Academic Commons

Theses Doctoral

Detecting Dependence Change Points in Multivariate Time Series with Applications in Neuroscience and Finance

Cribben, Ivor John

In many applications there are dynamic changes in the dependency structure between multivariate time series. Two examples include neuroscience and finance. The second and third chapters focus on neuroscience and introduce a data-driven technique for partitioning a time course into distinct temporal intervals with different multivariate functional connectivity patterns between a set of brain regions of interest (ROIs). The technique, called Dynamic Connectivity Regression (DCR), detects temporal change points in functional connectivity and estimates a graph, or set of relationships between ROIs, for data in the temporal partition that falls between pairs of change points. Hence, DCR allows for estimation of both the time of change in connectivity and the connectivity graph for each partition, without requiring prior knowledge of the nature of the experimental design. Permutation and bootstrapping methods are used to perform inference on the change points. In the second chapter of this work, we focus on multi-subject data while in the third chapter, we concentrate on single-subject data and extend the DCR methodology in two ways: (i) we alter the algorithm to make it more accurate for individual subject data with a small number of observations and (ii) we perform inference on the edges or connections between brain regions in order to reduce the number of false positives in the graphs. We also discuss a Likelihood Ratio test to compare precision matrices (inverse covariance matrices) across subjects as well as a test across subjects on the single edges or partial correlations in the graph. In the final chapter of this work, we turn to a finance setting. We use the same DCR technique to detect changes in dependency structure in multivariate financial time series for situations where both the placement and number of change points is unknown. In this setting, DCR finds the dependence change points and estimates an undirected graph representing the relationship between time series within each interval created by pairs of adjacent change points. A shortcoming of the proposed DCR methodology is the presence of an excessive number of false positive edges in the undirected graphs, especially when the data deviates from normality. Here we address this shortcoming by proposing a procedure for performing inference on the edges, or partial dependencies between time series, that effectively removes false positive edges. We also discuss two robust estimation procedures based on ranks and the tlasso (Finegold and Drton, 2011) technique, which we contrast with the glasso technique used by DCR.

Subjects

Files

  • thumnail for Cribben_columbia_0054D_10939.pdf Cribben_columbia_0054D_10939.pdf application/pdf 5.73 MB Download File

More About This Work

Academic Units
Statistics
Thesis Advisors
Lindquist, Martin A.
Degree
Ph.D., Columbia University
Published Here
September 12, 2012
Academic Commons provides global access to research and scholarship produced at Columbia University, Barnard College, Teachers College, Union Theological Seminary and Jewish Theological Seminary. Academic Commons is managed by the Columbia University Libraries.