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Abstract The sampling frame in most social science surveys misses members
of certain groups, such as the homeless or individuals living with HIV. These
groups are known as hard-to-reach groups. One strategy for learning about
these groups, or subpopulations, involves reaching hard-to-reach group mem-
bers through their social network. In this paper we compare the efficiency
of two common methods for subpopulation size estimation using data from
standard surveys. These designs are examples of mental link tracing designs.
These designs begin with a randomly sampled set of network members (nodes)
and then reach other nodes indirectly through questions asked to the sampled
nodes. Mental link tracing designs cost significantly less than traditional link
tracing designs, yet introduce additional sources of potential bias. We exam-
ine the influence of one such source of bias using simulation studies. We then
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demonstrate our findings using data from the General Social Survey collected
in 2004 and 2006. Additionally, we provide survey design suggestions for future
surveys incorporating such designs.

Keywords Aggregated Relational Data · Egocentric nominations · Hard-to-
reach groups · Mental link tracing design · Sampling · Social network

1 Introduction

Standard surveys often miss members of certain groups, known as hard-to-
reach groups. Members of these groups may be physically difficult to reach
using standard recruitment techniques (homeless individuals are unlikely to
be reached using random-digit dialing, for example). In other cases, members
of some groups may be reluctant to self-identify because of social pressure or
stigma (Shelley et al, 2006). A third group of individuals is difficult to reach
because of issues with both access and reporting (commercial sex workers,
for example). Despite the difficulty reaching these groups, information about
hard-to-reach groups is often important for public health and epidemiological
monitoring and evaluation.

Even basic information about these groups, such as the group size, is typ-
ically unknown. Link Tracing designs are one approach to counting mem-
bers of hard-to-reach groups. These designs recruit respondents directly from
other respondents’ networks (see Salganik and Heckathorn (2004), for exam-
ple), making the sampling mechanism similar to a stochastic process on the
social network (Goel and Salganik, 2009). Link tracing designs affords re-
searchers face-to-face contact with members of hard-to-reach groups, facilitat-
ing exhaustive interviews and even genetic or medical testing. The price for an
entrée to these groups is high, however, as the sampling mechanism requires
physically locating the nominated respondents’ network members. Estimates
from link tracing designs are also biased because of the network structure
captured during selection, with much statistical research devoted to re-weight
observations from link tracing designs to have properties resembling a simple-
random-sample. This bias is an issue for estimating the size of a hard-to-reach
group and makes link tracing designs unsuitable for measuring information
about the general population. Recent statistical advances for one such design,
Respondent-driven Sampling, are presented in work such as Handcock and
Gile (2010).

Other approaches to reaching members of these populations through their
social network involve accessing respondents’ social networks indirectly. In con-
trast to designs presented in Handcock and Gile (2010), these mental link trac-
ing designs use respondents selected through standard surveys (random digit
dialing telephone surveys, for example) and ask respondents questions about
actors in their social network. Mental link tracing designs are related to designs
used in health statistics known as multiplicity sampling (see Sirken (1970), for
example). In contrast to traditional link tracing designs, these methods do
not require reaching members of the hard-to-reach groups directly. Instead,
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they access hard-to-reach groups indirectly through the social networks of re-
spondents on standard surveys. Mental link tracing designs never afford direct
access to members of hard-to-reach populations, making the level of detail
achievable though physically tracing a respondent’s network impossible with
indirectly observed data. Unlike link tracing designs, however, these methods
require no special sampling techniques and are easily incorporated into stan-
dard surveys. Indirectly observed network data are, therefore, feasible for a
broader range of researchers across the social sciences, public health, and epi-
demiology to implement with significantly lower cost than link tracing. Recent
work with this data demonstrates that features of network structure, such as
homophily (the tendency for actors to form relationships with similar others),
are distinguishable even after the aggregation described above McCormick et al
(2010).

In this paper we compare the efficiency of two common methods for sub-
population size estimation using data from standard surveys. First, Aggregated
Relational Data (ARD) asks respondents how many individuals they know in
a particular group of interest. Researchers view the number known in a group
of interest as a proportion of the respondent’s network (which requires esti-
mating the respondent’s total network size) and then “scale-up” from the total
proportion of respondents’ networks to the size of the group of interest in the
overall population. Egocentric nominations involve first asking a respondent
to nominate a pre-chosen number of members from their network. An enu-
merator then goes one-by-one through the list of nominated individuals and
asks detailed questions. To obtain and estimate the total size of a particular
group in the population, the total proportion of the nominated individuals
across respondents is scaled to the size of the total population. A key fea-
ture of both mental link tracing designs and traditional link tracing designs
is the confounding of the sampling mechanism with the underlying social net-
work. In both cases there are two distinct, but not independent, processes: (i)
tie formation and (ii) nomination. For our purposes we assume tie formation
has already occurred. We still cannot ignore this process, however, since the
set of potential alters a respondent could nominate is limited to the people
with whom the respondent has ties. We focus on three types of error which
can cause bias in mental link tracing estimates. First, barrier effects are a
potential source of bias for both estimates. Barrier effects occur when there
are departures from random mixing (the propensity for a tie between two ac-
tors depends only on their degree) in the underlying network. With barrier
effects, some individuals systematically know more (or fewer) members of a
specific subpopulation than would be expected under random mixing. Barrier
effects are often the result of homophily. For example, people tend to know
others of similar age and gender (McPherson et al, 2001). While barrier effects
come about because of the tie formation process in the network, the other two
sources of error we consider arise as part of the nomination process. A second
source of error, calibration bias, occurs when respondents have difficulty re-
calling accurately the number of members of a group they know. Calibration
bias typically is more severe for larger groups. Calibration bias is particularly
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influential in ARD. The third source of error is preferential nomination bias,
which typically manifests in egocentric nominations. Preferential nomination
bias occurs when a respondent is required to nominate a subset of the people
they know in a group. Under our local model we assume that the respondent
decides which alters to nominate by choosing randomly. This is unlikely to be
the case, however, and may lead respondents to nominate a subset of alters
which are not representative of their the overall set of individuals they know
in that group.

In evaluating these methods, we find that the two sampling strategies have
complimentary strengths. In the absence of the sources of bias described above,
ARD is consistently preferable since using egocentric nominations produces a
smaller set of (indirectly) reached alters. Using simulation, however, we find
that the performance of ARD depends heavily on the level of calibration bias
and barrier effects. ARD was, in fact, more susceptible to barrier effects than
egocentric nominations. Thus, ARD requires more statistical modeling to over-
come barrier effects, but reaches more alters than data collected using egocen-
tric nominations.

We begin by describing the two commonly used sampling schemes in more
detail in Section 2. We then, in Section 3, compare the performance of these
methods using three examples: a simulation study, data from a large online
social network, and data collected from the General Social Survey. We give
design recommendations for future surveys and provide a discussion in Sec-
tion 4.

2 Two sampling methods

In this section we present two commonly used mental link tracing designs.
Both of these designs begin with a (non-network) sample of respondents. These
respondents then answer questions about members of their social network who
are not directly observed. A key distinction between these methods and link
tracing designs is that network structure does not drive the recruitment of
survey respondents. Rather, the network structure impacts recruitment at the
second stage from each of many independent starting points. In the remainder
of this section we describe in detail two types of network data often collected
on standard surveys.

2.1 Aggregated Relational Data

In Aggregated Relational Data (ARD), respondents answer questions of the
form “How many X’s do you know?” for a group, X. Defining know defines the
relationship that forms the network of interest. We can make this relationship
diffuse by using a broader definition of know, more rigorous to capture a set of
more intimate acquaintances, or use a different relationship entirely, such as
trust to measure yet another network. The 2006 General Social Survey (GSS),
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Alter Gender White? Hispanic? Homeless? Diabetic? With first 
name 
Michael?

1 F Y N N Y N

2 M N Y N N N

3 M Y N N N Y
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Total 350 510 30 2 70 21

The unobserved complete demographic information 
about alters in ego i’s social network

Aggregated relational data (ARD)
Census of the entire ego’s network but summarized

Egocentric
Sample
Detailed but only a 
sample of the ego’s 
network

Fig. 1 A graphical representation of ARD and egocentric nominations.

which we analyze later, uses ARD questions using two relationships, knowing
and trusting. Knowing is defined in the following manner:

I’m going to ask you some questions about all the people that you are
acquainted with (meaning that you know their name and would stop
and talk at least for a moment if you ran into the person on the street
or in a shopping mall). Again, please answer the question as best you
can.

Given this network, “How many X’s do you know?” data are a type of network
sample. If respondents could recall perfectly from their network and had full
knowledge of all of the group memberships of all alters, then these data would
be “equivalent” to asking a respondent if they know each member of a partic-
ular group of alters. If every Michael in the US population were standing in a
room, for example, we could imagine asking the respondent if he/she has a tie
with each person in the room. Rather than reporting these ties individually
as in the complete network case, however, our data consist of only the total
number of links the respondent has with Michaels. The features of this design
are illustrated in Figure 2 where the respondent does not report information
about any particular alter but instead gives the total number of alters known
in each of the columns.
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The estimator typically used with ARD for the proportion of individuals
in a population that belong to a hard-to-reach group is, for a sample of size n,

R̂ARD =

∑n
i=1 xi∑n
i=1 d̂i

(1)

where xi is the number of people respondent i knows in the population of
interest and di is the personal network size (degree) of person i.

McCormick et al (2010) show that each response can be viewed as a bi-
nomial random variable with the number of trials being the number of alters
in the groups of interest and the probability being the ego’s degree over the
total population size. Since the degree (or the ego’s network size) itself needs
to be estimated, the variance of the subpopulation size estimator depends on
the variance of the the degree estimator.

The variance of the subpopulation size estimator also depends on the mean
degree of the sample, with higher average cluster sizes resulting in lower vari-
ance. In the case of ARD, degree is related to the definition of “know.” A more
stringent definition of know (trusting the alter with a loan of a large sum of
money, for example) will result in a lower average cluster size and a broader
definition will produce larger clusters. Since the underlying population remains
the same, using a broader definition of know will allow even more respondents
to be reached and mitigate the impact of the clustering. In practice, respon-
dents must accurately nominate members of the group of interest even as the
number of alters they are asked to consider increases.

2.1.1 Calibration bias

ARD asks respondents to perform a complicated psychological exercise, which
introduces potential sources of bias. One such source of bias comes from re-
spondents having difficulty recalling accurately the members of their network
who belong to a particular category. One way to conceptualize this bias would
be as respondent recalling inaccurately from their true personal network. This
phenomenon is difficult to quantify at the level of the individual respondent,
however. Instead, we conceive of calibration bias as a respondent recalling ac-
curately from a subset of their total personal network, their recalled network.
The level of misspecification between the true and recalled networks can then
be estimated at the population level based on discrepancies between estimates
using ARD and information on population sizes for populations with sizes
available from official sources.

Since the bias comes about from a mis-calibration between the ego’s actual
network and their recalled network, we refer to this bias as calibration bias.
Previous work (Zheng et al, 2006; Killworth et al, 2003) has noted that re-
spondents underrecall the number of people they know in large subpopulations
(e.g., people named Michael) and overrecall the number of people they know
in small subpopulations (e.g., people who committed suicide).
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2.2 Egocentric nominations

In contrast to ARD, which measure a (potentially) large subset of the ties
in the network indirectly, egocentric nominations measure a relatively small
number of ties in greater detail. These data collect a specific subset of ties sent
by the ego (respondent) and a small number of recipients, or alters. Typically,
respondents are asked to nominate a number of relations. For each person they
nominate the interviewer then asks follow-up questions about each alter.

The 2004 GSS includes questions which ask “From time to time, most
people discuss important matters with other people. Looking back over the last
six months–who are the people with whom you discussed matters important
to you? Just tell me their first names or initials.” Egocentric nominations
are also in practice related to cluster sampling. The egocentric nominations
use a sample of the ssus, rather than a census. In most cases this is not a
random sample, but rather is related to the strength of the tie of interest (a
common prompt asks for a respondent’s ”three best friends,” for example).
This truncation introduces an additional source of between-cluster variation.

We can again view the standard estimator for egocentric nominations as a
ratio estimator taking the form

R̂ego =

∑n
i=1 xi∑n

i=1 n
ego
i

.

Like the ARD estimates, the variance and bias of the egocentric nomi-
nation estimates depend on the number of respondents in the survey. Unlike
ARD, where respondents do a census of their local network, egocentric nomina-
tions have additional variability from the process by which respondents choose
which subset of potential alters to nominate. This process may be an addi-
tional source of bias which is not reflected in these computations, as described
subsequently.

2.2.1 Preferential nomination bias

To this point, we assumed that the respondents selected among potential alters
in a simple random sample. In practice, respondents likely select based on a
myriad of factors which may induce bias known as preferential recall bias.
If asked about their friends, for example, respondents may answer in order
starting with their “best” friends. These individuals may be different from
the others the respondent considers friends, inducing bias. Alternatively, the
respondent may answer based on the most recent contact. In both cases, these
issues will only impact the validity of the estimates if there is an association
between being a member of the group of interest and the sampling mechanism
(if living with HIV prevents one from becoming friends with some alters, for
example).
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3 Comparing efficiency in subpopulation size estimation

In this section we present three numerical studies which demonstrate the per-
formance of the two mental link tracing designs. In the first two examples, we
perform simulation experiments on two networks. The first example is a sim-
ulation study using a network simulated using the algorithm of Blitzstein and
Diaconis (2006). Using this network, we are able to manipulate various aspects
of the sampling mechanism and evaluate the effect on the resulting estimates.
The next two examples involve actual data from large networks. As a second
example, we use a network of friendships between Slashdot1 users. Using an
existing, large network provides insights into the performance of the method
under realistic circumstances. The third example uses actual ARD and Ego-
centric nomination questions from the 2004 and 2006 General Social Surveys.
Unlike the other two examples, the underlying network is not known in this
example and that ARD and egocentric nomination questions were fielded to
actual respondents, rather than being simulated from complete network data.
Since these are actual data, the various sources of bias previously described
cannot be intentionally manipulated.

3.1 Simulated network

We first present results using a simulated network. To simulate the network, we
used the sequential algorithm of Blitzstein and Diaconis (2006). This approach
involves choosing a vertex in each step and adding the edge such that the
residual degree sequence is still graphical. The algorithm starts with the degree
sequence, d, and add edges until the degree sequence is reduced to 0. We
generated a degree sequence following a lognormal distribution.

We began by simulating a network of size five-thousand. We then performed
the following:

1. Simulate hard-to-reach group membership with probability p.
2. Sample n nodes using a SRS.
3. (Under some set-ups) simulate recall issues and/or assortative mixing.
4. Poll the vertices connected to each selected node and compute N̂ego

k and

N̂ARD
k .

5. Repeat 300 times for each specification at various values of n and Nk.

In our simulation experiments, we use two different criteria to evaluate effi-
ciency. One is coefficient of variation of the root mean squared error (RMSE),
which is defined as the relative RMSE

RRMSE =

√
MSE(p̂)

¯̂p
=

√
1
m

∑m
l=1(p̂l − ¯̂p)2

¯̂p
,

1 Slashdot is a technology news blog. Slashdot recently introduced a feature, known as
Slashdot Zoo, which allows users to connect to one another as friends
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where m is the times of iteration. The smaller value of RRMSE, the more
efficient the method is.

Another criteria of efficiency is effective sample size neff, which is defined
as the size of simple random sample needed such that the variance of estimator
p̂ is the same as that of sampling method we use. Suppose that using simple
random sample method, we learn that x respondents belong to group X. In
our simulation experiments, x simply follows a Binomial distribution, that is,
x ∼ Binomial(neff, p), where p is the true infection probability. Therefore, the
estimator of p using simple random sample method (SRS), p̂SRS = x

neff
and

the variance of this estimator is V ar(p̂SRS) = p(1−p)
neff

. Therefore, the equation

p(1 − p)

neff
= MSE(p̂),

implies neff = p(1−p)
MSE(p̂) . The larger value of neff, the more efficient the method

is.

3.1.1 Calibration bias

A fundamental difference between the two designs is the number of alters
a respondent must consider when answering the question. In an egocentric
design, respondents only consider small sets of initially nominated alters. In
ARD, however, respondents mentally poll their entire network to count the
number of alters belonging to each population of interest, making calibra-
tion bias a common issue with ARD. In this section, we present results of a
simulation study which further explores the impact of calibration bias. For
these simulations, we assume membership in the hard-to-reach group is dis-
tributed randomly through the population and the propensity to form ties is
simply inversely proportion to the respondents’ degree. This simulation set-up
is simplistic with respect to network structure. This simplicity affords the op-
portunity to isolate the impact of calibration bias on the two estimates. and
confirm the results presented in the previous sections if the assumptions made
by the ratio estimators are valid.

To simulate calibration bias, we used a calibration curve developed by Mc-
Cormick and Zheng (2007). As mentioned in the previous section, we adopt
the interpretation interpretation of calibration bias where respondents answer
alternative questions based on their own restrictive definition of know which
defines the distinction between their actual and recalled personal networks.
Therefore, the size of the group of interest in the recalled network, N

′

k, is
smaller than the subpopulation size of people in the respondent’s actual per-
sonal network, Nk. The following calibration curve interpolates between the

actual and recalled networks, pk = Nk

N and p
′

k =
N

′
k

N :

p
′

k =

pk

[
b
pk

exp
(

1
a

(
1 −

[
b
pk

]a))]1/2
if pk ≥ b

pk if pk < b,
(2)
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where a > 0 and 0 < b < 1 are constants. The derivation of this curve is
detailed in McCormick and Zheng (2007), though the main features of the
curve are determined by the two parameters, a and b. The curve assumes near
perfect recall for small alter groups begins accounting for calibration bias at
a particular group size, b. The severity of the correction increases as the size
of the alter group increases with the rate of interest controlled by the second
parameter a. For the simulations in this section, we evaluated the performance
of the estimators at a variety of different levels of calibration bias and show
an illustrative subset of those results here.

We performed the simulation experiment described above for hypotheti-
cal hard-to-reach groups ranging from around .02% of the total population to
about .2%. We also evaluated a number of different sample sizes. Figures 3.1.1
and 3.1.1 are from the same simulation experiments and display the resulting
performance of the estimators in terms of RRMSE and effective sample size.
When there is no recall issue, ARD consistently outperforms the egocentric
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Fig. 2 A comparison of the performance of two different sampling methods. The gray
dashed line is the RRMSE of estimator using egocentric sampling method with egocentric
size 3. The black solid line represents for the RRMSE of estimator based on ARD method.

nominations. Taking recall error into consideration, egocentric method seems
to be better when subpopulation size is large while ARD method performs
better when subpopulation size is small. Additionally, based on effective sam-
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Fig. 3 A comparison of the performance of two different sampling methods. The gray
dashed line is the neff of estimator using egocentric sampling method with egocentric size
3. The black solid line represents for the neff of estimator based on ARD method.

ple size criteria, the line for egocentric method is flat, which implies that the
performance of efficiency of it does not depend on the subpopulation size.

3.1.2 Homophily

The second set of simulations incorporate calibration bias, but also add addi-
tional aspects of network structure. In the simulations in the previous section,
the propensity to form ties is simply the inverse of the degree of the ego. To
simulate homophily, we simulated two groups in the population and inflate
the propensity for tie formation for within-group interactions. Figure 3.1.2
repeats the simulation experiment from the previous section with homophily
being part of tie formation. We ran the simulations for a variety of levels of
homophily and present the two most extreme (with the lesser extreme being
the no-homophily case presented in the previous section) as an illustration.

Figure 3.1.2 displays the results for the simulations for a network with high
homphily. Comparing Figure 3.1.2 to Figure 3.1.1, we see a similar overall pat-
tern in the performance. The distinction, however, is that in Figure 3.1.2 both
designs perform worse than in Figure 3.1.1. Homophily, especially to such a
degree, causes clustering in the network. This clustering increases the discrep-
ancy between samples that include or do not include members of a certain
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cluster, thus increasing the variance of the estimates. Since this increase in
variance comes from the structure of the underlying network, not as a mani-
festation of the sampling mechanism we see an effect in all of the simulations
regardless of the presence of calibration bias.
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Fig. 4 A comparison of the performance of two different sampling methods in simulations
with high homophily. The gray dashed line is the RRMSE of estimator using egocentric
sampling method with egocentric size 3. The black solid line represents for the RRMSE of
estimator based on ARD method.

3.2 Slashdot Zoo

In the previous section, we used carefully controlled simulations to evaluate
particular aspects of the performance of estimators based on these two designs.
Regardless of the sophistication of a simulation, however, we cannot replicate
the complexity of an actual network. In this section we begin with a large
network and simulate our two sampling designs using the edges and structure
already present in the network. Our goal is to explore the variability of the
two designs’ estimators when there is an association between the structure of
the network and membership in the group of interest.

We use a snapshot of the website Slashdot, which is a technology news
website which features user and editor-evaluated technology news. Slashdot
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recently introduced a feature known as Slashdot Zoo, which is a social network-
ing component to the site that allows users to list one another as friends. These
data are from a snapshot of Slashdot Zoo obtained in February 2009 (Leskovek
et al, 2009). The network contains approximately 82, 000 nodes and about 948,
000 edges.
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Fig. 5 Boxplots showing performance using data from Slashdot Zoo. Each box represents
300 samples from the Slashdot Zoo data of size either 80 (about .1% of the population)
or 400 (about .5% of thepopulation). For each sample, we computed the size of the hard-
to-reach population using both egocentric and ARD designs. The red line represents the
hard-to-reach group size (.1% of the population).

As previously mentioned, many hard-to-reach groups are structurally re-
moved from the majority of society. This network property leads to highly
clustered communities made up almost entirely of members of the hard-to-
reach group and very few individuals who do not belong to the group. To
simulate this association on the Slashdot network, we first need to find the
individuals who have highly interconnected personal networks. We accomplish
this by, for every member of the network, first selecting the subgraph that
consists of the ego’s personal network. We then consider the edges between
members of the ego’s personal network (excluding the ego) and use these edges
to compute the average within-personal network degree of the nodes connected
to the ego. We selected the nodes with the top .1% average within personal
network degree and assign these nodes to be members of the hard-to-reach
group. The simulation then begins as in the previous section by selecting a
simple random sample of respondents and computing ratio estimators using
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both egocentric nominations and ARD. Figure 3.2 displays the results of the
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Fig. 6 Boxplots showing performance using data from Slashdot Zoo. Each box represents
results using 300 simulated samples of size 80 from the Slashdot Zoo network. WIth each
sample, we computed ARD estimates and egocentric nominations using either 5, 25, or 50
possible alters. The decrease in variability as the nomination size increases from 5 to 25
and then increase as it becomes closer to ARD indicates the interaction between increasing
(hypothetical) sample size and network structure. The red line represents the hard-to-reach
group size (.1% of the population).

simulation using two different sample sizes. Each box represents 300 samples
from the Slashdot Zoo data of size either 80 (about .1% of the population)
or 400 (about .5% of thepopulation). The overall variability in the estimates
decreases with increasing sample size, as expected. The variability appears
slightly higher in ARD for smaller samples and is about equal for both de-
signs in larger samples. The bias (as measured informally by the median in
the boxplot) appears to increase with larger samples. The variance in these
estimates is largely driven by the very high variance in the number of individu-
als known in the hard-to-reach group. Respondents who know members of the
hard-to-reach group likely know many, with it not being uncommon for some
respondents to have as much as three-fourths of their personal network made
up of members of the hard-to-reach group. In both case, the ratio estimators
only use the aggregate number reported across all of the sampled respondents
and cannot account for this variation. Thus, increasing the sample size does
reduce variation by including more hypothetical alters, but also increases the
likelihood of mentally recruiting a network member who is extremely highly
connected to the group of interest, causing bias.
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Figure 3.2 cements this point by narrowing the distance between egocen-
tric and ARD designs. Each bar in this figure represents a different number of
possible nominations for the egocentric design. Again, recall that these sim-
ulations do not account for preferential nomination bias. Moving from five
to twent-five nominations reduces the variance (though the larger number of
estimates which are 0 drives much of the variability) by increasing the num-
ber of mentally recruited individuals. As the number of nominations increases
towards the individuals’ personal network sizes (ARD), then the bias again
increases as the chances of recruiting highly connected individuals increases.

3.3 The 2004 and 2006 General Social Surveys

The General Social Survey is one of the flagship surveys at the National Opin-
ion Research Center (NORC). It started in 1972 and completed its 26th round
in 2006 and, with the exception of the U.S. Census, is the most frequently
analyzed source of information in the social sciences. The GSS does not use a
network-based sampling design. Both egocentric nomination and ARD ques-
tions have appeared on the GSS. Along with special topics modules, the GSS
contains a standard set of demographic and attitudinal questions.

The 2004 GSS asks egocentric nomination questions while the 2006 GSS
asks ARD. Along with asking respondents how many people they know, the
2006 data also ask respondents how many they trust. The definition of trust
is operationalized (DiPrete et al, 2011) and includes as one of its components
discussing important matters. The definition of trust used in the 2006 GSS is,
therefore, more similar to the prompt used to collect egocentric nominations
in the 2004 data than the definition of know. Since these questions were asked
only two years apart they provide an opportunity to compare the performance
of the two methods described here using data which have actually been used
by other authors to estimate population sizes. We compare the performance
of the two methods for estimating the racial breakdown of the US population.
The 2006 GSS asks respondents how many people they trust in four categories
(White, African American, Hispanic, and Asian) while the 2004 GSS asks the
race of each hypothetical alter (White, African American, Hispanic, Asian, or
Other). The racial breakdown of the population is a convenient example since
the sizes of the populations vary considerably but are reliably and widely
available from other sources. Questions asking about race also have smaller
transmission errors than other groups typically reached through mental link
tracing designs. These data were not designed to estimate the racial breakdown
of the US population, though using them for this purpose provides insights into
the benefits and shortcomings of this type of data. For the ARD estimators,
we use the total number of individuals reported in all of the categories as the
degree.

Figure 3.3 compares the results from the two estimators to commonly ac-
cepted demographic estimates. The egocentric nominations perform well over-
all with most estimates being within ten percent of the widely accepted esti-
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Estimation using egocentric nominations

Race of respondents

P
er

ce
nt

ag
e 

of
 d

iff
er

en
t r

ac
es

 o
f p

eo
pl

e 
tr

us
te

d

White Black Other

W
hi

te
B

la
ck

H
is

pa
ni

c
A

si
an

O
th

er

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Fig. 7 A comparison of the performance of two different sampling methods using data from
the 2006 and 2004 General Social Survey.

mates. The estimates using ARD are less compelling in this example. The poor
performance of ARD leads to insights regarding the data collection mechanism.
These data were collected using intervals (a respondent reports knowing 6-10
African Americans, for example). Using intervals is one way to alleviate the
burden on respondents of asking about larger categories. In this case, how-
ever, using intervals obfuscates the distinction between the number known by
a respondent among different races. The largest interval was “11 or more” and
the other large intervals chosen spanned three to five known. It is not possible,
therefore, to distinguish between a respondent who trusts 6 African Americans
and 10 Caucasians one who trusts 10 African Americans and 6 Caucasians.
Since even the smallest racial groups asked were still large, there were many
responses in the larger intervals. The need to estimate respondent degree only
adds to the issues caused by the intervals. A respondent who answers “6-10”
on each of the responses, for example, may have a total degree of 24 or 40.
Figures 3.3 and 3.3 presents the results using the ratio estimates described in
the previous sections. In these two figures the results are separated by the race
of the respondent and the race of the population of interest, demonstrating
the impact of this obfuscation. Each race of respondent in Figure 3.3 over-
estimates that number of individuals in the population in their racial group.
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Estimation using ARD method
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Fig. 8 A comparison of the performance of two different sampling methods using data from
the 2006 and 2004 General Social Survey.

This occurs as a result of preferential attachment within a race but is balanced
as the final estimate is the aggregate total for the population. In Figure 3.3,
however, the within-race overestimation is significantly reduced. Recall issues
undoubtedly also exacerbate the issues created by the intervals and again im-
pact both the number reported in the group of interest and the estimated
degree.

The exception to the reasonable performance of the egocentric estimator is
the estimated number of Asian individuals in the population. The egocentric
estimator gives the percent of Asians in the population at about 2%, while
the accepted population estimate is 4%. There are various potential reasons
for this underestimate which cannot be distinguished using this data. One
possible explanation involves an underlying assumption of both methods about
the networks of the hypothetical respondents. If, for example, the networks of
Asian Americans were overall smaller than the networks of other Americans,
we would expect both the egocentric and ARD estimators to underestimate
the proportion of individuals in that group in the population.



18

0
20

40
60

80
10

0

P
er

ce
nt

ag
e

White Black Hispanic Asian Other

●

●

●
●

●

Egocentric estimator
ARD estimator
True percentage

Fig. 9 A comparison of the performance of two different sampling methods using data from
the 2006 and 2004 General Social Survey.

4 Discussion and survey design recommendations

We compare two commonly used network-based methods for estimating the
sizes of populations which are difficult to reach using standard surveys. Using
the simulated and actual data experiments from the previous sections, we now
describe general guidelines which we hope will aid practitioners in deciding
how to incorporate mental link tracing designs to reach traditionally hard-to-
reach groups. First, as previously noted, both methods are susceptible to bias
due to particular types of network structure. We have discussed explicitly the
impact of assortative mixing. When certain demographic information is avail-
able about some groups, McCormick et al (2010) propose statistical models
to address the impact of assortative mixing in degree estimation and could be
used as a basis for future work with population size estimation.

Table 1 presents a summary of the advantages and limitations of these
methods. A major factor in deciding which of the methods to use is the type
of information researchers desire. Researchers interested in detailed informa-
tion about each of the hypothetical alters is better suited using egocentric
nominations, for example, since this method gives the opportunity to ask mul-
tiple questions about the same hypothetical alter. ARD in contrast, does not
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examine any of a respondent’s links directly and thus would not provide the
desired information in this context. Similarly, as noted in Table 1 if direct con-
tact with alters is necessary (for blood or DNA samples, for example), neither
method would be suitable. Combining this knowledge with insights gleaned

Table 1 Comparison of ARD and egocentric nominations.

Method Advantage Limitation
-“Reaches” more respondents. -Need to estimate degree.

ARD -Easily ask about multiple groups. -Susceptible to recall issues.
-Savings of time and resources. -Non-random mixing.

Both -Reach hard-to-reach groups through network. -No direct contact with group members.
-Detailed information about alters. -Preferential recall bias.

Egocentric -Less susceptible to recall issues.

from simulation, we also suggest that researchers consider the approximate
size of the group of interest when selecting a survey mechanism. ARD would
be most beneficial in cases where the group of interest is small. As noted in
Table 1, ARD reach the most hypothetical respondents. If a survey asks 1, 500
respondents ARD questions and each respondent has an average degree of 750,
for example, then the survey (indirectly) reaches 1, 500 × 750 ≈ 1.13million
respondents. ARD is known to be influenced by recall issues, however, so the
benefits to reaching additional population members decreases as the bias in-
troduced by recall issues increases. For larger groups, therefore, egocentric
nominations display better performance.

Researchers may also alter the way that egocentric or ARD questions are
posed to respondents to mitigate the influence of the limitations of each of the
methods. For ARD, for example, recall issues are potentially quite influential
for larger populations. As noted in Section 3.3, one approach to dealing with
recall issues is to give respondents intervals for responses. An alternative ap-
proach is to partition the group of interest into multiple, smaller groups (into
age categories, for example). This strategy scaffolds respondents to think sys-
tematically about the individuals they know in the group of interest and lessens
the chances of recall errors. This strategy does, however, take additional time.

For egocentric nominations, preferential nomination could cause bias if the
subset of individuals the respondent nominates are more or less likely to be-
long to the group of interest. To mitigate this bias, researchers could consider a
strategy which introduces randomness into the nominations process. Enumer-
ators could ask respondents to, for example, nominate only the hypothetical
alters who have a birthday in a particular month or have a name which begins
with a certain letter. The choice of how to perform the randomization would,
of course, require care and be context specific.

To this point, we have considered preferential nomination bias and calibra-
tion bias as though they are caused by two different underlying phenomena.
The two processes may be related, however. Specifically, both preferential nom-
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ination and calibration bias can be thought of as manifestations of the way
that respondents go about dredging their personal networks. One may imag-
ine a respondents’ propensity to nominate/count an alter as some latent pro-
cess (which will undoubtedly change as the ego’s relationship with the alter
changes and based on chance through things such as time since last interac-
tion) by which respondents dredge their network. Under both designs, there is
a truncation mechanism that excludes personal network members with lower
values of the process. In the case of ARD, this truncation varies based on re-
spondents’ ability and/or desire to dredge farther into his or her network. For
egocentric nominations, however, the truncation occurs at the same number of
respondents for each ego. This does not, however, mean that the level of bias
is necessarily equal across all of the egos since the variability between latent
processes across individuals is likely quite large.

Both methods also likely suffer from an additional source of bias through
transmission errors. Transmission errors occur when the respondent knows
someone in a specific subpopulation but is not aware that the person is actually
in that subpopulation. This type of error is particularly salient with disease
transmission (a person might know someone who is diabetic, for example, but
may not know the alter’s medical status). These transmission errors likely
vary from group to group depending on the sensitivity and visibility of the
information. These errors are extremely difficult to quantify, because very little
is known about how much information respondents have about the people they
know (Laumann 1969; Killworth et al. 2006; Shelley et al. 2006). Recent work
by Salganik et al (2011) provides some insights which could be used for future
statistical modeling.

The work in this paper also raises questions about the nature of realistic
simulations for network sampling. In our simulations, we chose to allow the
underlying network to remain fixed and introduce variability through the se-
lection of nodes. An alternative approach would be to simulate a new network
at each realization. This approach would then speak to the performance of the
estimators under variations of both network topology and sampling.

An additional point of discussion is the context-specific nature of any judge-
ment about the quality of an estimator. If the goal is estimating the number
of individuals living with HIV in a particular region to determine the number
of medications to order, for example, estimates which produce errors on the
order of tens of thousands of potential patients may be undesirable. This may
be the case even if the error rate for the proposed estimator is significantly
lower than those used previously.

The methods presented with the Slashdot Zoo data also provide insights.
Our novel method for assigning hard-to-reach group membership ensures an
association between membership in the hard-to-reach group and network struc-
ture. The method also makes an association between the network effects and
the size of the hard-to-reach group. Large hard-to-reach groups must have
smaller average within personal network degree. The Slashdot data in gen-
eral also has a very high number of hubs which, not surprisingly, also tend
to have very high mean within personal network degree. Though these hubs
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work to simulate the clustering that is likely seen in many hard-to-reach pop-
ulations, they also have a very large number of incoming ties, which is likely
not the case in a hard-to-reach population. This feature could be specific to
an online network where the hubs with many incoming ties serve a different
function than they would in a network in the physical world. In Slashdot,
these nodes could represent, for example, major news outlets. Many individ-
uals would likely wish to have a tie to the news source, though they may
not have much other direct communication. An above average degree distri-
bution of individuals in the hard-to-reach groups is precisely the phenomenon
which we suggested (hypothetically) to explain the under-estimation of Asians
in the GSS data. The increasing bias that comes with higher sample size in
these simulations studies should not be taken as evidence for smaller sam-
ples. Rather, this finding demonstrates the repercussions of network structure
when increasing the hypothetical sample size and motivates further statistical
work in methods for data from standard surveys which accommodate (or even
exploit) more complicated forms of network structure.
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