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Abstract

A key problem in understanding transcriptional regulatory networks is deciphering what cis regulatory logic is encoded in
gene promoter sequences and how this sequence information maps to expression. A typical computational approach to
this problem involves clustering genes by their expression profiles and then searching for overrepresented motifs in the
promoter sequences of genes in a cluster. However, genes with similar expression profiles may be controlled by distinct
regulatory programs. Moreover, if many gene expression profiles in a data set are highly correlated, as in the case of whole
organism developmental time series, it may be difficult to resolve fine-grained clusters in the first place. We present a
predictive framework for modeling the natural flow of information, from promoter sequence to expression, to learn cis
regulatory motifs and characterize gene expression patterns in developmental time courses. We introduce a cluster-free
algorithm based on a graph-regularized version of partial least squares (PLS) regression to learn sequence patterns—
represented by graphs of k-mers, or ‘‘graph-mers’’—that predict gene expression trajectories. Applying the approach to
wildtype germline development in Caenorhabditis elegans, we found that the first and second latent PLS factors mapped to
expression profiles for oocyte and sperm genes, respectively. We extracted both known and novel motifs from the graph-
mers associated to these germline-specific patterns, including novel CG-rich motifs specific to oocyte genes. We found
evidence supporting the functional relevance of these putative regulatory elements through analysis of positional bias,
motif conservation and in situ gene expression. This study demonstrates that our regression model can learn biologically
meaningful latent structure and identify potentially functional motifs from subtle developmental time course expression
data.
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Introduction

The mRNA expression level of a gene is regulated by multiple

input signals that are integrated by the cis regulatory logic encoded

in the gene’s promoter. Genes whose regulatory sequences contain

similar DNA motifs are likely to have correlated expression profiles

across a given set of experimental conditions. The converse,

however, is not necessarily true. That is, genes can have correlated

expression profiles without being coregulated, since multiple

regulatory programs may lead to similar patterns of differential

expression. This is particularly evident in developmental time

series data, in which the genes exhibit only a few distinct

expression patterns. Nevertheless, computational approaches for

deciphering gene regulatory networks from gene expression and

promoter sequence data often do assume that correlation implies

coregulation. For example, a typical computational strategy is to

cluster genes by their expression profiles and then apply motif

discovery algorithms to the promoter sequences for each cluster.

The cluster-first motif discovery approach is indeed so prevalent

that the best-known benchmarking study of motif discovery

algorithms [1] defines the problem in precisely this way – namely,

given a cluster of genes, find the overrepresented motif(s) in the

promoter sequences – and compares numerous such algorithms. It

is clear, however, that assigning genes to static clusters that are

assumed to be coregulated oversimplifies the biology of transcrip-

tional regulation. Moreover, in a setting where there are few

experiments probing the conditions of interest or where many

genes have synchronized expression profiles, such as in a time

course, clustering may fail to resolve meaningful gene sets for

subsequent motif analysis.

In the current work, we present an algorithm that models the

natural flow of information, from sequence to expression, to learn

cis regulatory motifs and to characterize gene expression patterns.

Our algorithm learns motifs that help to predict the full expression

profiles of genes over a set of experiments, with no clustering.

More precisely, we use a novel algorithm based on partial least

squares (PLS) regression to learn a mapping from the set of k-mers

in a promoter to the expression profile of the gene across

experiments; in time series, we learn k-mers that help to predict

the full expression time course for genes. PLS combines

dimensionality reduction and regression; it iteratively finds latent

factors in the input space with maximal covariance with

projections in the output space. We introduce a graph-regularized

version of the PLS algorithm to enable motif discovery by
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imposing two constraints: a lasso [2] constraint for sparsity and a

graph Laplacian constraint for smoothness over sequence-similar

motifs. Our novel graph-regularized PLS algorithm can be used in

any situation where the input features are related by a graph

structure. Here, the graph structure is defined on the feature space

of k-mers, with edges connecting pairs of similar k-mers. Our

approach is motivated by recent machine learning work that uses

the graph Laplacian to exploit graph structure in various ways, for

example, by defining a graph over training examples in semi-

supervised classification (Laplacian SVM [3]) and clustering

(spectral clustering [4]) as well as imposing graph smoothness on

features of an SVM classifier [5].

Our focus in this study is discovering regulatory elements and

deciphering transcriptional regulation in the nematode Caenorhab-

ditis elegans, a key model organism in developmental biology. In

particular, we are interested in using mRNA profiling experiments

from developmental time courses, where the high global level of

correlation presents a challenge to clustering. Dissection of gene

regulatory logic is not as advanced in C. elegans as it is in D.

melanogaster, for example. There are few motif discovery programs

designed specifically for worms, and while worm biologists do use

generic programs such as MEME [6], traditionally they have

relied on experimental strategies to define binding motifs and then

performed genome-wide motif searches and validation with

transgene reporters. One goal of our work is to advance this area

of inquiry by defining novel elements and providing new

opportunities for directed experimental validation.

As a demonstration of our method, we applied our graph-

regularized PLS algorithm to an expression time course for

wildtype germline development in C. elegans [7]. We found that the

first and second PLS latent factors mapped to expression profiles

for oocyte and sperm genes, respectively. In each iteration of our

approach, we learn sequence information in the form of a ‘‘graph-

mer’’, i.e. a graph where vertices are k-mers, weighted by their

contribution to the latent factor, and edges join k-mers that are

close in Hamming distance. To parse the motif graphs into

component motifs, we applied a graph module discovery

algorithm followed by hierarchical agglomeration to produce

position specific scoring matrices (PSSMs) from the weighted k-

mers. Applying this procedure to the significant latent factors

generated a collection of known and novel oocyte- and sperm-

specific motifs, including novel CG-rich motifs associated with

oocyte expression trajectories. One graph-mer derived sperm

motif was a bHLH binding site motif and exhibited spatial bias in

the promoters of sperm genes but not non-sperm genes. The

functional relevance of the CG-rich motifs was supported by

strong conservation between C. elegans and C. briggsae and was

associated with germline-specific in situ expression patterns. This

study gives an interesting proof of principle for using PLS

regression models for transcriptional regulation in developmental

time series.

Results

Learning graph-mer motifs and corresponding
expression trajectories

In order to learn the correspondence between (sets of)

regulatory motifs in the promoter sequences of genes and gene

expression trajectories over a time course, we posed a regression

problem: using a training set of G genes, learn a linear mapping

from the vector of counts of k-mer occurrences in a gene’s

promoter to the gene’s time course expression profile. This model

can then be used to predict expression from sequence on held-out

genes, and k-mer features that are highly weighted in the model

should represent important regulatory motifs. Here we have a very

high-dimensional input space of motifs (k-mers) as well as a

multivariate output space, both of which rule out use of ordinary

least squares regression. Instead, our algorithm makes use of a

partial least squares (PLS) regression strategy. PLS is a well-known

statistical technique for fitting linear models when the input space

is high dimensional [8] and has both univariate and multivariate

formulations.

Standard PLS represents the input data as a motif matrix X
(dimension G|M, where M is the number of k-mers),

representing k-mer counts for each gene’s promoter, and the

gene expression matrix by Y (dimension G|E, where E is the

number of experiments), and then it performs two basic steps (see

Methods for more details):

1. Construct K weight vectors w1 � � �wK in RM and corresponding

latent factors t1 � � � tK in RG , where the weight vectors are

chosen so that the latent factors have maximal covariance with

directions in Y. The latent factors define a reduced dimensional

representation of the promoter sequence data.

2. Regress Y against the latent factors using ordinary least squares

(or ridge) regression. The latent factor dimensionality reduction

followed by linear mapping to Y yields the final mapping from

sequence to expression.

PLS algorithms typically work iteratively, so that each round i
generates a new latent factor, and the number of rounds K is

chosen by cross-validation to minimize the square loss function in

the regression problem.

Here, we are most interested in what PLS tells us about the

covariance structure between X and Y and how to interpret this

information in terms of sequence motifs and expression patterns.

In particular, along with K weight vectors wi in the input motif

space, PLS determines corresponding vectors ci in the output

expression space, defined so that cov(Xwi,Yci) is maximal

(Figure 1). Intuitively, each weight vector wi corresponds to a set

of motifs (k-mers) that helps explain expression patterns in the

direction ci. The components of the vector wi that have large

Author Summary

A major challenge in functional genomics is to decipher
the gene regulatory networks operating in multi-cellular
organisms, such as the nematode C. elegans. The
expression level of a gene is controlled, to a great extent,
by regulatory proteins called transcription factors that bind
short motifs in the gene’s promoter (regulatory region in
the non-coding DNA). In a temporal regulatory process, for
example in development, the ‘‘regulatory logic’’ of DNA
motifs in the promoter largely determines the gene’s
expression trajectory, as the gene responds over time to
changing concentrations of the transcription factors that
control it. This study addresses the problem of learning
DNA motifs that predict temporal expression profiles,
using genomewide expression data from developmental
time series in C. elegans. We developed a novel algorithm
based on techniques from multivariate regression that sets
up a correspondence between sequence patterns and
expression trajectories. Sequence motifs are represented
as graphs of sequence-similar k-length subsequences
called ‘‘graph-mers’’. By applying the method to germline
development in C. elegans, we found both known and
novel DNA motifs associated with oocyte and sperm
genes.

Learning Motifs that Predict Gene Expression
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positive weights are the k-mers that most strongly predict the

expression pattern ci.

To obtain a more interpretable model, we mathematically

imposed two additional requirements on the PLS solution. First, we

wanted the weight vectors wi to be sparse, i.e. we wanted relatively

few k-mers to have non-zero components, so that the algorithm

produces a small number of hopefully functional motifs. Second, for

each weight vector wi, we wanted sequence-similar k-mers to have

similar weights, since such k-mers may represent variants of the

same binding site and potentially should contribute in the same way

to the linear model. We achieved the first goal by adding a lasso

constraint to the PLS optimization problem (see Methods, equation

(4)). For the second goal, we defined a graph on the set of k-mers,

joining two k-mers by an edge exactly when they are close in

Hamming distance, and imposed a graph Laplacian constraint to

obtain smoothness over the graph (see Methods, equation (7)).

Incorporating these constraints into a multivariate PLS approach

yields a new algorithm that we call graph-regularized PLS.

With these additional constraints, we can view the motif vectors

wi as ‘‘graph-mers’’ – weighted graphs over k-mers, where highly

weighted dense clusters in the graphs correspond to important

sequence-similar k-mer sets, or motifs. Figure 1 illustrates the

mapping between motif weight vectors, interpreted as graph-mers,

and corresponding expression patterns, arising from the latent

factors found in graph-regularized PLS. Intuitively, we can think

of each vector ci as the expression pattern driven by the positively

weighted k-mers in wi, that is, the common expression trajectory

displayed by genes containing these motifs. This correspondence

will be important for interpreting regulatory motifs in worm

germline development below.

Graph-mer modeling for germline development in worm
We applied our graph-regularized PLS regression algorithm to

time series gene expression data for wild-type germline develop-

ment in worm C. elegans [7]. This data set consists of a time course

beginning in the middle of the third larval stage (L3) and extending

through adulthood. During this time, the major developmental

changes occur in the germ line. Some germ cells undergo constant

proliferation, while others initiate developmental events, including

entry into meiosis followed by differentiation into sperm, which

occurs in the fourth larval stage, or differentiation into oocytes,

which occurs in young adults. By the end of the timecourse,

animals have produced mature gametes and launched embryo-

genesis. Twelve samples were collected at 3-hour intervals with 3

replicates for each sample. Basic microarray data normalization

was performed in the original study, and we used the normalized

gene expression levels as reported (Gene Expression Omnibus,

http://www.ncbi.nlm.nih.gov/geo/, accession numbers GSE726-

GSE737). We averaged expression levels over replicates for 20,000

genes and calculated the 5% and 95% quantile of all expression

values. We filtered out genes with baseline expression (defined here

as having expression values between the 5% and 95% quantiles at

all time points) and also ones that exhibit little variance in

expression over time (SDv0:1). After further removing genes

without upstream sequences from WormMart, we obtained the

gene expression matrix for *9,000 genes and 12 time points.

We downloaded promoter sequences spanning 500 bp up-

stream of transcription start sites from WormMart. For genes

whose upstream intergenic sequence is shorter than 500 bps, we

used the intergenic sequences instead of 500 bps upstream. We

scanned the promoter sequences for candidate 6-mers and 7-mers,

Figure 1. Mapping between motif weight vectors and experiment weight vectors. At each iteration i of the modified PLS algorithm,
i~1 . . . K , weight vectors wi and ci are derived by finding latent factors ti and ui with maximal covariance. For clarity, subscripts i are omitted in the
diagram and in the rest of the description. Each weight vector w is a vector in RM , where M is the number of k-mers used as input to the algorithm.
Due to graph-regularization, each weight vector is sparse, i.e. most k-mers have weight 0, and smooth over a graph connecting sequence-similar k-
mers, i.e. similar k-mers get assigned similar weights. Therefore, we can visualize the weight vector as a ‘‘graph-mer’’, a graph where nodes
correspond to k-mers with high positive weights and edges connect sequence-similar k-mers (bottom left). At each iteration, the PLS procedure sets
up a correspondence between the motif weight vector w and a weight vector over expression experiments represented by vector c. In our setting,
the series of expression experiments is a time course, and the vector c can be viewed as an expression pattern or trajectory (bottom right). Intuitively,
we can think of the set of k-mers shown in the graph-mer as driving the expression pattern c. Roughly speaking, the model predicts that genes
containing these k-mers will have expression patterns that correlate with c; more precisely, the full regression model predicts gene expression
patterns using all K latent factors.
doi:10.1371/journal.pcbi.1000761.g001

Learning Motifs that Predict Gene Expression
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and filtered k-mers based on expected counts in background

sequences (see Methods).

Regularized PLS predicts held-out gene expression
We performed 10-fold cross-validation experiments, randomly

splitting genes into test and training sets with 10% of the data

assigned to test data. Figure 2A illustrates the normalized mean

squared error (see Methods, equation (1)) on the cross-validation

test sets versus number of latent factors for both standard and

graph-regularized PLS. Here, the mean squared error obtained

with zero latent factors (i.e. the variance of the test data) is

normalized to 1, so that cross-validation errors below 1 indicate

that the model is explaining part of the variance of the held-out

data. Figure 2A shows the average mean squared error across the

cross-validation folds with the standard deviation over folds

indicated with error bars. The minimal cross-validation error

with standard PLS is obtained with four latent factors. Graph-

regularized PLS appears to be more resistant to overfitting, with

slightly lower cross-validation error at four latent factors and no

substantial increase in error as the number of latent factors

increases. Again, cross-validation error suggests that four latent

factors should be used in the model. As a negative control, we

randomly paired promoter sequences with expression profiles, so

that we used real expression data and promoter sequences but lost

the correspondence between sequence and expression, and we

performed standard PLS and graph-regularized PLS . As can be

seen from Figure 2A, both standard PLS and graph-regularized

PLS on randomized data overfit with the very first latent factor,

indicating that the performance obtained on the real data is

meaningful.

Latent factors map to germline-specific expression
trajectories

By analyzing separate microarray expression data from germ-

line mutants, the previous study also identified two gene sets

consisting of sperm and oocyte genes [7], which we used in our

analysis of the wild type developmental gene expression profiles.

First, we estimated the prediction error on each gene set as shown

in Figure 2B. Clearly, the first and second latent factors account

for the largest loss reduction for oocyte and sperm genes,

respectively. To show that the first two factors dominate these

two gene sets, we first examined the expression profiles of the two

gene sets. In PLS, each weight vector ci gives the weights over time

points and can be interpreted as an expression pattern, and genes

significantly influenced by the latent factor tend to follow this

expression pattern. We plot the oocyte gene expression profiles

together with c1 and sperm gene expression profiles with c2 in

Figure 3A and 3B. The gene expression profiles are strongly

correlated with the corresponding weight vectors, indicating that

the first two factors are able to retrieve the expression patterns of

these two gene sets, respectively. Furthermore, we used functional

enrichment analysis to confirm that the genes identified based on

correlation with weight vector by these two factors are indeed

enriched for oocyte and sperm genes, respectively (Figure S1(A,B)).

Interpretation of motif weight vectors
In PLS, each weight vector wi corresponds to a set of motifs (k-

mers) that help to explain expression patterns in the direction ci.

The k-mers with largest coefficients in wi are the most important

variables for predicting the projection of the expression patterns of

genes onto ci. To identify motifs relevant for sperm and oocyte

gene sets, we selected the top 50 k-mers ranked by w and

examined the k-mer graphs corresponding to the first two latent

factors. Clusters in the graph that are identified by MCODE [9]

represent motif patterns and hierarchical sequence clustering is

performed to generate corresponding PSSMs. Figures 4A and 5A

show the graph-mer representation of the top 50 k-mers, motif

patterns and PSSMs for the first two factors.

From the second factor, we successfully found the ELT-1

(‘erythrocyte-like transcription factor’) motif GATAA and bHLH

(‘basic helix-loop-helix’) motif ACGTG, as shown in Figure 4A.

The ELT-1 protein is a transcriptional activator that can recognize

Figure 2. Normalized mean squared error on cross-validation test data. (A) Normalized mean squared error versus number of latent factors
for standard PLS and graph-regularized PLS on real and randomized data. The mean squared error obtained with zero latent factor is normalized to 1.
Computed standard deviations of squared error across cross-validation sets are plotted as error bars. For the real cross-validation data, standard PLS
overfits after the 4th factor; graph-regularized PLS is more resistant to overfitting than standard PLS. As expected, when trained and tested on
randomized data, both standard and graph-regularized PLS overfit with the very first factor. (B) Normalized mean squared error of sperm and oocyte
gene sets for graph-regularized PLS. The first and second factors dominate oocyte and sperm genes respectively in terms of largest chi-square
reduction.
doi:10.1371/journal.pcbi.1000761.g002
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the GATA motif, is highly expressed in the germ line, and has as

potential targets a number of genes encoding major sperm proteins

[10]. The bHLH proteins act through E-box elements with

consensus CANNTG; the canonical E-box is CACGTG. bHLH

proteins have been found to act at the E-box and influence

hormone-induced promoter activation in mammalian Sertoli cells,

which are required to maintain the process of spermatogenesis

[11]; however, this motif has not previously been associated with

spermatogenesis in C. elegans.

For the first latent factor, the top ranked motifs are CG-rich

sequences as shown in Figure 5A, which are highly enriched in

oocyte gene promoters (Figure S2), suggesting a potential role in

oogenesis or regulation of oocyte gene expression. We found

further evidence supporting the functional relevance of learned

motifs for the first two latent factors by performing gene set

enrichment analysis, which showed that oocyte and sperm gene

sets are enriched in the corresponding k-mer hits (Figure S1(C,D)).

Positional bias and conservation of motifs
Since functional motifs sometimes exhibit a spatial bias in the

promoter region – for example, overrepresentation close to the

transcription start site (TSS) – we performed positional analysis of

top ranked motifs by examining their distance to the TSS in sperm

genes versus non-sperm genes. We observed that the sequence

element ACGTG displayed strong positional bias towards the TSS

of sperm genes. Figure 4B plots the distribution of distance of

ACGTG to TSS in sperm genes versus non-sperm genes, showing

that ACGTG is found far more frequently within 200bp upstream

of the TSS of sperm genes but displays a fairly uniform distribution

relative to TSS in non-sperm genes. This result indicates that motif

ACGTG was significantly overrepresented immediately upstream

of sperm genes, giving us additional confidence in the motif’s

contribution to sperm gene expression.

To look for evidence of the functional roles of CG-rich and

other highly weighted motifs, we considered conservation patterns

of these sequences. Caenorhabditis briggsae is closely related to C.

elegans and is frequently used in comparative genomics studies in

worm. One expects that motifs responsible for a biological

function that is shared by the two species, such as oogenesis,

would be under evolutionary pressure and therefore conserved in

the promoter regions of orthologous genes contributing to this

function. We studied the conservation of all k-mers between the

two species and found that highly ranked k-mers, where rankings

are induced by the 1st and 2nd factor, tended to be more

conserved in the oocyte genes and sperm genes, respectively.

Specifically, we computed the motif conservation score (MCS) [12]

of each k-mer by comparing its conservation rate p to its expected

rate p0, estimated using 500 random k-mers of the same length. A

conserved occurrence of a k-mer is an instance of the k-mer in the

C. elegans genome, for which it is also present in the C. briggsae

ortholog. We reported MCS as a Z-score (MCS~
L{Np0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Np0(1{p0)

p )

measuring the significance of observing L conserved occurrences

out of total N occurrences. To assess the significance of inferred k-

mers for oocyte and sperm gene sets, we focused on motif

conservation in sperm and oocyte genes relative to non-sperm and

non-oocyte genes. To do this, we computed the MCS of each k-

mer in both oocyte genes and non-oocyte genes, and we plotted

the distribution of the difference of these two MCS scores for top

50 ranked k-mers in the w1 versus remaining k-mers, as shown in

Figure 5B, bottom panel; similarly, Figure 5C shows the difference

of the MCS scores for sperm genes and non-sperm genes for the

top 50 ranked k-mers in w2 versus the remaining k-mers. For both

oocyte and sperm gene sets, the score distribution for the top 50 k-

mers has a heavy right tail relative to other k-mers, showing that

the top k-mers have higher oocyte- and sperm-specific conserva-

tion. To confirm the significance of this observation, we performed

a one-sided Kolmogorov-Smirnov (KS) test and found that the

rightward shift was highly significant in both cases (pv3:0e-13 and

pv1:9e-5 for oocyte and sperm k-mers, respectively). The k-mers

that are most significantly conserved in oocyte and sperm genes,

relative to non-oocyte and non-sperm genes, are also annotated in

Figure 5B and 5C; these include the ACGTG motif for sperm

genes and CG-rich k-mers for oocyte genes.

Targets of CG-rich motifs are expressed in the germline
Relatively little is known about transcriptional regulation of

oocyte genes. To gain additional evidence supporting a functional

role for learned motifs, we examined the in situ expression patterns

of genes enriched with those motifs. We searched for a subset of

EST (expressed sequence tag) clones known as YK clones of each

gene in WormBase (http://www.wormbase.org) and looked at in

situ expression patterns at the L4-adult stage associated with each

YK clone in the Nematode Expression Pattern Database

(NEXTDB http://nematode.lab.nig.ac.jp/db2/index.php).

The in situ analysis provides direct evidence about where the

genes are expressed, and we expect that genes highly ranked by

motif hits are more likely to be germline expressed. To obtain a

Figure 3. Correlation of germ cell expression patterns and PLS expression weight vectors. Oocyte and sperm gene expression patterns
are strongly correlated with c1 and c2, respectively. (A) Oocyte gene expression versus c1 . (B) Sperm gene expression versus c2 .
doi:10.1371/journal.pcbi.1000761.g003

Learning Motifs that Predict Gene Expression
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ranked gene list for each of the three motifs in Figure 5A, we first

defined the gene group associated with the first factor based on TU
values (see Methods). For each motif, we ranked genes within the

gene group by counts of k-mers of that motif and came up with a

list consisting of top *80 genes. Table 1 summarizes the in situ

expression patterns of genes associated with motif 1 (GGCGC),

motif 2 (GCGCG) and motif 3 (ACCGTA). We split each gene list

into two groups, those already known to be oocyte genes, and

genes with high motif scores not already defined as oocyte genes.

For each group, Table 1 shows number of genes examined; the

number of genes with an in situ pattern; and percentage of genes

expressed in germline tissues only, in both germline and somatic

tissues, and somatic tissues only.

Over all three motifs, 7% of the genes have detectable in situ

staining. Of those, an average of 78% stain only in the germ line,

and with more than 80% of genes previously identified as oocyte

genes staining in the germ line.

More than 70% of genes that had not previously been identified

as oocyte genes (based on mutant expression profiling) were also

dominantly expressed in germline tissues rather than somatic

tissues. In the study that defined the oocyte and sperm gene sets [7],

about 20% of genes that were not identified as oocyte or sperm had

the germline expression by in situ analysis. Table 1 shows that for the

genes that were associated with oocyte motifs 1, 2 and 3 via latent

factor analysis – but had not previously been identified as oocyte

genes – 37/52, 43/55, and 38/62 showed germline expression. All

these proportions are very significantly higher than the background

percentage of 20% (pv8:0e-16 for all motifs by a proportions test).

These results provide additional evidence that we are learning

functional motifs that contribute to germline expression.

Figure 4. Sperm motifs determined by graph-mer analysis and positional bias of motif ACGTG. (A) Sperm motifs extracted from graph-
mer output. The graph-mer consisting of the top 50 k-mers ranked by w2 . Graph motif patterns identified in the form of k-mer clusters using the
MCODE plug-in [9] in Cytoscape are shown in different colors, with each subgraph summarized by a PSSM generated through hierarchical sequence
agglomeration of the corresponding k-mers. Both the ELT-1 motif GATAA and the bHLH motif ACGTG are found in this way. (B) Distribution of
distance of motif ACGTG to TSS (measured in base pairs) in sperm genes versus non-sperm genes. Motif ACGTG occurs more frequently within 200bp
upstream of the TSS in sperm genes relative to non-sperm genes, giving us more confidence in its contribution to sperm gene expression.
doi:10.1371/journal.pcbi.1000761.g004

Learning Motifs that Predict Gene Expression
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Comparison with principal component analysis
Principal component analysis (PCA) is a widely used dimen-

sionality reduction technique that extracts from the data matrix a

sequence of orthogonal vectors, or principal components, that

capture the directions of maximal variance in the input data. PCA

is frequently used on either rows (genes) or columns (experiments)

of a gene expression matrix for visualization or preprocessing prior

to other kinds of analysis [13]. By contrast, PLS is a supervised

method that, in our context, determines weight vectors ci as

directions in gene expression space having maximal covariance

with latent factors in motif space. Both PCA components and PLS

weight vectors are interpreted as gene expression patterns.

However, principal components are learned from gene expression

data only, while weight vectors ci are found based on a linear

mapping from motif space to gene expression space.

We were interested in comparing our (graph-regularized) PLS

results with standard PCA in order to assess the value added by the

motif information and supervised learning formulation. We

anticipated some concordance of results, since directions that

capture little variance in the expression data will also fail to have

significant covariance with motif latent factors. Figure 6A and 6B

plot the first four PCA components versus PLS weight vectors.

Figure 5. Oocyte motifs determined by graph-mer analysis and conservation of graph-mer derived oocyte and sperm motifs. (A) Top
50 k-mers ranked by the weight vector w1 , depicted as a graph-mer, which are associated by the PLS procedure to the expression pattern of oocyte
genes. Graph motif patterns were identified in the form of k-mer clusters using the MCODE plug-in in Cytoscape. PSSMs generated through
hierarchical sequence agglomeration of the corresponding k-mer sets are indicated, revealing several CG-rich motifs. (B) Analysis of oocyte k-mer
conservation using the motif conservation score (MCS). The plot shows the distribution of (oocyte MCS{non-oocyte MCS) for top 50 k-mers versus
remaining k-mers in w1. The score distribution for the top 50 k-mers has a heavy right tail, showing that as a distribution, the top 50 k-mers have
higher oocyte-specific conservation scores as compared to other k-mers (pv3:0e-13 by a one-sided KS statistic). Significantly conserved k-mers are
annotated, including CG-rich k-mers for oocyte genes. (C) Distribution of (sperm MCS{non-sperm MCS) for top 50 k-mers versus remaining k-mers
in w2. The score distribution for the top 50 k-mers has a heavy right tail, showing that the top 50 k-mers have higher distribution of sperm-spefic
conservation scores than other k-mers (pv1:9e-5, one-sided KS statistic). Significantly conserved k-mers are annotated, including ACGTG motif for
sperm genes.
doi:10.1371/journal.pcbi.1000761.g005
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The first and second PCA components indeed bear some similarity

to the first and second PLS weight vectors and to some extent

resemble the oocyte and sperm gene expression patterns,

respectively. Since these two gene sets are fairly large and follow

distinct expression patterns, they account for a significant portion

of gene expression variance, and so it is not surprising that the first

PCs show correlation with these patterns. However, all the

principal components are less smooth, as expression trajectories,

than their corresponding PLS weight vectors, and the smoothness

of the PCs deteriorates more rapidly than in PLS as the number of

principal components/latent factors increases. It therefore appears

that PLS uses motif information to provide some degree of

regularization on the weight vectors, leading to smoother

expression patterns corresponding to latent factors.

To confirm that the PLS-derived motifs could not be

determined from analysis of the first and second principal

components (PC1 and PC2), we performed the following motif

discovery procedure: we identified the sets of genes that are highly

correlated with PC1 and PC2, and ran the AlignACE motif

discovery program on the promoters of these genes, yielding 58

and 89 motifs, respectively (see Text S1). In both cases, the top-

ranked motifs were dominated by AA-rich and GG-rich motifs

that likely come from low complexity regions (Figure S5). A few

CG-rich motifs appear in the AlignACE list for PC1, but with

relatively low MAP scores; only one motif from the list for PC2

matches any of the PLS-derived sperm motifs, and it occurs low in

the ranking (rank = 33) with relatively weak MAP score. We

conclude that analysis of the principle components does not

retrieve the full motif information discovered by the PLS latent

factors. This result underscores the importance of our predictive

framework, mapping sequence to expression, rather than relying

on correlation with expression and performing motif analysis after

the fact.

Since the third and fourth PLS latent factors represent much

smoother and quite different expression patterns than their PCS

counterparts, we examined whether the genes associated to these

factors based on motif and expression similarity (see Methods) may

have common functions. While there were few genes associated to

the fourth PLS factor (18 genes) showed no enrichment for GO

terms, the gene set for the third PLS factor was significantly

enriched for 54 GO terms (using a threshold of pv1e-4,

uncorrected hypergeometric people), of which the majority

involved metabolism (32/54) and almost half of these were specific

to amino acid metabolism (15/54). These genes are not enriched

Table 1. In situ analysis of genes enriched with CG-rich motifs.

Motif
Previously identified
as oocyte genes # genes

# genes with in
situ pattern

% Germline
only

% Germline &
somatic

% Somatic
only

Motif 1 yes 29 28 71% 7% 5%

(GGCGC) no 52 37 73% 8% 13%

Motif 2 yes 31 25 80% 4% 4%

(GCGCG) no 55 43 74% 14% 5%

Motif 3 yes 26 16 94% 0% 0%

(ACCGTA) no 62 38 76% 10% 0%

For each graph-mer derived motif, we identified the set of genes associated to the motif based on latent factor analysis (see Methods). Each gene list was further split
into two sets: genes that had been previously identified as oocyte genes based on mutant expression data and those not identified as oocyte genes by this previous
analysis. The table shows the number of genes associated to the motif; the number of genes having an in situ pattern in the NEXTDB database; and genes expressed in
germline tissues only, in both germline and somatic tissues, and somatic tissues only as a percentage of genes with an in situ pattern. The results show that even among
genes not previously identified as oocyte genes, more than 70% of genes examined were dominantly expressed in germline tissues rather than somatic tissues. This
percentage is much higher than seen overall for genes that were not previously called oocyte or sperm without considering motif information (20%), suggesting a
functional role of CG-rich motifs in germline expression.
doi:10.1371/journal.pcbi.1000761.t001

Figure 6. Comparison of PCA components and PLS expression weight vectors in gene expression space. The first and second principal
components bear some similarity to corresponding PLS weight vectors ci , i~1,2, but all principal components are less smooth than in PLS. (A) PCA
identifies the first four directions (PC1, PC2, PC3 and PC4) that have maximal variance in gene expression space. Principal components are plotted v.s.
time. (B) Graph-regularized PLS learns weight vectors (c1 , c2 , c3 and c4) based on a linear mapping from motif space to gene expression space. Weight
vectors are plotted vs. time.
doi:10.1371/journal.pcbi.1000761.g006
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for germline expression, suggesting that our analysis has uncovered

an independent co-regulation of a set of gene functions that might

have been swamped out by the stronger germline information

using other techniques.

Comparison with clustering
Finally, we compared our results with standard cluster-first

analysis, using hierarchical clustering to identify 5 distinct gene

clusters and applying the AlignACE motif discovery program to

the promoters of each cluster in order to find over-represented

motifs (Text S1). We identified two clusters (Clusters 1, 2) with

subtly different expression patterns both resembling the expression

signature of oocyte genes and one cluster (Cluster 3) similar to the

sperm gene expression signature (Figure S6(A,B,C)). AlignACE

returned lists of 47, 53 and 36 motifs for these three clusters, and

as in the principal component analysis, the top ranked motifs in all

cases were dominated by low-complexity AA-rich and GG-rich

motifs (Figure S6(D,E,F)). A handful of low-ranked motifs with

relatively poor MAP scores for Clusters 1 and 2 resembled two of

the CG-rich k-mers identified through the first PLS latent factor;

for Cluster 3, none of the AlignACE motifs were similar to the

sperm-specific k-mers identified by the second PLS latent factor

(Text S1). We conclude first that PLS avoids many presumably

spurious motifs from low complexity regions while finding true

germline-specific motifs that are missed through standard cluster-

based analysis.

Discussion

There have still been relatively few methods that integrate

mRNA expression and promoter sequence data beyond ‘‘cluster-

first’’ motif discovery. Beer and Tavazoie [14] similarly sought to

reverse the information flow implied by clustering, to see how well

motif content could predict expression patterns; in their case,

however, expression patterns were identified with static clusters,

motifs were discovered based on these clusters, and the learning

task was the prediction of cluster membership rather than vector-

valued expression profile. Ernst et al. [15] proposed a time-

ordered hierarchical model for integrating motif and time series

expression data, where motifs were associated with up/down

bifurcations of expression profiles at particular time points; this

method used static motif data rather than learning motifs. Segal

et al. [16] combined promoter sequence and expression data

within a probabilistic relational models framework to learn

‘‘modules’’ supported by both data sources; rather than learning

motifs de novo, the algorithm was seeded with database motifs

which could then be refined during expectation-maximization

iterations. In our own previous work on the MEDUSA algorithm

[17], we discretized expression data and used a boosting-based

algorithm to discover motifs and assemble a regulatory program

that predicts up/down expression of target genes. MEDUSA is

well-suited to perturbation experiments and performs well even for

small perturbation data sets [18]. In the current setting, where

expression levels in consecutive time points are highly correlated

and expression trajectories are smooth over time, discretizing the

expression levels incurs a significant loss of signal, which we avoid

by moving to a regression framework.

There have been several other regression based motif discovery

approaches related to our work. For example, REDUCE [19] was

the original method to use correlation between k-mers and

differential expression for motif discovery. REDUCE, however,

uses each experiment independently, where we use multivariate

PLS to treat full expression trajectories as the output space. To

weight the benefits of regression with a multivariate output, we also

tried fitting a separate graph-regularized univariate PLS model on

each time point separately. We found that multivariate PLS

outperforms univariate PLS (Figure S3), suggesting that correlating

motifs with full expression patterns is more statistically accurate than

performing regression one experiment at a time, at least in the case

of correlated experiments such as time series data. Moreover, there

was substantial overlap in the motif information inferred from

nearby time points (see Text S1), showing that fitting a separate

model for each time point entails a good deal of redundancy.

More recently, Zhang et al. [20] used PCA to define a basis of

univariate response variables in the output space and then

performed a REDUCE-like regression onto each variable to

collect a set of motifs. In our work, by doing multivariate

regression, we retain more structure in the solution, for example, a

stratification of the output space by images of latent factors, each

one corresponding to a characteristic time expression profile. We

also note that lasso regression has been used elsewhere for learning

regulatory networks in bacteria using time course expression data

[21], and standard PLS has been used with a collection of known

motifs in linear modeling of expression data in yeast and bacteria

[22]. Finally, graph-based motif representations have been used

previously by other groups, for example Naughton et al. [23], but

this work again falls into the ‘‘cluster-first’’ category in that it seeks

to find overrepresented motifs for a predefined gene set. By

contrast, we learn motifs via a global regression problem, and the

graph structure is encoded as a constraint on the solution.

A number of recent studies have expanded beyond the linear

regression framework by introducing various kinds of non-

linearity. First, various authors have extended standard linear

models by proposing that certain sets of motifs have synergistic

effects. For example, a synergistic pair of TFs can be modeled by

including a term in the regression model for each of the individual

motif counts as well as a third term for the product of the counts,

as recently reviewed [24]. However, introducing too many of these

additional non-linear terms greatly increases the risk of overfitting;

for a typical pair of TFs, the count of co-occurrences is simply too

sparse to estimate the synergistic parameter. These models require

careful feature selection strategies; moreover, they mostly assume

that the motifs are known and fixed, whereas we are performing de

novo motif discovery. Second, motivated by biochemical models,

several studies propose that the relationship between motif counts

or TF occupancy scores (in the case of PSSMs) and log expression

change is not linear and make use of a non-linear transfer function.

Recent work using a probabilistic framework to predict the 1D

anterior-posterior positioning of expression ‘‘stripes’’ in the early

Drosophila embryo from cis regulatory module (CRM) sequences

can be seen as an elegant example of this idea [25]. In this case, a

logistic transfer function converts occupancy scores, computed

from the space of configurations of TFs in the CRM, into sharp

stripe boundaries. In our setting, however, we are learning from

microarray expression data, which gives average (and noisy)

measurements over a large population of cells with large

underlying variation of expression levels. It is unclear whether

mRNA expression data allows us to observe and model

biochemically-expected non-linearity in this situation. Third,

when confronted with a multi-variate response, such as in time

series expression profiles, some authors have used a model where

each motif count/occupancy score contributes linearly to the

expression pattern at each time point (as we do) but the time points

are connected by use of non-linear basis functions such as splines

[26]. However, we find that the smoothness of the PLS-derived

expression patterns comes for free as a result of the regularization

choices in our method, so in our hands the smoothness prior did

not seem to be statistically necessary.
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Finally, our method can be applied to even more sparsely

sampled time series covering a broader range of developmental

stages. As a proof-of-principle, we applied graph-regularized PLS

to a full life cycle C. elegans developmental time course consisting

whole-animal gene expression profiles from egg to adult [27] (see

Text S1). In this setting, the first latent factor contained germline-

specific motifs similar to the ones found in the analysis of our main

data set, while the next second and third latent factors were

associated with more diverse biological functions (Figure S4).

These results suggest that our approach can discover the structure

of gene regulatory programs, in the form of latent factors

corresponding to sequence patterns and expression trajectories,

at a range of developmental time scales.

Materials and Methods

Standard partial least squares regression
Since our algorithm builds on ideas from PLS regression, we

first describe how to use standard PLS to iteratively learn a linear

mapping from the promoter sequences of genes, as represented by

their k-mer counts, and their mRNA expression profiles. Formally,

using a training set of G genes, PLS takes a motif matrix X
(dimension G|M, where M is the number of k-mers),

representing the individual k-mer counts for each gene, and a

gene expression matrix by Y (dimension G|E, where E is the

number of experiments). Here, the columns of X represent the

independent variables (features) and the columns of Y are the

response variables; we also call X the input matrix and Y the

output matrix. PLS then performs the following steps:

a. Scale X and Y so that each column of the input and output

matrices has zero mean and unit variance.

b. Perform dimensionality reduction by construction of latent

factors T~XW: Construct K weight vectors, placed as column

vectors in W (dimension M|K ), and corresponding latent

factors, placed as column vectors in T (dimension G|K ),

where the weight vectors are chosen so that the latent factors

have maximal covariance with directions in the multivariate

response Y.

c. Use the latent factors T to predict Y: Regress Y against the

latent factors using ordinary least squares (or ridge) regression,

Y&TQT , Q~YT T(TT T){1:

d. Obtain the matrix B of regression coefficients:

Y&XB, B~WQT~W(TT T){1TT Y:

We split genes into test and training sets for cross validation

experiments. Training data including motif matrix X and gene

expression matrix Y were used to learn matrix of regression

coefficients B. And we assessed predictive power of PLS on test

data Ytst and Xtst by normalized mean squared error (NMSE):

NMSE~
E((XtstB{Ytst)

2)

E((Ytst{Ytst)
2)

ð1Þ

where E(:) denotes the expected value and Ytst~E(Ytst).
PLS not only provides a solution to the regression problem, but

it also describes the covariance structure between X and Y. It

constructs K weight vectors wi in the input space RM and

corresponding vectors ci in the output space RE , where

cov(Xwi,Yci) is maximal. Intuitively, each weight vector wi

corresponds to a set of motifs (k-mers) that helps explain

expression patterns in the direction ci. The k-mers with largest

coefficients in wi are the most important variables for predicting

the projection of the expression patterns of genes onto ci.

SIMPLS algorithm
There are a number of variants of PLS, each of which defines

and solves an optimization problem for constructing the weight

matrix W. We use the SIMPLS (Statistically Inspired Modification

of PLS) algorithm [28], which optimizes an objective function

defined on the matrix YT X. The latent factors ti,i~1, . . . ,K in T

are sequentially built by estimating weight vectors wi as follows:

For i~1, . . . ,K :

a. Maximize the covariance between ti and Y:

wi~argmaxwcov(Y,t)2~argmaxwwT XT YYT Xw ð2Þ

where wi is a unit vector.

b. Impose orthogonality constraints tT
i tj~wT

i XT Xwj~0 for all

j~iz1, . . . ,K , by deflating YT X:

YT X~YT X{vi(v
T
i YT X) ð3Þ

where (i) If i~1, vi~norm(XT ti).

(ii) If iw1, vi~norm(XT ti{V(VT XT ti)) V~½v1,:::,vi{1�.

Regularized partial least squares regression
We now modify the PLS algorithm with the dual goals of (1)

making the solution more interpretable and (2) regularizing the

optimization problem, to reduce overfitting. We impose two

constraints to achieve these goals. First, we use a lasso (L1)

constraint [2] to promote sparsity in the weight vectors wi, that is,

drive the weights for many k-mers to zero. Sparsity is clearly

attractive since fewer k-mers contribute to the solution, making it

easier to identify the most important motifs. The lasso constraint

over coordinates wp of weight vector w takes the form:

DDwDD1~
XM
p~1

DwpDƒb1 ð4Þ

For the second constraint, we want sequence-similar k-mers to

have similar coefficients in the weight vectors, so that a group of

similar k-mers are more likely to act as a single motif pattern in the

regression problem. We define a graph structure on the k-mers

where we place an edge p*q if the Hamming distance between

the pair of k-mers p and q is less than threshold s. Since k-mers

represent potential binding sites in double-stranded DNA, here we

take the distance between two k-mers p and q to be the minimum

of the Hamming distances d(p,q) and d(p,rc(q)), where rc(q) is the

reverse complement of q. We then impose a smoothness constraint

in the form of the graph Laplacian [29], as described below. The

Laplacian matrix L~(Lpq) for an unweighted graph is defined as

Lpq~

deg qð Þ if p~q,

{1 if p is adjacent to q,

0 otherwise:

8><
>:

ð5Þ
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where deg (q) denotes the degree of k-mer q, the number of edges

that connect k-mer q with other k-mers. If we write w~(wp) [RM

as a column vector and view it as a function on the graph – i.e. a

function that assigns a weight wp to each vertex p – then we can

use the graph Laplacian to compute a quadratic form on w that

satisfies the relationship [30]:

wT Lw~
X
p*q

Dwp{wqD2: ð6Þ

Equation (6) shows that this quadratic form measures the smoothness

of w with respect to the graph: the quadratic form is small when

the function’s values vary smoothly over adjacent nodes, so that

the weights for sequence-similar k-mers are close in value.

Therefore, the second constraint that we impose is precisely on

the size of the quadratic form, enforcing smoothness on the weight

vector w:

wT Lwƒb2: ð7Þ

A pseudocode description of the graph-regularized PLS

algorithm is given in Figure 7.

Filtering k-mer features
k-mer features with very sparse genome-wide counts are

unlikely to improve the loss function – since they only only in a

handful of promoters – and can contribute to overfitting. In order

to eliminate k-mers with infrequent counts prior to training, we

filtered the k-mer feature set based on expected counts on

background sequences. We constructed the background sequences

by shuffling exon sequences 100 times and ranked k-mers by the

Z-score [31]: Zm~
L{Npffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Np(1{p)

p , where L is the number of the

k-mer in all promoter sequences, N is the length of all shuffled

exon sequences, and p~
Lb

N
is number of the k-mer in all shuffled

exon sequences divided by N. (Note that shuffled intergenic

sequences could also be used to generate the random model.) We

kept the top 3000 k-mers and built the motif matrix containing

counts of k-mers in promoter sequences. We found that this

filtering step significantly improved cross-validation performance.

Hierarchical sequence agglomeration
For each latent factor t, we rank k-mers by their components in

the corresponding weight vector w and perform motif analysis on

the top 50 k-mers. Those k-mers are first displayed in the form of

a motif graph via Cytoscape [32], in which an edge between two

k-mer nodes indicates similarity. We used the MCODE Cytoscape

Plugin [9] to find k-mer clusters (highly interconnected sets of

sequence-similar k-mers) in the graph. Each k-mer cluster

represents a motif pattern consisting of slightly different k-mers.

Finally we perform a hierarchical sequence agglomeration

algorithm to generate position-specific scoring matrices (PSSMs)

for k-mer clusters. Within each k-mer cluster, each k-mer is

treated as a seed PSSM (using background nucleotide probabilities

Figure 7. Pseudocode for graph-regularized PLS. A pseudocode description of the iterative PLS procedure, enforcing sparsity and Laplacian
constraints on motif weight vectors.
doi:10.1371/journal.pcbi.1000761.g007
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for smoothing), and then the algorithm iteratively merges similar

PSSMs until a single PSSM is learned as the binding site model.

A position-specific scoring matrix (PSSM) is represented by a

probability distribution p(x1,x2,:::,xn) over sequences x1x2:::xn,

where xi [ fA,C,G,Tg. The emission probabilities are assumed to

be independent at every position such that p(x1,:::,xn)~
Pn

i~1 pi(xi).

When comparing two PSSMs p and q, we allow offsets between

their starting positions. We pad either the left or right ends with

the background distribution and then define a distance measure

d(p,q) as the minimum over all possible position offsets of the JS

entropy.

d(p,q)~ min
offsets
½hpDKL(pDhppzhqq)zhqDKL(qDhppzhqq)�, ð8Þ

where DKL is the Kullback-Leibler divergence. Given that the

position-specific probabilities are independent, one can easily show

that DKL(pDq)~
Pn

i~1 DKL(pi Dqi). The relative weights of the two

PSSMs, hp and hq, are here defined as hp,q~Np,q=(NpzNq),

where Np,Nq are the numbers of target genes for the given PSSM.

The initial PSSMs are k-mers and the number of target genes are

the number of promoter sequences with the k-mer occurrence.

The number of target genes for the newly merged PSSM will be

the number of target genes combined for the two old PSSMs.

Assigning genes to latent factors
To extract biological information from the algorithm output, we

analyzed latent factors for potential gene groups and correspond-

ing biological functions. To do that, we assigned each gene g to the

gene group associated with a factor i based on TU values. Here,

the matrix T (respectively, U) is formed by placing vectors ti

(respectively, ui) for latent factors i~1 . . . 5 as column vectors

(Figure 1). The value Tgi indicates how well wi captures the k-mer

profile of gene g, and the value Ugi measures the similarity

between ci and expression profile of gene g. In contrast to

traditional clustering, which only relies on gene expression to

group genes, we integrate both sequence and gene expression

information in learning potentially functional gene sets. For each

gene g, we computed TgjUgj across all factors and chose factor i
with the maximum value:

i~argmaxjTgjUgj, j~1 . . . 5 subject to Tgi,Ugiw0:

Since we suspected that only large TgiUgi values indicated

strong association of a gene g with factor i, we assigned gene g to

factor i only when TgiUgi was in the top 20% of all TU values.

Although we use K~4 latent factors in our model, here we

compute the representation with five factors, reasoning that if a

gene is assigned to the 5th factor, it should not be included in our

main analysis.

Supporting Information

Figure S1 Correspondence between first and second latent

factors and sperm and oocyte genes. (A,B) The set of all genes is

split into oocyte and non-oocyte genes, or sperm and non-sperm

genes, and the empirical cumulative distribution of correlation

with ci, i = 1,2 is plotted. Oocyte and sperm genes are enriched

towards the top of the gene expression correlation distribution.

(C,D) The set of all genes is split into oocyte and non-oocyte genes,

or sperm and non-sperm genes, and the corresponding empirical

cumulative distributions of hits of top 50 k-mers in wi, i = 1,2 are

plotted. Oocyte and sperm genes are enriched in k-mer hits

corresponding to the 1st and 2nd weight vectors.

Found at: doi:10.1371/journal.pcbi.1000761.s001 (3.03 MB TIF)

Figure S2 Correlation of weights with significance of enrich-

ment in oocyte and sperm genes for the k-mers from 1st and 2nd

graph-mer respectively. We plot the weights of k-mers in the first

motif weight vector versus the 2log10(p-value) for the enrichment

of these k-mers in oocyte and sperm genes, as computed by the

hypergeometric distribution. (A) For oocyte genes, 2log10(p-value)

is moderately correlated with w1 (Pearson coefficient = 0.65), and

k-mers highly ranked by w1 had p-values between 10216 and 1024.

This enrichment supports the functional relevance of PLS-derived

k-mers from the first factor in oocyte genes. (B) For sperm genes,

2log10(p-value) is somewhat correlated with w2 (Pearson coeffi-

cient = 0.35), though the correlation is weaker than that of oocyte

genes.

Found at: doi:10.1371/journal.pcbi.1000761.s002 (0.42 MB TIF)

Figure S3 Normalized mean squared prediction error on cross-

validation test data. (A) Normalized mean squared error versus

number of PLS iterations for standard univariate and multivariate

PLS. At each iteration, standard univariate PLS learns twelve

latent factors, corresponding to the twelve individual time points,

while multivariate PLS learns one latent factor for all time points.

Univariate PLS yielded a slightly lower test error than that of

standard multivariate PLS after the 1st iteration; however, after

one iteration, the univariate PLS corresponds to a collection of

motif sets, each predicting a single experiment’s gene expression

changes, while multivariate PLS uses a single motif set to predict

full gene expression trajectories. (B) Normalized mean squared

error on test data by time point after the 1st univariate PLS

iteration. Normalized mean squared error versus time point on all

genes, oocyte and sperm gene sets. Univariate PLS reaches lowest

prediction error on oocyte gene set at late time points when oocyte

gene expression peaks. Similarly, prediction error on sperm gene

set is small at middle time points when sperm gene expression

peaks. Each time-specific univariate PLS models the motif-

expression correspondence for the gene set differentially expressed

at the given time point.

Found at: doi:10.1371/journal.pcbi.1000761.s003 (0.40 MB TIF)

Figure S4 Latent factor analysis reveals graph-mers, expression

patterns and significant associations of gene annotations. For each

latent factor (i = 1…3), an associated mini graph-mer, extracted

motif patterns and gene group are shown; annotations that are

significantly enriched in each gene group are listed at the right

(p,.001, uncorrected hypergeometric p-value), with p-values and

number of genes associated with each annotation.

Found at: doi:10.1371/journal.pcbi.1000761.s004 (2.02 MB TIF)

Figure S5 Motifs found by AlignACE in genes correlated with

PC1 and PC2. (A) Top 40 AlignACE motifs in genes correlated

with PC1 sorted by MAP score. Top ranked AA-rich and GG-rich

motifs may result from low complexity regions, and several PCA

motifs with relatively low MAP scores (e.g. MAP = 147.05, 90.77,

80.93) are similar to PLS 1st factor motifs. (B) Top 40 AlignACE

motifs in genes correlated with PC2. Only one motif (MAP

score = 101.03) is similar to our PLS sperm gene motif ACGTG

from 2nd weight vector. None of the other PCA motifs matched

any of the PLS 2nd factor motifs.

Found at: doi:10.1371/journal.pcbi.1000761.s005 (7.58 MB TIF)

Figure S6 Motifs found by AlignACE in different gene clusters.

(A) Expression patterns of genes in Cluster 1. (B) Expression

patterns of genes in Cluster 2. (C) Expression patterns of genes in

Cluster 3. (D) Top 40 AlignACE motifs found in Cluster 1 genes.
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(E) Top 40 AlignACE motifs found in Cluster 2 genes. (F) All 35

AlignACE motifs found in Cluster 3 genes.

Found at: doi:10.1371/journal.pcbi.1000761.s006 (10.87 MB TIF)

Text S1 Supplementary results

Found at: doi:10.1371/journal.pcbi.1000761.s007 (0.08 MB PDF)
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