss in model B is not large and disappears as
the number of voters and the relative size of the minority increases. For most sizes of the
electorate, storable votes allow voters to appropriate a larger share of the total surplus in
both models.9

8 In fact, they remain unchanged for any absolute difference between the two groups, once the
threshold 3m < 2M has been passed. It is the threshold itself that depends on (M − m).

9 The main difference between the two models emerges in the limit, and is not visible in the figure.
In model B, the intensity draws are independent; hence, as the population becomes very large the
law of large numbers guarantees that the empirical average intensity of preferences in both groups
converges to the mean of the F distribution. This means that random choice, simple majority
voting and storable votes all converge to first best efficiency and any efficiency-based argument
for protecting the minority disappears. In model C, on the other hand, the valuation draws within
each group are perfectly correlated, and the law of large numbers does not apply. As the number
of voters increases, the difference in size between the two groups becomes negligible and simple
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EXPERIMENTAL DESIGN

Protocol

All sessions of the experiment were run in laboratories either at the California Institute
of Technology (SSEL), the University of California at Los Angeles (CASSEL), or
Princeton (PLESS). Subjects were registered students, recruited through the laboratory
web sites. No subject participated in more than one session. All sessions focussed on
the specification just discussed: subjects voted on two consecutive proposals (T = 2)
and were allocated 2 bonus votes (B0 = 2), in addition to the regular vote they were
required to cast over each proposal. With the exception of one session, committees were
composed of 5 voters, divided into two groups of 3 and 2 voters with systematically
opposed preferences.10 The experiment’s primary treatment variable was the correlation
of intensities within each group — the distinction between model B and model C.

After entering the laboratory, the subjects were seated randomly in booths separated
by partitions and assigned ID numbers corresponding to their computer terminal; when
everyone was seated, the experimenter read aloud the instructions, and any question
was answered publicly. The session then began.11 Subjects were matched randomly into
committees and within each committee were assigned randomly to the majority or the
minority group. Each subject was then shown his valuation for the first proposal and
asked to choose how many votes to cast in the first election. Valuations were restricted
to integer values and were drawn by the computer, with equal probability, from the
support [−100, −1] for majority members, and from [1, 100] for minority members. In
both treatments, the valuations were drawn independently for majority and minority
members.

In treatment B each member of each group was assigned a valuation drawn indepen-
dently from the specified support; in treatment C all members of the same group in
the same committee were assigned the same valuation (i.e., all majority members in a
given committee shared the same valuation, as did all minority members in a committee).
The independence of the intensities within each group in treatment B and their perfect
correlation in treatment C were common knowledge. After everyone in a committee had
voted, the computer screen showed to each subject the number of votes cast by each of the
two groups in the subject’s committee, whether the proposal had passed or not, and the
subject’s own payoff from that election. Valuations over the second proposal were then
drawn, the remaining votes were automatically cast, and the outcome determined.

After the second proposal had been voted upon, subjects were rematched; each was
assigned a new budget of bonus votes, and the game was replayed. Experimental sessions

majority voting again converges to random choice, but random choice remains inferior to efficient
decision-making and to storable votes. In very large populations, only minorities whose intensities
are correlated should be protected on efficiency grounds.

10 One session had committees of 9 voters, each divided into two opposite groups of sizes 5 and 4.
11 A sample of the instructions can be downloaded from http://www.hss.caltech.edu/˜trp/ MINORI-

TIES. The experiments were conducted using the Multistage Game open-source software
(http://multistage.ssel.caltech.edu/).
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consisted of between 15 and 30 rounds, each round a pair of consecutive proposals. In
the rematching, minority members always remained minority members, and majority
members always remained majority members, but the composition of each group and
of each committee was randomly determined. Subjects were paid privately at the end
of each session their cumulative valuations for all proposals resolved in their preferred
direction, multiplied by a pre-determined exchange rate and complemented by a fixed
show-up payment of $10. Average earnings were about $17 per experiment for minority
subjects and about $31 for majority subjects.

Equilibrium

We found no evidence of non-responsive equilibria, and our analysis of the experimental
data focuses exclusively on the equilibrium described in the previous section. Here we
derive the details of the equilibrium for the specific case M = 3, and m = 2 (and for
a robustness control in one experimental section, for M = 5, and m = 4). Individual
equilibrium strategies in treatment B and corresponding equilibrium outcomes are in
Table 1. The equilibrium cutpoints — the threshold intensities where individual voters
switch from casting 0 to casting 1 bonus vote, and from casting 1 to casting 2 — are
reported in row 2 of Table 1 and are denoted c1 and c2.12 Rows 3 and 4 in the table
report the expected frequency of minority victories in equilibrium and under efficiency,
respectively. Rows 5 and 6 report the expected share of per capita payoff for a minority
voter, relative to a majority voter, again in equilibrium and under efficiency. So, for
example, in the {3, 2} experiment with storable votes a minority subject is expected
to win on average 26 percent of what a majority subject earns, if everybody plays the
equilibrium strategy. Finally, the last two rows report the expected share of normalized
aggregate surplus appropriated with storable votes (row 7) and with simple majority
voting (non-storable votes, in row 8).

Storable votes in the B treatment are slightly less efficient from an aggregate point of
view than simple majority voting, but the equilibrium efficiency loss is minor, relative to
the effect of storable votes on the welfare of minorities.

Equilibrium strategies in treatment C pose a coordination problem. As described in
the previous section, if the two groups are of size {3, 2}, in equilibrium the minority uses
no bonus votes if its intensity is smaller than 50, and all its bonus votes if it is above;
the majority casts a total of 5 votes if its intensity is smaller than 50, and 7 votes if it is
larger than 50.13 Any individual strategy compatible with these group strategies is an

12 Because the equilibrium cutpoints are identical for minority and majority voters, we use the symbols
c1 and c2 for both groups.

13 When the two groups are of size {3, 2}, the majority has other valuation-responsive equilibrium
strategies, but all are payoff-equivalent and all are monotonic, and we treat them as identical when
reporting the experimental results. All equilibrium strategies satisfy: cast 0, 1, or 2 bonus votes
with probabilities p0, p1, p2 if the absolute valuation is smaller than 50, and 4, 5, or 6 bonus votes
with probabilities q0, q1, q2 if the absolute valuation is larger than 50, where p2 ≥ q2 and p1 = q1.
The strategy described in the text corresponds to p0 = p1 = 0, and q1 = q2 = 0.
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Table 1. Equilibrium strategies and
outcomes

B Treatment
M, m 3, 2 5, 4
c1, c2 50, 50 50, 50
% min wins, sv 19 25
% min wins, eff 22.5 28.5
% (min/maj) payoff, sv 26 36
% (min/maj) payoff, eff 35.5 45
% surplus sv 71 61
% surplus nsv 75 62

equilibrium. Hence, each minority voter has a simple symmetrical strategy that aggre-
gates to the equilibrium group strategy: cast no bonus votes if the intensity is below 50
and cast all bonus votes if the intensity is 50 or above. But the coordination problem
for majority voters is more difficult. The group strategy described above cannot be sup-
ported by symmetric individual strategies, and coordination on asymmetric strategies is
hampered by the random rematching in our experimental design. In fact, in our experi-
mental environment, not only is there no symmetric individual strategy that aggregates
to the equilibrium group strategy, but there is no asymmetric strategy that each majority
voter can adopt consistently and that would always aggregate to the equilibrium group
strategy, for any possible rematching.

In practice, our basic C treatment is then a test of the robustness of storable votes’
outcomes to coordination problems. To evaluate the role of coordination more precisely,
we designed two additional treatments that replicate model C but where coordination
problems are absent by construction.

Treatment C2 mirrored the C2 game: for each group, a single voter cast votes on
behalf of all members of that group. Each majority group representative had 3 indivisible
regular votes to cast on each of the two proposals and 6 bonus votes to cast as desired.
Each minority group representative had 2 indivisible regular votes to spend on each of
the two proposals and 4 bonus votes to cast as desired. Each committee then consisted of
one minority and one majority representative. For each proposal, valuations were drawn
independently with equal probability, from the support [−100, −1] for the majority
representative, and from [1, 100] for the minority one. The timing of the game pro-
ceeded as described earlier. After each two-proposal round, group representatives were
rematched. When we discuss experimental payoffs from this treatment, we multiply the
minority representative’s payoff by 2 and the majority’s by 3, to make them comparable
to the theoretical predictions and to the experimental payoffs for the C case and for the
following treatment, which we call CChat.

In treatment CChat (correlated valuations, chat option) we replicated the C treatment,
with each group composed of multiple individual voters rather than just two representa-
tives. Before the vote on the first proposal, voters could exchange messages via computer
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Table 2. Equilibrium group
strategies and outcomes

C Treatments
M, m 3, 2
gL, gH 50, 50
% min wins, sv 25
% min wins, eff 33
% (min/maj) payoff, sv 38.5
% (min/maj) payoff, eff 52
% surplus sv 60
% surplus nsv 53

with other members of the same group. Voters were instructed not to identify them-
selves, and the messages were anonymous but otherwise unconstrained. In particular,
they allowed subjects to coordinate on their preferred group strategy. Everything else in
the experiment — the stochastic properties of the valuation draws, the timing, the ran-
dom re-matching — followed exactly the C treatment, with perfectly correlated values
within a group.

Equilibrium group strategies and expected outcomes are identical in the three C
treatments — C, C2, and CChat. They are reported in Table 2, where gL and gH denote
the cutpoints where the minority switches from casting 0 bonus votes to casting 2, and
from casting 2 to casting 4, and the majority from casting 2 bonus votes to casting 3, and
from casting 3 to casting 4.

The outcome is more favorable to the minority in model C than in model B, both in
terms of the expected frequency of minority victories and of its expected payoff, relative
to the majority. In contrast to the B treatment, storable votes in the C treatment lead to
efficiency gains over simple majority voting.

Table 3. Experimental design

Session Groups size Subject pool # Subjects Rounds
b1 3, 2 CIT 15 30
b2 3, 2 UCLA 20 30
b3 5, 4 UCLA 27 30
c1 3, 2 UCLA 15 30
c2 3, 2 PU 15 20
c3 3, 2 PU 10 20
c21 3, 2 CIT 12 30
c22 3, 2 UCLA 16 30
c23 3, 2 PU 12 20
CChat1 3, 2 PU 10 20
CChat2 3, 2 PU 15 15
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The experimental design is summarized in Table 3. In all b, c, and CChat sessions the
majority was formed by 3 subjects and the minority by 2, with the exception of session b3
where the number of subjects in each group was 5 and 4, respectively. Session b3 serves
us as a control on the sensitivity of the experimental results to the size of the groups. In
all c2 sessions, a single subject represented each group, but the design was equivalent to
two fully coordinated groups of 3 and 2 members, respectively.

EXPERIMENTAL RESULTS

The experiment has two principal goals. First, we want to verify whether voting outcomes
match the theoretical predictions: are minority subjects able to win some of the votes?
Are they able to do so without loss of aggregate efficiency? Second, to what extent does
voting behavior match the theoretical predictions?

Voting Outcomes and Efficiency

How often do minority groups win?

The diagram on the left of Figure 2(a) summarizes the answer to this question. The
vertical axis is the percentage of times the minority prevailed in the experimental sessions,
and the horizontal axis is the percentages of times it would have prevailed if all subjects
had played the equilibrium strategy, given the valuations drawn during the experiments.
Different treatments are indicated by different symbols, as described in the figure’s
legend.

The figure can then be read in several ways. The vertical height tells us that the
minority won between 22 and 26 percent of the time in C, C2, and CChat, with little
dispersion among them; it won less frequently in the B sessions (around 15 percent of
the time) with the exception of the one experiment of size {5, 4} where the minority won
about 23 percent of the time.

Clearly, storable votes helped the minority win. The difference in this effect across
treatments matches the theoretical predictions, as is evident from the way the points
align along the 45-degree line. The closer to the line a point is, the closer the exper-
iment’s results are to the equilibrium predictions. If we estimate a simple regression
line, the hypotheses of a unitary slope parameter and a zero constant term cannot be
rejected at standard confidence values.14 On average, the frequency of minority victo-
ries in the experiments differs from the equilibrium predictions by 3 percentage points,
without clear outliers and without systematic treatment effects. We find this surprising
because the complexity of the individual equilibrium strategies in the basic C treatment
(as opposed to C2 and CChat) would suggest a larger discrepancy from equilibrium
predictions in that specific treatment, a discrepancy the data do not show.

14 The estimated parameters are: 0.76 for the slope (standard error 0.23), and 3.4 for the constant term
(standard error 5.8).
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(a)

(b)

Figure 2. Experimental outcomes. (a) Minorities’ outcomes. (b) Aggregate payoff share
of surplus over randomness.

Did the experimental payoff to the minority match the theoretical predictions?

The diagram on the right of Figure 2(a) plots per capita minority payoff as a percentage
of per capita majority payoff in the experiments on the vertical axis, and in equilibrium
Experiment vs. equilibrium on the horizontal axis, using the symbols of the previous
figure to identify the different experimental sessions. In all C, C2, and CChat treatments
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the relative minority payoff was higher than in any B treatments, as predicted by the
theory, ranging between 32 and 44 percent of the average majority payoff, versus 16 to 20
percent in the B treatments of size {3, 2} and 30 percent in the B treatment of size {5, 4}.
Again, the effect of the voting mechanism in raising the minority’s payoff was significant.
Out of 11 experimental sessions, all but two are below the 45-degree line, suggesting
that the minority was unable to fully exploit the opportunity presented by storable votes.
But the discrepancy is not large — the average distance from the 45-degree line is 5
percentage points, again without clear outliers or treatment effects, which is small in
comparison to the differences across treatments.15 Again, if we estimate a regression
line, we cannot reject the hypotheses of unitary slope and zero constant.16

At what cost to the majority were the minority’s gains? At what
cost to overall efficiency?

The left-hand side of Figure 2(b) plots the normalized total surplus in each session on the
vertical axis, against the equilibrium predictions on the horizontal axis. The equilibrium
predictions are calculated using the actual valuation draws in the experiment. Points on
the 45-degree line indicate a perfect match to the theory. The mean distance from the
45-degree line is only 7 percentage points, again with little evidence of outliers, versus
a mean equilibrium surplus share of 60 percent. As in the previous figures, we cannot
reject a regression line with unitary slope and zero constant, although the fit is poorer.17

The central question is how the efficiency of storable votes compares to the efficiency
of alternative voting systems — in our case to simple majority voting. In the diagram
on the right of Figure 2(b), the vertical axis is again the normalized total surplus in
each session, now plotted against the equivalent measure with simple majority voting
calculated from the experimental valuation draws. Theory predicts that data from C,
C2, and CChat sessions should lie above the 45-degree line, while B data should lie
below. The prediction is confirmed by the C and by the B experiments. Surprisingly,
it is the easier treatments with coordination, C2 and CChat, that fall short of the pre-
diction. Two of the three most significant losses relative to non-storable votes occur
in C2 sessions. Pooling all C, C2, and CChat data, the mean difference in normalized
surplus is +2 percentage points, compared to the theoretical prediction of +7. Pooling
all B data, the mean difference is −10 percentage points, compared with the theoretical
prediction of −9.

The data from our experiment can be summarized in three main points. First, storable
votes help minorities substantially, both in terms of the frequency with which minorities
won decisions and in terms of the resulting benefits. Second, correlation of intensities

15 Note that a plausible range of values in Figure 2(b) is between 0 (the outcome with simple majority
voting) and 100 (the expected outcome with random decision-making). In Figure 2(a), the corre-
sponding range is between 0 and 50.

16 The estimated parameters are: 1.03 for the slope (standard error 0.19), and −6.2 for the constant
term (standard error 7.1).

17 The estimated parameters are: 0.7 for the slope (standard error 0.40), and 14.1 for the constant term
(standard error 24.1).
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works to the advantage of the minority. Third, the efficiency costs associated with the
increased representation of minority interests were small in magnitude. Without correla-
tion, storable votes induced (small) aggregate welfare losses, but with perfectly correlated
intensities, storable votes produced (small) welfare gains over simple majority voting.

Voting Behavior

We begin by studying individual behavior in the treatments that did not allow group
members to coordinate their strategies (B and C). Later we turn to group behavior and
discuss the effects of explicit coordination (treatments C2 and CChat).

Individual behavior

Storable votes allow voters to express intensity of preference by casting more votes,
at any given state, when they have stronger preferences. Hence, monotonicity of voting
strategies is at the core of the mechanism, and it is natural to analyze subject behavior in
our experiments by studying this property first.

To obtain a measure of monotonicity of individual behavior, we estimate monotonicity
violations and cutpoints for each subject. For each subject we have K pairs of observations,
where K equals either 20 or 30 depending on the session.18 Each pair consists of a first
proposal intensity value and the number of votes cast for (or against) the first proposal.
In treatments B and C, the number of votes cast by each subject is always 1, 2, or 3.
A perfectly monotone strategy is one for which we can find two cutpoints, c1 ≤ c2 such
that whenever the subject’s first period intensity was below c1 the subject cast 1 vote,
whenever his intensity was above c2, the subject cast 3 votes, and for intermediate values
between c1 and c2 the subject cast 2 votes. We calculate the number of monotonicity
violations as the minimum number of voting choices that would have to be changed,
for each subject, to make the strategy perfectly monotonic. We then identify the pair
of cutpoints that is consistent with such a monotonic strategy. In some cases, multiple
cutpoints are consistent with the same number of monotonicity violations; when this
happens, we select the pair that is closest to the equilibrium cutpoints.

Figure 3(a) presents histograms of individual monotonicity violations in treatments
B and C. The horizontal axis is divided into deciles representing the percentage of
violations over the total number of voting decisions, and the vertical axis reports the
fraction of subjects that belong to each decile.

In the B treatment, 50 percent of the subjects had 3 or fewer violations out of 30 voting
decisions (10 percent). In the C treatment, 57 percent of subjects had violation rates less
than or equal to 10 percent. As comparison, a voter choosing randomly whether to cast
0, 1, or 2 bonus votes would have a violation rate converging to 67 percent as the number
of decisions becomes very large.19 The comparison makes clear that, although there is
some noise, individual choices indeed tended to be monotonic for most subjects.

18 With the exception of session CChat2, with 15 rounds.
19 To account for the smaller number of violations that would result from the small sample and the

free cutpoints, we simulated random behavior with 21 subjects and 30 rounds. We found that no
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(a)

(b)

Figure 3. Individual behavior. (a) Monotonicity violations. (b) Cutpoints.
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The estimated cutpoints for all individual subjects in the B and C sessions are displayed
in Figure 3(b). Each point represents one subject’s estimated pair of cutpoints, with c1
on the horizontal axis and c2 on the vertical axis. All cutpoints lying on the 45-degree
line involve no splitting of bonus votes: always casting either both or neither of the bonus
votes over the first decision. Moving to the upper left corner of the graph are cutpoints
that involve more and more splitting of bonus votes, i.e., using one bonus vote in each
period for a range of values that increases as one approaches the corner. The upper left
corner of the graph, at (0, 100) corresponds to always casting one bonus vote. Cutpoints
for subjects in the minority group are in the left graph and cutpoints for the subjects
in the majority group are in the right graph. The rates of monotonicity violations are
indicated by shading the points, with the darkest points having the fewest monotonicity
violations.

In the B treatments, the equilibrium cutpoints for both majority and minority subjects
are (50, 50): if everyone played the equilibrium strategies all points would be on the
45-degree line at 50. In the C treatments, (50, 50) remains an equilibrium for individual
minority subjects, but not for subjects in the majority, whose asymmetrical strategies are
contingent on the behavior of the other members of the group and cannot be identified
unambiguously in the figure.

Two features of the distribution of cutpoints appear in both treatments. First, the
minority cutpoints do cluster around (50, 50), and on average minority subjects whose
cutpoints are closer to equilibrium have lower violation rates. Second, bonus votes are
much more frequently split by majority voters, with little difference between the two
treatments in spite of the different theoretical predictions. Intuitively, even in model B,
majority voters have less to lose from splitting their bonus votes — their larger number
implies that they are guaranteed to always win one of the two decisions, and one single
vote more or less plays a smaller role than in the case of the minority. Consider the
parameter values used in the experiments and a committee of size (3, 2). The expected loss
to a voter deviating from his equilibrium strategy and always casting one bonus vote over
each proposal is 15 percent in model B and 50 percent in model C for a minority voter,
versus 4 percent in model B and 8 percent in model C for a majority voter (relative to the
expected equilibrium payoff).20 The difference in the cost of splitting one’s bonus votes
in the two models may play some role in the more pronounced clustering of the minority
cutpoints around the 45-degree line, and particularly around (50, 50) in the C treatment.

Group behavior

The monotonicity of the individual strategies provides only a partial picture. Efficiency
requires group strategies to be monotonic in the group intensity. In the B treatment the

subject had violation rates less or equal to 30 percent; 2 subjects were in the fourth decile; 8 in the
fifth, and 11 in the sixth.

20 Supposing that all other voters play the equilibrium strategy. In model C, we consider the case
where the individual majority voter’s deviation causes the majority group strategy to switch from
casting either 5 or 7 votes to always casting 6.
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notion of group intensity is not clearly defined because different subjects within a group
have different intensities. But we can check for group monotonicity in the C treatment,
that is, we can check whether the sum of the votes by members of one group is monotone
in their (common) intensity. If there is heterogeneity in behavior, monotonicity at the
individual level need not imply monotonicity at the group level because individuals
are continuously rematched. The problem is particularly severe for the majority whose
individual equilibrium strategies are asymmetric.21

The histograms in the first row of Figure 4(a) illustrate the difficulty that groups had
in the C treatment. Out of a total of 16 groups, 7 had error rates above 20 percent,
compared to only 10 percent of individual subjects in the same experimental sessions
(see Figure 3(a)). As expected, and as shown by the histogram on the right, most errors
are associated with the majority, where 5 of the 8 groups had more than 20 percent error
rates.

A comparison of these results to monotonicity violations in the C2 and CChat treat-
ments allows us to study the role of explicit coordination. According to the histograms in
the second row of Figure 4, the open communication in CChat reduced group violations
dramatically: all minority groups and 2 out of 5 of the majority groups had fewer than 10
percent violations. More surprising is the poor performance of the C2 treatment, where
perfect coordination is imposed by the experimental design.22

These results leave us with a puzzle: if the aggregate group behavior of the experi-
mental subjects in sessions C often violates monotonicity, why did the outcomes of these
experiments — in terms of minority victories and efficiency — still conform to the the-
ory? Why did these sessions outperform, on average, the C2 sessions with a comparable
record of monotonicity violations. The answer comes from the underlying monotonicity
of the individual behavior in treatment C. Intuitively, because individual subjects did cast
their vote monotonically, the violations resulting from the uncoordinated aggregation of
the votes are numerous, but not large: they tend to be concentrated around the cutpoints
values. To verify this, the histograms in Figure 4(b) summarize the distribution of the
average distance of mistaken (i.e., non-monotonic) voting choices from the cutpoints, as a
percentage of the expected distance if voting choices were random.23 The CChat exper-
iments show the greatest consistency: with one outlier, all groups have error distances
below 20 percent of the random case. But it is the comparison between the C and the
C2 treatments that is particularly revealing in explaining the differences in experimental

21 We identify a group by the label in the experiment (group 1, group 2, etc.), but rematching implies
that the composition of each group continues to change. Note that if equilibrium strategies were
symmetrical, the changing composition of the group would not matter.

22 This appears to be the result of a single experimental session: session c22 conducted at UCLA
(where 25 percent of the subjects had a rate of violations approaching 50 percent).

23 Following this logic, these cutpoints are estimated so as to minimize the average distance (both in
the experimental data and in the theoretical random case). With a very large number of random
voting choices, the two cutpoints that minimize the expected errors’ distance are (50, 50). The
frequency of error is 2/3, with an average distance of 25, yielding an expected distance of 50/3.
The corresponding number in the experimental data is, for a given pair of cutpoints, the sum of all
errors’ distances, divided by K , the number of rounds in the experiment.
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(a)

(b)

Figure 4. Group behavior — monotonicity violations. (a) Percentage of violations.
(b) Average errors’ distance relative to random voting.
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outcomes: one-fourth of all C2 groups have error distances that are closer to the purely
random case than any of the C groups. As mentioned, this reflects mostly one outlier
session, c22, and how much of an outlier c22 becomes clear in the diagram on the right,
in the bottom row of Figure 4(b). The c22 session had 16 subjects, each representing
one group; of these, 7 had error distances that were closer to the purely random case
than any of the C groups, and only 3 had distances that were less than 10 percent of
the random case, a very different result from the other two C2 sessions. This explains
why the aggregate experimental payoff of session c22 falls short both of the theoretical
prediction and of the payoff with simple majority. The other C2 sessions were much
better behaved, although they too presented a few instances of almost random behavior,
something we do not observe in the C sessions. As shown in Figure 2(b), these few cases
were sufficient to exact a cost in terms of efficiency, lowering the overall performance of
the C2 treatment. Why the treatment proved difficult to our subjects is an open ques-
tion, although we can speculate that the problem may come from the larger size of the
individual strategy space: each minority voter had 5 different choices of how many votes
to use in the first period (2, 3, 4, 5, 6), and each majority voter had 7 different choices
(3, 4, 5, 6, 7, 8, 9).

As in the analysis of individual behavior, the monotonicity analysis generates cutpoints
estimates.24 Group cutpoints are depicted in Figure 5, with minority cutpoints on the
left and majority cutpoints on the right. In line with the equilibrium predictions, we can
summarize the strategies of each group through two cutpoints, represented by a point
in the diagrams and equal to (50, 50) for both the minority and the majority.25

The first row of diagrams in Figure 5 refers to C treatments; the second row to C2 and
the last to CChat. As in Figure 3(b), darker points indicate fewer monotonicity violations.
Coordination affects the cutpoints of the minority groups: only one of the estimated
cutpoints in treatments C2 and CChat lies outside the 45-degree line, as opposed to
what we observe in treatment C. Thus in treatments C2 and CChat, in accordance with
equilibrium the behavior of all minority groups is best described as voting either 2 (at
lower values) or 6 (at higher values), with some dispersion around the equilibrium cut-
points (50, 50). The majority’s behavior, on the other hand, is best described as splitting
the bonus votes for some intermediate range of values. In addition, the light shading of
most points in the majority figures reflects the relatively large number of monotonicity
violations for any estimate of cutpoints. The relatively greater deviation from equilib-
rium by the majority groups may reflect their relative low cost of such deviations. With
a single coordinated strategy, the expected percentage loss to the majority from always
splitting the bonus votes is about 8 percent when the minority plays the equilibrium

24 The cutpoints estimates that minimize the number of monotonicity violations need not be identical
to those that minimize the errors’ distance. In practice, they differ mostly in the case of those
subjects with more random behavior. The substance of the results does not change, and we report
here the cutpoints that minimize the number of violations, for consistency with the discussion of
individual behavior.

25 For the majority groups, we treat as identical all payoff-equivalent strategies, i.e., voting either 3,
or 4, or 5 below gl , and voting either 7, or 8, or 9 above gh.
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Figure 5. Group behavior — group cutpoints.
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strategy.26 For the minority, on the other hand, splitting the bonus votes can be very
costly: a minority always casting 4 votes always loses against a majority casting 5 votes
at valuations below 50 and 7 at valuations above 50.

CONCLUSIONS

Majoritarian principles are a fundamental ingredient of democratic institutions. But
they carry with them the risk of disenfranchising minority groups and endangering the
stability of the system, by violating principles of both equity and efficiency. In a well-
designed democracy, a judicial system protecting the rights of minority groups needs to
be supplemented by political remedies that ensure the minority a voice through the daily,
ordered exercise of political rights. This paper has analyzed the potential of a simple
voting system — storable votes — to fulfill this function. By granting voters a stock of
votes to be divided as desired over a series of multiple binary decisions, storable votes
allow the minority to cumulate votes on specific issues and to win sometime. Because the
minority wins only if its strength of preferences is high, and the majority’s is low, the
gains in terms of equity have little, if any, cost in terms of efficiency.

We have studied two related models where two groups of different size have con-
sistently opposite preferences. In our correlated model, C, all members of a group —
whether the majority or the minority — agree not only on the direction of their pref-
erences but also on the strength of their preferences. If we think in terms of political
parties, these would be parties with strong discipline; more generally, the model is best
suited to represent groups with some level of organization, sufficient to agree on the set
of priorities. In our basic model, model B, on the other hand, all members of a group
agree on the direction of their preferences, and the two groups have opposite preferences,
but within a group the members’ priorities may differ. The groups are not organized.

There are many directions for further research. We limit ourselves to mentioning
two. First, it would be interesting to compare storable votes to a larger set of alterna-
tive mechanisms, both theoretically and experimentally. These alternative mechanisms
should include vetoes, serial dictatorship, and even more complex systems such as the
one proposed in Jackson and Sonnenschein (2007). Storable votes are more flexible but
more complicated than vetoes, and less flexible and less complicated than the Jackson
and Sonnenschein mechanism. Serial dictatorship requires a secondary mechanism to
allocate decisions to specific individuals or groups in a somewhat efficient fashion. What
can the theory tell us, and how would all compare experimentally?27 Second, the sensi-
tivity of storable votes to agenda manipulation is an open question. The agenda setting
procedure should be part of the overall game, and voters will decide how many votes

26 In fact, in this model the majority’s maximin strategy entails splitting the bonus votes. It corresponds
to cutpoints (25, 100): cast no bonus votes for values below 25, but split the bonus votes for all values
above 25.

27 Two recent experimental analyses are Engelmann and Grimm (2006) on the Jackson–Sonnenschein
mechanism, and Kagel et al. (2005) on veto power. Neither paper compares different mechanisms.
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to cast knowing how new issues are brought to a vote. A priori it is not clear whether
problems will arise: having multiple votes that can be shifted across proposals may make
the order of the proposals more important, but also increase the ability to resist possible
manipulations of this order. On the other hand, the additional consideration of political
minorities may exacerbate possible problems, either because majority losses are particu-
larly expensive in terms of efficiency or because the minority may end up unable to ever
control any outcome.

APPENDIX

Proof of Lemma 1 Suppose that x∗
Mt(vi , Bt , t) and x∗

mt(vi , Bt , t) exist. Consider can-
didate equilibrium strategies {x′

it(vi , Bt , t)} for model C , where
∑

i∈m x′
it(vi , B, t) =

x∗
mt(vi , B, t) and

∑
i∈M x′

it(vi , B, t) = x∗
Mt(vi , B, t). Because preferences between the two

groups are always opposed, at any state only the aggregate voting choice of the opposite
group affects voters’ payoffs. In addition, because in model C preferences within each
group are always perfectly correlated, by definition {x′

it(vi , B, t)}, i ∈ m maximize the
expected payoff of each individual minority member, given x∗

Mt(vi , B, t) (and similarly for
{x′

it(vi , B, t)}, i ∈ M, given x∗
mt(vi , B, t)). It follows that no individual deviation from the

prescribed strategies can be profitable and {x′
it(vi , Bt , t)} must be equilibrium strategies.

Note that in general the equilibrium will not be unique: any permutation of individual
strategies that leaves the aggregate vote for the group unchanged, at given state, is an
equilibrium. �

Proof of Lemma 2 (i) Existence of equilibrium in pure strategies. Milgrom and Weber
(1985) discuss conditions for existence of an equilibrium in distributional strategies. In
particular, conditional on a publicly observed variable, individual types are required to be
independent. The publicly observed information in our case is each voter’s membership
in one of the two groups, and hence the support of the distribution from which valuations
are drawn. Conditional on such support, individual valuations are independent in case B.
The arguments in Casella (2005) remain applicable here. Hence an equilibrium in pure
strategies exists for model B. Conditional on public information on the support of each
distribution, valuations are independent in the two-voter version of model C. Again,
the arguments in Casella (2005) apply, and an equilibrium in pure strategies exists. But
since such an equilibrium must be an equilibrium of the n-voter C game, it follows that
an equilibrium in pure strategies of the n-voter C game exists. (ii) Monotonicity of the
equilibrium strategies. Call a strategy monotonic if, at a given state, the number of votes cast
is monotonically increasing in the intensity of preferences vit . Casella et al. (2006) shows
that at any given state all individual best response strategies must be monotonic when
members of each group do not play correlated strategies. Thus the argument applies
immediately to equilibria of model B. It also applies to the two-voter version of model C,
and hence to group strategies, as opposed to individual strategies, in the equilibrium we
focus on in the n-voter C game. If, at any given state, all best response strategies must
be monotonic and an equilibrium exists, it follows that equilibrium strategies must be
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monotonic. Because there is a continuum of types and a finite set of strategies, then it
must be that monotonic equilibrium strategies must take the form of monotone cutpoint
strategies. �

Proof of Theorem 1 We begin by proving the second part of the theorem. Consider any
candidate equilibrium where the minority is expected to lose with probability 1 over each
decision. A minority member cannot be worse off by cumulating all his bonus votes on
one decision. Over all decisions, there must be at least one where with positive probability
the majority casts no more than MB0/T bonus votes, and since the minority can never
cast fewer than m total votes, a deviating minority member can always find a decision
where with positive probability the difference in votes cast is at most M(1 + B0/T ) − m.
Thus with positive probability the outcome of that decision changes and deviation is
profitable if M(1+B0/T ) ≤ m+B0, or B0(1−M/T ) ≥ M−m. This condition requires
T > M, and in this case becomes B0 ≥ T (M − m)/(T − M). For all M and m, the
condition is sufficient and applies to both models B and C. Since we know by Lemma 2
that an equilibrium exists for arbitrary F, T , M, and m, it must be that if T > M,
and B0 ≥ T (M − m)/(T − M) the minority is expected to win sometime with strictly
positive probability in all equilibria. We now prove the first part of the theorem. Suppose
T ≤ M. Consider the following candidate equilibrium: at time t = 1, xi1 = 1 + B0 for
i ∈ m and xj1 = 1 for j ∈ M; at all other times t �= 1, xit = 1, and xjt = 1 + B0/(T − 1).
If m(1 + B0) > M or B0 > (M − m)/m the minority always wins the first vote, while
the majority always wins all other votes. No individual minority member can gain from
deviation, for all possible realizations of his valuations, if m + B0 < M[1 + B0/(T − 1)],
or B0[1−M/(T −1)] < M −m, a condition always satisfied when T ≤ M. No majority
member can gain from deviating, again for all possible realizations of his valuations, if
m(1 + B0) > M + B0 or B0 > (M − m)/(m − 1), a threshold that is finite for all m > 1.
Thus if T ≤ M, m > 1, and B0 > (M − m)/(m − 1), the strategies described are an
equilibrium, and the minority always wins the first vote. �

Proof of Theorem 2 Consider the following strategies. Over the first T − 2 proposals,
each minority member always casts only the regular vote; each majority member casts
1 + b votes. At T − 1, each minority member casts only his regular vote if vm < α, for
a fixed α > 0, and all bonus votes otherwise; each majority members casts 1 + b votes
if vM < α and 1 + h otherwise, where b + h + (T − 2)b = B0. In the last election, all
remaining votes are cast.

We show in step (i) that for all M and m ≥ 2 there exist non-negative values of B0,
b, h, and T for which such strategies are equilibrium strategies, and the minority wins
at T − 1 if (vmT−1 > α, vMT−1 < α), and at T if (vmT−1 < α, vMT−1 > α), but
always loses otherwise. We then show in (ii) that in such an equilibrium EV0 > EW0 if
m > M/2. Because the theorem requires m > M/2, it cannot apply to m = 1.

(i) The minority wins at T − 1 if (vmT−1 > α, vMT−1 < α), and at T if (vmT−1 <

α, vMT−1 > α) if:

m(1 + B0) > M(1 + b) (A.1)
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and loses in all other cases if:

M(1 + h) > m(1 + B0). (A.2)

Any unilateral deviation by a minority voter is ruled out if:

m + B0 < M(1 + b). (A.3)

Similarly, any unilateral deviation by a majority voter is ruled out if:

M + (M − 1)b + B0 < m(1 + B0). (A.4)

If there exist values of B0, b, h, and T for which these four inequalities are satisfied
simultaneously, and the budget constraint b+h+(T −2)b = B0 holds, then the strategies
are an equilibrium, delivering the outcomes described above. It is immediate that (A.4)
implies (A.1). Hence, substituting the budget constraint in (A.2), three conditions must
be satisfied:

T < 1 + (B0 + 1)(M − m)
Mb

(A.2′)

B0 < (M − m) + Mb (A.3′)

B0 >
M − m
m − 1

+ M − m
m − 1

b. (A.4′)

If we ignore integer constraints, then for all m ≥ 2 (A.3′) and (A.4′) are satisfied for
any positive b. With b arbitrarily small, T can be arbitrarily large, and the equilibrium
can be supported for any positive finite T . Integer constraints are however part of the
environment, and in general impose an upper bound on T , T , which depends on M
and m. The following observations follow immediately from (A.2′), (A.3′) an (A.4′):
(a) if m > 2 , then for all M > m, there is an equilibrium with b = 1, B0 integer
∈ (2(M − m)/(m − 1), 2M − m), and T (M, m) > 2; (b) if m = 2, then the only relevant
case satisfying the constraint M < 2m is M = 3. For m = 2 and M = 3, there is an
equilibrium with b = 2, B0 = 6, and T = 13/6 > 2.

(ii) In any equilibrium of this type, EV0 > EW0 iff:

F(α)
[

M
∫ α

0
vdF(v) + F(α)M

∫ 1

0
vdF(v)

]

+ [1 − F(α)]
[

M
∫ 1

α

vdF(v) + [1 − F(α)]M
∫ 1

0
vdF(v)

]

+ F(α)
[

M
∫ 1

α

vdF(v) + [1 − F(α)]m
∫ 1

0
vdF(v)

]

+ F(α)
[

m
∫ 1

α

vdF(v) + [1 − F(α)]M
∫ 1

0
vdF(v)

]
> 2M

∫ 1

0
vdF(v)
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Simplifying:

F(α) [MF(α) + m(1 − F(α))]
∫ 1

0
vdF(v)

+ [mF(α) + M(1 − F(α))]
∫ 1

α

vdF(v) > M
∫ 1

0
vdF(v). (A.5)

Note that the left-hand side simplifies to M
∫ 1

0 vdF(v) when evaluated at either α = 0
or α = 1, since in both cases the majority always wins (and thus EV0 = EW0). Taking
the derivative of (A.5) with respect to α and evaluating it at α = 0, we obtain:

∂(EV0 − EW0)
∂α

∣∣∣∣
α=0

= f (0)
∫ 1

0
vdF(v)(2m − M) > 0 ⇔ m > M/2

Thus if m > M/2 there exists a threshold α > 0 such that the strategies described above
lead to higher ex ante welfare than simple majority voting. �

SUPPLEMENTARY MATERIAL
MINORITIES AND STORABLE VOTES

PROOF OF THE PROPOSITION

ModelB

(a) Equilibrium. To verify that the strategy described is an equilibrium, consider
the best response for voter i. If i casts xi1 votes in the vote over the first pro-
posal, his expected utility over the whole game is: EUi|xi1 = vi1prob(W1|xi1) +
E(v)prob(W2|4 − xi1), where prob(Wt|xit) is i’s probability of obtaining the desired
outcome in period t conditional on casting xit votes, and from the symmetry of F,
E(v) = 0.5. Since (n − 1) is an even number, and every other voter is casting either
1 or 3 votes, the difference in votes between the two sides, excluding i, must be even
for both proposals. Thus, when i considers the choice between casting 3, 2 or 1 votes,
the only case in which the choice matters is a difference of 2 votes in his side disfavor,
either over proposal 1 or proposal 2:

EUi|3 > EUi|2 ⇔ vi1[prob(�x1−i = 2)] > 0.5[prob(�x2−i = 2)]
EUi|2 > EUi|1 ⇔ vi1[prob(�x1−i = 2)] > 0.5[prob(�x2−i = 2)],

where �xt−i indicates the number of votes by which i’s side is losing over proposal Pt ,
absent i’s vote. Given the symmetry of F, in the candidate equilibrium the probability
of any other voter casting 1 or 3 votes is identical, implying: prob(�x1−i = 2) =
prob(�x2−i = 2). Thus i’s best response is to cast 1 vote if vi1 < 0.5 and 3 votes if
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vi1 > 0.5; the conclusion holds for all i, and the strategy is indeed an equilibrium. If
M > 3m, prob(�x1−i = 2) = prob(�x2−i = 2) = 0 , and the number of votes cast
is irrelevant.

(b) Frequency of minority victories. Write the majority size as M = m + 2k − 1, with
k ≥ 1 (recall than n is odd). The minority wins the first vote if there are at least k more
valuations above 0.5 among the minority than the majority. Given the symmetry of F,
the probability of this event is given by the formula in the lemma. The minority wins
the second vote if there are at least k more valuations below 0.5 over the first proposal
among the minority than the majority, an event that again, given the symmetry of
F, has the probability given in the lemma. Note that the two events are mutually
exclusive and that the probability can be positive only if k < m, implying that the
majority always wins if M > 3m.

(c) Expected equilibrium payoff. With n odd and the equilibrium strategies described
above, the difference in votes cast by the two groups is always an even number. In
addition, the symmetry of F guarantees that the probability of any given difference
in votes is equal over the two proposals. If we call prob(WM|x) the probability of
obtaining the desired outcome for i ∈ M, conditional on casting x votes, then, given
F Uniform, we can write the ex ante expected payoff of a majority member as:

EVBi = (3/8)prob(WM|1) + (5/8)prob(WM|3), ∀i ∈ M

where prob(WM|1) = prob(xM−i ≥ xm) and prob(WM|3) = prob(xM−i ≥ xm − 2).
Recall that M = m + 2k − 1. Given the equilibrium strategies, the symmetry of
F, and the independence of the valuation draws, if we call high a valuation above
0.5, prob(xM−i ≥ xm) equals the probability that the number of high draws in the
minority group is at most k−1 higher than for the majority group, excluding voter i:

prob(WM|1) = 1 −
m∑

s=k

[m−s∑
r=0

(
M − 1

r

)(
m

r + s

)]
2−(M−1+m).

Similarly, prob(xM−i ≥ xm −2) equals the probability that the number of high draws
in the minority group is at most k higher than for the majority group, excluding
voter i:

prob(WM|3) = 1 −
m∑

s=k+1

[m−s∑
r=0

(
M − 1

r

)(
m

r + s

)]
2−(M−1+m).

Analogous calculations yield the ex ante expected payoff of a minority member:

EVBj = (3/8)prob(Wm|1) + (5/8)prob(Wm|3), ∀j ∈ m

where:

prob(Wm|1) =
m−1∑
s=k

[m−s−1∑
r=0

(
M
r

)(
m − 1
r + s

)]
2−(M+m−1)
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and

prob(Wm|3) =
m−1∑

s=k−1

[m−s−1∑
r=0

(
M
r

)(
m − 1
r + s

)]
2−(M+m−1).

Ex ante aggregate expected payoff in equilibrium is then: EVB = M(EVBi) +
m(EVBj), i ∈ M, j ∈ m. The expressions can be simplified slightly, and after some
manipulations we derive:

EVB > EW0 = M ⇔ 5
8

(M + m)( 3m−M−1
2

)! ( 3M−m−1
2

)!
>

m∑
s=k

M
(m − s)!(M − 1 + s)! −

m−1∑
s=k

m
(m − s − 1)!(M + s)! ,

where k = (M − m + 1)/2. It is then simple to verify that for all M = 3m − 1 (i.e.,
k = m) or M = 3m−3 (i.e., k = m−1), EVB < EW0. At the same time, for M large
enough it is not difficult to find values of m = M −1 ( k = 1) such that EVB > EW0,
and generate examples that satisfy the statement in the lemma. M′ = 8, m′ = 3, and
m′′ = 7 is one such example; M′ = 6, m′ = 3, and m′′ = 5 is another.

Model C

(a) Equilibrium. If 2M > 3m, by setting xM1 = 2M for all vM1 the majority can
guarantee itself victory over both proposals. All minority strategies are equivalent,
including xm1 = m if vm1 < 0.5 and xm1 = 3m if vm1 > 0.5. No deviation can
be profitable for a member of either group, and the strategies are an equilibrium.
Suppose then 2M ≤ 3m. When xm = m, the minority always loses (m < max{M, m+
3} < min{3M, 4M − (m + 3)}). The only possible deviation for a minority member
is to cast 2 or 3 votes when xm−i = m − 1, but m + 2 < max{M, m + 3} <

min{3M, 4M−(m+3)}: the deviation cannot be profitable. The majority always wins
when casting min{3M, 4M − (m + 3)} votes, but loses when xM = max{M, m + 3} if
xm = 3m. A majority member could deviate and use his bonus votes when xM−i =
max{M − 1, m + 2}. But casting 2 votes cannot be profitable: with 2M ≤ 3m,
max{M+1, m+4} < 3m. And neither can casting 3: with 2M ≤ 3m, either max{M+
2, m + 5} < 3m and min{3M − 2, 4M − (m + 5)} > 3m, in which case the outcomes
are unchanged; or max{M+2, m+5} > 3m and min{3M−2, 4M−(m+5)} < 3m, in
which case the certainty of winning at vM > 0.5 is traded for the certainty of winning
in the future, with E(v) = 0.5 — a net loss in expected utility. Hence xm1 = m if
vm1 < 0.5 and xm1 = 3m if vm1 > 0.5; and xM1 = max{M, m + 3} if vM1 < 0.5 and
xM1 = min{3M, 4M − (m + 3)} if vM1 > 0.5 are equilibrium strategies.

(b) Frequency of minority victories. If 2M ≤ 3m the minority wins the first vote if
(vm1 > 0.5 ∩ vM1 < 0.5) and the second if (vm1 < 0.5 ∩ vM1 > 0.5) — given the
symmetry of F, it wins each vote with probability 0.25.
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(c) Expected equilibrium payoff. If 2M > 3m, the majority always wins and the expected
aggregate payoff over the two proposals equals M. If 2M ≤ 3m, the expected aggre-
gate payoff equals: (1/4)(M/4 + M/2) + (1/4)(3M/4 + M/2) + (1/4)(3M/4 +
m/2) + (1/4)(3m/4 + M/2) = (13M + 5m)/16 (where the first term is the expected
payoff over the two proposals when (vm1 < 0.5 ∩ vM1 < 0.5), the second when
(vm1 > 0.5 ∩ vM1 > 0.5), the third when (vM1 > 0.5 ∩ vm1 < 0.5), and the fourth
when (vm1 > 0.5 ∩ vM1 < 0.5) — all events with probability 1/4). With simple
majority voting, the majority always wins and over the two proposals EW0 = M
for all M, m. In this storable votes equilibrium, EV0 = M if 2M > 3m, but
EV0 = (13M + 5m)/16 > M for all 2M ≤ 3m, establishing the result in the lemma.

CONSTRUCTION OF FIGURE 1

Model B

(a) Efficient frequency of minority victories. According to our efficiency criterion, the
minority should win whenever the sum of its valuations is larger than the sum of the
majority’s valuations. Call y (z) the sum of m (M) independent random variables,
each distributed Uniformly over [0, 1]. The efficient frequency of minority victories
is then given by

∫ m
0

(∫ m
z Pm(y)dy

)
PM(z)dz where:

Pm(y) = 1
2(m − 1)!

m∑
s=0

( − 1)s
(

m
s

)
(y − s)m−1sign(y − s) (A.6)

(and correspondingly for PM(z)).
(b) Expected aggregate payoff under first best efficiency. For each proposal, the ex ante

efficient aggregate payoff EU∗
B is easily derived, given (A.6):

EU∗
B =

∫ m

0

(∫ m

z
yPm(y)dy

)
PM(z)dz +

∫ m

0

(∫ M

y
zPM(z)dz

)
Pm(y)dy. (A.7)

Over the two proposals, the ex ante efficient payoff is 2EU∗
B. The first term in (A.7)

corresponds to the efficient expected payoff for the minority group, and the second
for the majority group. The corresponding per capita values (multiplied by 2) are
plotted in Figure 1(b).

(c) Random choice. If each group has a 50 percent chance of winning any vote, given
E(v) = 1/2, the aggregate expected payoff is 1/2(M/2) + 1/2(m/2) over each
proposal, or (M + m)/2 for the 2-proposal game.

Model C

(a) Efficient frequency of minority victories. Given the perfect correlation of valua-
tions within each group, the efficient frequency of minority victories is given by
prob(MvM < mvm) = ∫ 1

0

∫ (m/M)vm
0 dvMdvm = m/(2M).
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(b) Expected aggregate payoff under first best efficiency. In model C, we can represent
the total valuation of the minority (majority) group by a random variable y (z),
Uniformly distributed over [0, m] ([0, M]). The efficient aggregate expected payoff,
per proposal, is given by

EU∗
C =

∫ m

0

(∫ m

z

y
m

dy
)

1
M

dx +
∫ m

0

(∫ M

y

z
M

dz
)

1
m

dy = m2 + 3M2

6M
. (A.8)

Over the two proposals, the ex ante efficient payoff is 2EU∗
C . The first term in (A.8)

corresponds to the efficient expected payoff for the minority group (m2/(3M)), and
the second for the majority group ((3M2 − m2)/6M). The corresponding per capita
values (multiplied by 2) are plotted in Figure 1(b).
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