Academic Commons

Theses Doctoral

The Hull-Strominger system in complex geometry

Picard, Sebastien F.

In this work, we study the Hull-Strominger system. New solutions are found on hyperkahler fibrations over a Riemann surface. This class of solutions is the first which admits infinitely many topological types. Next, we study the Fu-Yau solutions of the Hull-Strominger system and their generalizations to higher dimensions. We solve the Fu-Yau equation in higher dimensions, and in fact, solve a new class of fully nonlinear elliptic PDE which contains the Fu-Yau equation as a special case. Lastly, we introduce a geometric flow to study the Hull-Strominger system and non-Kahler Calabi-Yau threefolds. Basic properties are established, and we study this flow in the geometric settings of fibrations over a Riemann surface and fibrations over a K3 surface. In both cases, the flow descends to a nonlinear evolution equation for a scalar function on the base, and we study the dynamical behavior of these evolution equations.

Files

  • thumnail for Picard_columbia_0054D_14538.pdf Picard_columbia_0054D_14538.pdf application/pdf 1.18 MB Download File

More About This Work

Academic Units
Mathematics
Thesis Advisors
Phong, Duong H.
Degree
Ph.D., Columbia University
Published Here
April 13, 2018
Academic Commons provides global access to research and scholarship produced at Columbia University, Barnard College, Teachers College, Union Theological Seminary and Jewish Theological Seminary. Academic Commons is managed by the Columbia University Libraries.