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Abstract

Object recognition is a difficult task for single
sensor systems (e.g. machine vision) in

unconstrained environments. A useful
approach is to combine sensory data from
more than one source to overcome these
problems. However, using multiple sensors
poses new problems with respect to coordina-
tion of the sensors, strategies for their use and
integration of their data. In this paper, these
problems are explored and solutions posed for
the task of object recognition using passive
stereo vision and active tactile sensing.

1. INTRODUCTION
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Many robotic tasks are attempted without sensing,
assuming an absolute world model that never changes.
For example, in many pick and place operations, the
objects are always in a previously known absolute posi-
tion and orientation. This approach offers little flexibil-
ity. Robotic systems need the ability to use sensory
feedback to understand their environment. Work
environments are not static and cannot always be ade-
quately constrained. There is much uncertainty in the
world, and we as humans are equipped with powerful
sensors to deal with this uncertainty. Robots need to
have this ability also. Incorporating sensory feedback
into robotic systems allows nondeterminism to creep
into the deterministic control of a robot. There is at
present much work going on in the area of sensor
design for robotics. Range finders, tactile sensors,
force /torque sensors, and other sensors are actively
being developed. The challenge to the robotic system
builder is to incorporate these sensors into a system
and to make use of the data provided by them.

Much of the sensor related work in robotics has
tried to use a single sensor to determine environmental
properties [1,5,7,9, 10, 18, 17, 19, 22]. A common
strategy in computer vision is to try to use vision sens-
ing alone to determine shape properties. Many
different "shape" operators have been defined by vari-
ous researchers trying to isolate ) eparate parts of the
visual system that produce depth and surface informa-
tion. Examples of these are shape from texture [13, 3],
shape from shading [12], shape from contour
[21, 23, 11] and shape from stereo [14, 8]. A potentially
promising idea is to use all of these separate shape
operators together in a system that will integrate their
results. Unfortunately, the operators all have different
sets of constraints on the object's structure, reflectance,
and illumination. The integration of these many visual
operators is still not well understood. A much more
promising approach is to supplement the vision infor-
mation with other sensory inputs that directly measure
the properties of shape we desire. The strategy of try-
ing to obtain enough shape information/from a single
sensor may fail due to the limitations of that sensor as
is typically the case with machine vision. If vision sens-
ing can be supplemented with other sensing informa-
tion that directly measures shape, more robust and
error free descriptions of object structure can result.
Multiple sensors can be used in a complementary
fashion to extract more information from an environ-
ment than a single sensor [20, 16].

This paper is an examination of these issues in
general and a specific implementation for the case of
integrating vision and touch sensing for the task of
object recognition. Touch sensing was chosen for a
number of reasons. First, in designing a general pur-
pose robot to work in unconstrained environments,
touch sensing is a requirement for tasks such as grasp-
ing and manipulation. Second, it is a low cost robotic
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sensor that is easily included in a robotic system.
Third, and most important, it can directly sense the
properties of objects we desire, their position and orien-
tation, without regard to visual occlusion.

The objects to be recognized are common kitchen
items; mugs, plates, bowls, pitchers, and utensils. The
objects are planar as well as volumetric, contain holes
and have concave and convex surfaces. These are
fairly complex objects which test the modeling and
recognition abilities of most existing systems. The
objects are homogeneous in color, with no discernible
textures. The lack of surface detail on these objects
poses serious problems for many visual recognition sys-
tems, since there is a lack of potential features that can
be used for matching and depth analysis.

The experimental hardware is shown in figure 1.

The objects to be recognized are rigidly placed on the
worktable and imaged by a pair of CCD cameras. The
tactile sensor is mounted on a 6 degree of freedom
PUMA 560 manipulator that receives feedback from
the tactile sensor. Figure 2 is an overview of the
software of the system. It consists of five distinct
modules: the control module, the vision module, the
tactile module, the model data base and the matcher.
All of these are described in detail in [2]. In this paper,
we focus on the integration issue and the design deci-
sions posed by using multiple sensors.

2. DESIGN ISSUES IN MULTIPLE SENSING

There are a number of important and difficult
issues posed by using multiple sensors. The first is

coordination between the different sensing elements.
The trend in sensor design is to have each sensor con-
trolled by its own microcomputer system. Therefore
integrating multiple sensors becomes a problem in dis-
tributed computing as well. The sensors have different
response time, bandwidth, resolution and accuracy.
Vision sensing is fast and provides large amounts of
data as opposed to a tactile sensor that reports
contact /noncontact as it moves slowly over a surface.
The nature of the data that each sensor provides is
also different. Vision provides image space projections
while a tactile sensor reports 3 -D points of contact and
surface normals. The vision sensors are passive while
the tactile sensor is active and requires a larger degree
of control. Finally, there is the interaction between the
sensors themselves. Do they provide redundant, com-
plementary or disparate data? If two sensors can
accomplish a task, what is the best strategy for attempt-
ing to sense a part of the scene, given criteria such as
maximizing throughput, accuracy or speed. Can the
two sensors be used intelligently to reliably understand
the three dimensional structure of the objects to be
recognized?
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2.1. ORGANIZATION OF MULTIPLE SENSORS

The organization used here is a hierarchy, where
the sensors are each independent entities that commun-
icate through a central control process. This organiza-
tion works well if the data and sensing processes are
very different as is the case with vision and touch. It is
important that the higher levels of the hierarchy not be
overly concerned with the details at the lower level. In
particular, each sensor system should be able to use its
own language and data structures to model the world as
it sees it without regard to some global data model. In
order to maximize throughput (there are severe real
time constraints in robotics) the communication
between a sensor and the next level in the hierarchy
needs to be minimized. The main method of accom-
plishing this is by compressing and abstracting the data
at each level in the hierarchy, which is easily accom-
plished by the processors in the sensory hierarchy.
Fusion of the data takes place at the top levels of the
hierarchy after the data has been abstracted.

2.2. STRATEGIES

The strategies used to integrate multi -sensor data
are sensor dependent as would be expected. A careful
weighing of the sensor's characteristics that include
bandwidth, response time, accuracy, resolution and
kind of data will determine these strategies. Some
helpful guidelines can be established though. First,
there is nothing wrong with overwhelming sensing by
many devices to verify and support hypotheses about
the world. Redundant sensing that builds confidence
levels is not wasteful. It is better to be overwhelmingly
correct than partially wrong. As Binford has stated in
[4]:

In machine perception, overwhelming
verification of a correct hypothesis is typically
inexpensive compared to the computation
required to get to the correct hypothesis.
These factors shift the utility balance toward
getting data needed for a highly constrained
decision. Very strong, relevant data are avail-
able if descriptive mechanisms can abstract
them and interpretation mechanisms use
them.

Another important point is that strategies change
with domains, sensors and tasks. Therefore, a system
should be easily modified to support the development
of new strategies.

2.3. ABSTRACTING DATA

Video images are available at 60 hz. The amount
of data provided by such a sensor will quickly
overwhelm a system, particularly when most of the
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image is of little interest. Higher levels of reasoning
need to have primitives that go beyond pixels and point
data which are inherently unstable. For sensors that
report geometric primitives the abstraction follows a
natural path of points yielding curves yielding surfaces
yielding volumes. The benefits from abstracting this
data is clear: the creation of powerful, rich and stable
entities which can form a basis for high level reasoning
about an object in the scene and the reduction of
bandwidth between levels.

3. OBJECT RECOGNITION TASKS

Model based object recognition is the paradigm
being used to allow higher level knowledge about the
domain to be encoded and assist the recognition pro-
cess. Recognition has two components, a data driven
or bottom up component that supplies low level feature
and primitive information and a high level that utilizes
these primitives to understand a scene. At some point,
low level processing is too lacking in knowledge of what
is being perceived to reliably continue the recognition
process. It is at this point that higher level knowledge
about the domain can be effectively utilized to put the
lower level information into context. In object recogni-
tion systems, this information is usually contained in
models that are used to relate the observables to the
actual objects. The models are abstractions of the real
physical objects that try to encode important informa-
tion about the object in relation to the primitives and
sensing environment being used. In some sense, the
model information must be computable from the sen-
sors. It is not enough to build descriptions of objects
for realistic display; the models must contain criteria
that are easily accessible to facilitate efficient matching
of the model to a sensed object. The matcher is used
to relate the two, and its job is facilitated by uncovering
three dimensional structure through sensing.

3.1. UNDERSTANDING 3 -D STRUCTURE

Object recognition in this work is predicated upon
discovering three dimensional structure of objects
which can then be matched against the models int he
model data base.. It may seem obvious that under-
standing three dimensional structure is a necessary first
step to a host of important robotic tasks, including
recognition, grasping, manipulation and inspection.
However, this has not been the primary approach of
much previous work. Instead of being the primary ini-
tial focus, three dimensional structure was an outcome
of the model matching phase. Only by correctly invok-
ing a model (determined through a variety of viewpoint
dependent and two dimensional projective analysis) was
the actual three dimensional structure uncovered. By
using active sensors, three dimensional structure can be
discovered initially. The reasons why this is important
are listed below:

The sensed primitives need to be related to the
model components in model based recognition.
The models can be easily and efficiently structured
as three dimensional surfaces and features. The
discovery of three dimensional surfaces and
features facilitates this matching effort. The
models in this work use the same surface primitive
that the sensors together compute. This eliminates
expensive transformations of the data and possible
information loss.

Viewpoint independent recognition assumes no
characteristic views of the object. The orientation
in space of the object needs to be computed from
the combination of sensing and high level reason-
ing. Uncovering the three dimensional structure
makes this computation possible.

There is a limit to the amount of recognition that
can be done at the low level. Reasoning about
three dimensional objects at a higher level implies
understanding the three dimensional structure.
Spatial relationships in three dimensions involve
three dimensional entities. Only by uncovering
these entities can higher level reasoning be
invoked.

Tasks beyond recognition also imply an under-
standing of three dimensional structure. Grasping,
inspection and manipulation all involve under-
standing and reasoning about the three dimen-
sional structure.

4. EXAMPLE: INTEGRATING SENSORS

The vision module consists of two CCD cameras
that are calibrated with the robot workspace and
registered for scan line coherence. The Marr -Hildreth
edge operator [15] is applied to each of the images and
zero -crossings of the convolved images are found. The
zero- crossings are isolated to subpixels by a linear inter-
polation process to reduce the error due to quantiza-
tion. These zero -crossings define homogeneous regions
in the image from which region contours are extracted.

The matching phase uses the region contours as
input. Isolated zero -crossings not on a contour are dis-
carded, leaving sparse but stable contour match pixels.
The matcher then attempts to match contour pixels

using the constraints of scan line coherence and zero-
crossing orientation and sign. The candidate match pix-
els are then correlated with regions of small window
size centered on each candidate. Only those matches
fulfilling the criteria above and having a correlation
confidence level above 95% are accepted as match
points. The outcome of this matching phase is a sparse
set of match points on the contours of regions isolated
from vision. As described in a previous paper there are
limitations to the amount and accuracy of the data pro-
vided by the vision system. Stereo matching suffers
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from three main problems. The first is the inability of
stereo to handle many candidate match points, such as
is found in regularly textured objects. By using only
sparse contour data the matcher becomes more accurate
with few if any false matches. The second is the error
due to quantization on a discrete pixel grid. For the
camera geometry used here this can be 4 mm. The
location of zero -crossings to subpixels reduces this
error to 2 mm. The last problem is the inability of
stereo to match horizontally oriented zero -crossings.
There is no basis for distinction given the criteria above
to choose between locally horizontal matches in a small
region. Typically, zero -crossings whose orientation is
more than 60° from vertical yield incorrect match
results.

The outcome of stereo matching is shown in figure
3. There is sparse 3 -D depth data on the contours,
containing no horizontal matches. This is clearly not
enough data to try to recreate surfaces and understand
the object's structure. However, the data is accurate
and reliable because it has been thinned and abstracted.
It allows us to proceed to the next level of sensing with
confidence, having sparse but accurate regions
identified that can be used for further sensing.
Attempts to drive the vision modules beyond this capa-
bility will invariably lead to a potentially serious error.
The key idea is that less is more in the case of multiple
sensing. We do not have to rely on this single modality
for all our sensory inputs, only those it can reliably pro-
duce.

5. TACTILE SENSING

The vision module independently calculates
regions of interest, giving limited 3 -D contour informa-
tion to the control module. The tactile module can
now begin to sense the regions isolated from vision. A
possible strategy is to have the tactile and vision
modules work in parallel, increasing throughput. How-
ever, this approach ignores the fact that touch is an
active sensor. Touch cannot succeed in a blind fashion.
It needs control information to work reliably, and that
control is provided by the touch. The tactile subsystem
contains three levels. The top level is the control
module in figure 2 that gives region information to the
PUMA 560 arm running under VAL -II control. This
level is responsible for the following functions:

Orienting and positioning the tactile sensor to
correctly approach an identified region.

Determining whether a region isolated from vision
is a surface, hole or cavity.

The third level is the tactile sensor which contains
its own controlling Z -80 microprocessor. The tactile
sensor is a finger shaped device that contains 133 pres-
sure sensitive sites. This level is responsible for:
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Setting up signaling thresholds for the sensor.

Converting the analog sensor signal to digital.

Noise reduction and smoothing of the digitized sig-
nals

Providing feedback of contact /nocontact to the
arm control at the level above.

This hierarchy is used to orient and position the
sensor and probe a region. Probed regions will reveal
themselves to be surfaces, holes or cavities. A region
is identified by the higher level sending its probable
location and a surface normal approximation to the arm
control level. This level then orients the arm and sen-
sor accordingly, sets up parameters for the tactile sub-
system, and moves the arm according to the feedback
from the tactile sensor. The lowest level processes the
sensor signals on its surface continuously, interrupting
the level above (arm control) if contact occurs. If con-
tact occurs the arm control level isolates the contact in
space through its model of the sensor's geometry and
reports back a surface to the top level controlling
module. If the arm control monitors the distance the
sensor travels without contact occurring, it reports back
to the top level that a hole is present. If surface con-
tact occurs after a distance D,a,, has been traveled, then
a cavity is reported. All three levels of the hierarchy
are involved and communicate only what is necessary
to the higher and lower levels to accomplish the task.

6. INTEGRATING VISION AND TOUCH

The initial determination of the regions structure
(surface, hole, cavity) generates another round of sens-
ing in the hierarchy to yield quantitative analysis of the
regions to be used for the later matching phase. In the
case of a surface, a surface patch needs to be interpo-
lated from the sensory data. The vision data is too
sparse to accomplish this, but the tactile sensor can
trace the surface in an intelligent manner to build an
accurate surface description. The method used is
described in detail in [2]. The procedure is to build a
Coons' patch representation [6] which is a particular
form of bicubic surface patch used primarily in corn -

puter graphics and computer aided design. The patches
are constructive in that they are built up from known
data and are interpolants of sets of three dimensional
data defined on a rectangular parametric mesh. This
gives them the advantage of axis independence which is
important in synthesizing these patches from sensory
data. Being interpolating patches, they are able to be
built from sparse data. The most important property
possessed by these patches is their ability to from com-
posite surfaces with C2 (curvature continuous) con-
tinuity. The object domain (bowls, mugs, pitchers,
plates) contains many curved surfaces which are
difficult or impossible to represent using polygonal net-
works or quadric surfaces.

from three main problems. The first is the inability of 
stereo to handle many candidate match points, such as 
is found in regularly textured objects. By using only 
sparse contour data the matcher becomes more accurate 
with few if any false matches. The second is the error 
due to quantization on a discrete pixel grid. For the 
camera geometry used here this can be 4 mm. The 
location of zero-crossings to subpixels reduces this 
error to 2 mm. The last problem is the inability of 
stereo to match horizontally oriented zero-crossings. 
There is no basis for distinction given the criteria above 
to choose between locally horizontal matches in a small 
region. Typically, zero-crossings whose orientation is 
more than 60° from vertical yield incorrect match 
results.

The outcome of stereo matching is shown in figure 
3. There is sparse 3-D depth data on the contours, 
containing no horizontal matches. This is clearly not 
enough data to try to recreate surfaces and understand 
the object's structure. However, the data is accurate 
and reliable because it has been thinned and abstracted. 
It allows us to proceed to the next level of sensing with 
confidence, having sparse but accurate regions 
identified that can be used for further sensing. 
Attempts to drive the vision modules beyond this capa­ 
bility will invariably lead to a potentially serious error. 
The key idea is that less is more in the case of multiple 
sensing. We do not have to rely on this single modality 
for all our sensory inputs, only those it can reliably pro­ 
duce.

5. TACTILE SENSING

The vision module independently calculates 
regions of interest, giving limited 3-D contour informa­ 
tion to the control module. The tactile module can 
now begin to sense the regions isolated from vision. A 
possible strategy is to have the tactile and vision 
modules work in parallel, increasing throughput. How­ 
ever, this approach ignores the fact that touch is an 
active sensor. Touch cannot succeed in a blind fashion. 
It needs control information to work reliably, and that 
control is provided by the touch. The tactile subsystem 
contains three levels. The top level is the control 
module in figure 2 that gives region information to the 
PUMA 560 arm running under VAL-II control. This 
level is responsible for the following functions:

  Orienting and positioning the tactile sensor to 
correctly approach an identified region.

  Determining whether a region isolated from vision 
is a surface, hole or cavity.

The third level is the tactile sensor which contains 
its own controlling Z-80 microprocessor. The tactile 
sensor is a finger shaped device that contains 133 pres­ 
sure sensitive sites. This level is responsible for:

  Setting up signaling thresholds for the sensor.

  Converting the analog sensor signal to digital.

  Noise reduction and smoothing of the digitized sig­ 
nals

  Providing feedback of contact/nocontact to the 
arm control at the level above.

This hierarchy is used to orient and position the 
sensor and probe a region. Probed regions will reveal 
themselves to be surfaces, holes or cavities. A region 
is identified by the higher level sending its probable 
location and a surface normal approximation to the arm 
control level. This level then orients the arm and sen­ 
sor accordingly, sets up parameters for the tactile sub­ 
system, and moves the arm according to the feedback 
from the tactile sensor. The lowest level processes the 
sensor signals on its surface continuously, interrupting 
the level above (arm control) if contact occurs. If con­ 
tact occurs the arm control level isolates the contact in 
space through its model of the sensor's geometry and 
reports back a surface to the top level controlling 
module. If the arm control monitors the distance the 
sensor travels without contact occurring, it reports back 
to the top level that a hole is present. If surface con­ 
tact occurs after a distance Dcav has been traveled, then 
a cavity is reported. All three levels of the hierarchy 
are involved and communicate only what is necessary 
to the higher and lower levels to accomplish the task.

6. INTEGRATING VISION AND TOUCH

The initial determination of the regions structure 
(surface, hole, cavity) generates another round of sens­ 
ing in the hierarchy to yield quantitative analysis of the 
regions to be used for the later matching phase. In the 
case of a surface, a surface patch needs to be interpo­ 
lated from the sensory data. The vision data is too 
sparse to accomplish this, but the tactile sensor can 
trace the surface in an intelligent manner to build an 
accurate surface description. The method used is 
described in detail in [2]. The procedure is to build a 
Coons' patch representation [6] which is a particular 
form of bicubic surface patch used primarily in com­ 
puter graphics and computer aided design. The patches 
are constructive in that they are built up from known 
data and are interpolants of sets of three dimensional 
data defined on a rectangular parametric mesh. This 
gives them the advantage of axis independence which is 
important in synthesizing these patches from sensory 
data. Being interpolating patches, they are able to be 
built from sparse data. The most important property 
possessed by these patches is their ability to from com­ 
posite surfaces with C 2 (curvature continuous) con­ 
tinuity. The object domain (bowls, mugs, pitchers, 
plates) contains many curved surfaces which are 
difficult or impossible to represent using polygonal net­ 
works or quadric surfaces.
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Starting with the contour data derived from vision,
the tactile sensor is used to trace across each region,
creating 4 new patches that are curvature continuous.
The method is hierarchical in that each of these patches
can then be subdivided by tactile tracing into a larger
number of curvature continuous patches that more
accurately interpolates the surface. Figure 4 shows
how the method works, subdividing each contour into a
set of knot points that create 4 boundary curves on a
patch. The tactile sensor then traces across these
patches, creating the new surfaces. Once again, the
hierarchy is used as the top level control defines the
boundary curves and the start and end points of the
traces across the surface. These parameters are com-
municated to the lower level arm control which orients
and positions the arm and begins its trace across the
surface. The bottom level finger sensor control is used
to generate contact feedback which the arm control
level analyzes to plan a movement across the surface to
stay in contact. The reported data from these contacts
is communicated up to the control level which
integrates the trace data into the format necessary for
the Coons' patch representation. Figure 5 shows the
interpolated surface patch for the pitcher's main body
that is built from integrating real stereo data and active
tactile tracing.

As can be seen from the above example, the
hierarchical control works well. The important ideas of
independent operation of each of each level, data
abstraction and limited communication between levels,
and developing strategies to maximize each sensor's
most reliable mode of operation have been used.
Further, the sensors work in a complementary mode
whereby the passive vision data is used to guide the
active tactile sensor.

A similar integration procedure is used to build
hole and cavity descriptions which are useful in the
matching phase of the recognition process. The tactile
system is able to sense a hole or cavity's boundary and
report this back to the control level where it also is
used in the matching phase. Figure 6 shows a set of
zero- crossings for one of the images of a coffee mug,
the sparse stereo match points, and the interpolated
surface of the front of the mug and the traced boun-
dary curve of the hole. Both of these quantities are
powerful matching entities, which allow determination
of the object from the model data base as well as its
orientation and position in the workspace.

7. SUMMARY

The integration of multiple sensors is important for
more complex robotic tasks such as object recognition,
grasping and manipulation. The integration tends to be
task and sensor specific; however there are some gen-
eral principles which work well in certain environments.
In particular, the ideas of hierarchical control, data

abstraction and compression between levels, and com-
plementary sensing have been shown to be useful in an
integrated system using passive vision and active touch
sensing.
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Starting with the contour data derived from vision, 
the tactile sensor is used to trace across each region, 
creating 4 new patches that are curvature continuous. 
The method is hierarchical in that each of these patches 
can then be subdivided by tactile tracing into a larger 
number of curvature continuous patches that more 
accurately interpolates the surface. Figure 4 shows 
how the method works, subdividing each contour into a 
set of knot points that create 4 boundary curves on a 
patch. The tactile sensor then traces across these 
patches, creating the new surfaces. Once again, the 
hierarchy is used as the top level control defines the 
boundary curves and the start and end points of the 
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abstraction and limited communication between levels, 
and developing strategies to maximize each sensor's 
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A similar integration procedure is used to build 
hole and cavity descriptions which are useful in the 
matching phase of the recognition process. The tactile 
system is able to sense a hole or cavity's boundary and 
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used in the matching phase. Figure 6 shows a set of 
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the sparse stereo match points, and the interpolated 
surface of the front of the mug and the traced boun­ 
dary curve of the hole. Both of these quantities are 
powerful matching entities, which allow determination 
of the object from the model data base as well as its 
orientation and position in the workspace.

7. SUMMARY

The integration of multiple sensors is important for 
more complex robotic tasks such as object recognition, 
grasping and manipulation. The integration tends to be 
task and sensor specific; however there are some gen­ 
eral principles which work well in certain environments. 
In particular, the ideas of hierarchical control, data

abstraction and compression between levels, and com­ 
plementary sensing have been shown to be useful in an 
integrated system using passive vision and active touch 
sensing.
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Figure 3. Original image and sparse stereo match points.
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Figure 5. Interpolated surface patch .
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