Theses Doctoral

On Black-Box Complexity and Adaptive, Universal Composability of Cryptographic Tasks

Dachman-Soled, Dana

Two main goals of modern cryptography are to identify the minimal assumptions necessary to construct secure cryptographic primitives as well as to construct secure protocols in strong and realistic adversarial models. In this thesis, we address both of these fundamental questions. In the first part of this thesis, we present results on the black-box complexity of two basic cryptographic primitives: non-malleable encryption and optimally-fair coin tossing. Black-box reductions are reductions in which both the underlying primitive as well as the adversary are accessed only in an input-output (or black-box) manner. Most known cryptographic reductions are black-box. Moreover, black-box reductions are typically more efficient than non-black-box reductions. Thus, the black-box complexity of cryptographic primitives is a meaningful and important area of study which allows us to gain insight into the primitive. We study the black box complexity of non-malleable encryption and optimally-fair coin tossing, showing a positive result for the former and a negative one for the latter. Non-malleable encryption is a strong security notion for public-key encryption, guaranteeing that it is impossible to "maul" a ciphertext of a message m into a ciphertext of a related message. This security guarantee is essential for many applications such as auctions. We show how to transform, in a black-box manner, any public-key encryption scheme satisfying a weak form of security, semantic security, to a scheme satisfying non-malleability. Coin tossing is perhaps the most basic cryptographic primitive, allowing two distrustful parties to flip a coin whose outcome is 0 or 1 with probability 1/2. A fair coin tossing protocol is one in which the outputted bit is unbiased, even in the case where one of the parties may abort early. However, in the setting where parties may abort early, there is always a strategy for one of the parties to impose bias of Omega(1/r) in an r-round protocol. Thus, achieving bias of O(1/r) in r rounds is optimal, and it was recently shown that optimally-fair coin tossing can be achieved via a black-box reduction to oblivious transfer. We show that it cannot be achieved via a black-box reduction to one-way function, unless the number of rounds is at least Omega(n/log n), where n is the input/output length of the one-way function. In the second part of this thesis, we present protocols for multiparty computation (MPC) in the Universal Composability (UC) model that are secure against malicious, adaptive adversaries. In the standard model, security is only guaranteed in a stand-alone setting; however, nothing is guaranteed when multiple protocols are arbitrarily composed. In contrast, the UC model, introduced by (Canetti, 2000), considers the execution of an unbounded number of concurrent protocols, in an arbitrary, and adversarially controlled network environment. Another drawback of the standard model is that the adversary must decide which parties to corrupt before the execution of the protocol commences. A more realistic model allows the adversary to adaptively choose which parties to corrupt based on its evolving view during the protocol. In our work we consider the the adaptive UC model, which combines these two security requirements by allowing both arbitrary composition of protocols and adaptive corruption of parties. In our first result, we introduce an improved, efficient construction of non-committing encryption (NCE) with optimal round complexity, from a weaker primitive we introduce called trapdoor-simulatable public key encryption (PKE). NCE is a basic primitive necessary to construct protocols secure under adaptive corruptions and in particular, is used to construct oblivious transfer (OT) protocols secure against semi-honest, adaptive adversaries. Additionally, we show how to realize trapdoor-simulatable PKE from hardness of factoring Blum integers, thus achieving the first construction of NCE from hardness of factoring. In our second result, we present a compiler for transforming an OT protocol secure against a semi-honest, adaptive adversary into one that is secure against a malicious, adaptive adversary. Our compiler achieves security in the UC model, assuming access to an ideal commitment functionality, and improves over previous work achieving the same security guarantee in two ways: it uses black-box access to the underlying protocol and achieves a constant multiplicative overhead in the round complexity. Combining our two results with the work of (Ishai et al., 2008), we obtain the first black-box construction of UC and adaptively secure MPC from trapdoor-simulatable PKE and the ideal commitment functionality.



  • thumnail for DachmanSoled_columbia_0054D_10313.pdf DachmanSoled_columbia_0054D_10313.pdf application/pdf 613 KB Download File

More About This Work

Academic Units
Computer Science
Thesis Advisors
Malkin, Tal G.
Ph.D., Columbia University
Published Here
August 1, 2011