Academic Commons

Articles

The last departure time from an Mt/G/∞ queue with a terminating arrival process

Goldberg, David Alan; Whitt, Ward

This paper studies the last departure time from a queue with a terminating arrival process. This problem is motivated by a model of two-stage inspection in which finitely many items come to a first stage for screening. Items failing first-stage inspection go to a second stage to be examined further. Assuming that arrivals at the second stage can be regarded as an independent thinning of the departures from the first stage, the arrival process at the second stage is approximately a terminating Poisson process. If the failure probabilities are not constant, then this Poisson process will be nonhomogeneous. The last departure time from an Mt/G/∞ queue with a terminating arrival process serves as a remarkably tractable approximation, which is appropriate when there are ample inspection resources at the second stage. For this model, the last departure time is a Poisson random maximum, so that is possible to give exact expressions and develop useful approximations based on extreme-value theory.

Files

  • thumnail for LastDepartureQUES121207.pdf LastDepartureQUES121207.pdf application/pdf 219 KB Download File

Also Published In

Title
Queueing Systems
DOI
https://doi.org/10.1007/s11134-008-9060-2

More About This Work

Academic Units
Industrial Engineering and Operations Research
Published Here
September 19, 2017