
Expanding the Repertoire

of Process�based Tool Integration

� MS Thesis �

Technical Report CUCS�������

Giuseppe Valetto

Department of Computer Science

Columbia University

��� West 	��th St

New York� N
Y

	����

Thesis Committee� Professors Gail E
 Kaiser and Kathy McKeown

November �� 	���

Abstract

The purpose of this thesis is to design and implement a new protocol for Black Box tool en�
veloping� in the context of the Oz Process Centered Environment� as an auxiliary mechanism
that deals with additional families of tools� whose character prevents a thoroughly satisfac�
tory service by the current encapsulation method� We mean to address interpretive and query
systems� multi�user collaborative and non�collaborative tools� and programs that allow incre�
mental binding of parameters after start�up and storing of intermediate and�or partial results�
Our goal is to support a greater amount of interaction between multiple human operators�
the tools and the environment� in the context of complex software development and manage�
ment tasks� During the realization of this project� we introduced several concepts related to
integration of Commercial O��The�Shelf tools into Software Development Environments� an
approach based on multiple enveloping protocols� a categorization of tools according to their
multi�tasking and multi�user capabilities� the ideas of loose wrapping �as opposed to the usual
tight wrapping	 and of persistent tools �with respect to the duration of a single task	� and
a functional extension of some intrinsically single�user applications to a �limited	 form of
collaboration�

c����� Giuseppe Valetto

� Introduction

Software Development Environments �SDEs� typically rely on a set of tool programs in order

to provide their desired functionality and to perform those operations necessary to the devel�

opment and maintenance of software artifacts� While the principles on which such systems

are built upon	 their architectures and their use can greatly vary	 the need to integrate tools

and exploit them for the users
 purposes is a common trait of SDEs ��� �����

Integration issues include among others� building a facility for the environment	 in order

to invoke the tools at will and�or when needed� establishing a dialogue between the tool and

the system	 in order to issue commands and fully access the tool
s functionality� providing

a mechanism to extract selected objects	 including �les	 from the environment	 manipulate

them from within the tool and return them to the SDE data management facility� retrieving

�les that are newly created by the tool and integrating the new objects into the environment
s

data repository� mapping and conversion between the environment
s and the program
s own

data models�

Tool integration can be achieved in many di�erent ways	 largely dependent on the require�

ments on the environment
s functionality and	 consequently	 on its design�

Some of the most widely used approaches are�

� The de�nition of a tool family dedicated to the environment	 accordingly to its speci�

�cations and structure� this custom toolset is intended to provide in itself most of the

power	 functions and �exibility of the SDE� Such a choice involves a tradeo� between

a high degree of e�ciency	 simplicity of design and compactness and uniformity of the

system on the one hand	 and limited generality of use and high cost of upgrade and

expansion of the environment on the other hand�

� The modi�cation of pre�existing external programs	 in order to equip them with an

interface that enables dialogue between the tools and the SDE� Such changes to the

programs
 structure are less expensive than the implementation of an �ad hoc� tool

family	 account for higher �exibility and easier expandibility of the environment and

are usually achieved with limited and repetitive modi�cations of their code� Neverthe�

�

less	 the sources must be available to the SDE developers � a perhaps insormountable

hurdle when integrating commercial products from independent vendors� A very pop�

ular approach along these lines is the use of a message passing protocol managed by a

dedicated centralized server	 which controls and dispatches the data sent by di�erent

parts of the environment and by the modi�ed tools� all of these components are aug�

mented with a module that appropriately creates	 sends	 receives and processes such

messages� In such systems	 the message�passing facility and the interfaces modules

�commonly referred to as a message bus or broadcast message server� constitute the

component of the system in charge of the integration� In other systems	 procedural

calls inserted in the code of the external programs play the same role as the message

bus and enable communication with the SDE�

� The encapsulation of generic	 unmodi�ed commercial o��the�shelf �COTS� tools with

an envelope or wrapper	 a mechanism provided by the SDE and able to interface the

external programs with the environment and its users	 possibly in a transparent fashion

both for the users and the tools� Envelopes	 whatever their implementation may be	

must conceptually provide the ability to extract data from the internal representation of

the SDE	 present them to the wrapped program	 manage control and data input�output

to and from the tool and execute the desired activities� The concept of envelopes has

been introduced and exploited for the �rst time in the Istar SDE ����� Such an approach	

which in theory allows for the greatest �exibility	 is commonly referred to in the SDE

community as tool enveloping and the generality of the wrapping mechanism is its

crucial trait� however	 it is highly unlikely to come up with a general�purpose method

that can encapsulate any chosen program� Most systems employing envelopes rely

on some assumptions on the nature of the tools that are useful and needed for that

environment	 to guide their conceptual design and practical implementation�

The main concern of this work is to investigate some options for tool enveloping in the

context of Process Centered Environments �PCEs� ���� ����� These are a class of SDEs that

rely on a built�in process modeling formalism �e�g� a dedicated language� to de�ne	 enforce

and support a variety of customizable software processes� PCEs o�er the modeling facility

and a framework to carry on the functionalities needed by those activities that are part of

the range of processes they can describe� Once any process is designed and installed in a

PCE	 it becomes the core of the environment and de�nes its goals	 functionality	 interaction

with the data and the users and its boundaries� When a new process is loaded	 the behavior

of the environment changes accordingly	 giving to the PCE class enhanced �exibility over

SDEs that maintain a �xed built�in model of operation�

In the following sections	 we discuss in more detail tool enveloping for PCEs� moreover	

we outline some issues relevant to building wrappers for various classes of tools and examine

the di�erent options� we also present an implementation of envelopes for long�lived	 large

size	 interpretive and multi�user tools in the context of the Oz ��� ��� PCE	 being developed

by the Programming Systems Laboratory of Columbia University�

� Motivation

Among the characteristic features of PCEs is their modularity and most speci�cally the

replacibility of the process model loaded inside their central engine� Typical PCEs can be

seen as made by a frame consisting of a number of components that o�er the primary	 kernel

functions and services in a uniform fashion	 and by a customizable core	 the process	 that

can be designed	 loaded and enacted by some of the facilities included in the abovementioned

frame�

By modifying the process de�nition	 the system can be used in many di�erent scenarios

and for various software activities� However	 it is recognized that the ability of a PCE to

support numerous classes and instances of processes depends primarily on the number and

the types of tools that can be employed� the more freedom is given in employing any generic

program	 the more powerful and universal the environment is	 since di�erent processes might

need tool sets of the most diverse natures�

In order to extend the process�supporting capability of a system	 it is therefore evident

that the tool integration service must be as general and �exible as possible� However	 this

strife for generality has its limits� �rst of all	 it is practically infeasible to design a unique

�

integration facility to accommodate any chosen tool in the same fashion� PCEs usually still

assume a set of generic properties that must be satis�ed by their tools� these assumptions are

dependent on and in turn de�ne what is often called their domain	 i�e� the class of problems

and activities addressed by them�

Moreover	 exceedingly generic approaches can be also impractical and inconvenient	 since

di�erent tools serve indeed di�erent tasks and are consequently specialized to do their work

as e�ciently as possible� Forcing very diverse programs to employ some kind of uniform

interface to dialogue with the environment often results in poorly exploiting some of their

unique and therefore most valuable features� Especially when dealing extensively with COTS

tools	 whose code is rarely accessible or modi�able	 an attempt to achieve large�spectrum

generalization often becomes completely unrealistic�

In the context of PCEs and considering all of the above	 we believe that tool enveloping is

one of the most promising options to address the integration problem� It certainly accounts

for the necessary �exibility at a very low cost	 because it realizes what we call a Black Box ���

protocol for integration	 since it is not concerned with the internal structure and nature of

the wrapped program and no modi�cations to its code are required� �On the opposite side	

we qualify an approach as White Box if the code needs to be manipulated	 as for example

in most message�passing systems��

However	 a single type of envelope still does not overcome the abovementioned problem of

using too generic an approach� It is clearly impossible	 for example	 to e�ciently �wrap� in

the same fashion an interactive query system �say	 a database� and a text editor	 or a multi�

user collaborative tool and a single�user	 small�size utility� Either unnecessary overhead or

undesired simpli�cations would occur and hinder the use of those programs�

To extend the boundaries of a PCE
s domain without imposing too much uniformity	 the

enveloping mechanism itself must be �exible and versatile� a possible answer is the ability

to provide di�erent kinds of envelopes	 each designed to interact with one or more separate

classes of COTS tools using the most convenient protocol�

Such a capability is most easily obtained in an incremental way	 by creating the enveloping

component of the system and providing it with a basic kind of wrapper for a broad domain�

�

By using the PCE	 designing multiple processes and therefore exploring the boundaries of

the initial domain	 the need for expansion to new software activities will arise and carry

along the need to accommodate new tools and to expand the set of envelopes�

This is the approach followed also in the case of our PCE	 Oz	 which has been equipped

with a protocol for envelopes inherited from the Marvel system ��� �also a project by the

PSL of Columbia University�	 to which it is intended to be the successor� While the original

protocol �named Shell Envelope Protocol	 or SEL ����	 adequately services in a rather simple

and elegant way a wide range of conventional Unix utilities �as explained in the Section ��	

we found it falling short when it comes to several categories of programs� therefore we tried

to address some of these shortcomings with a new mechanism	 complementary to SEL� On

the basis of our experience	 we decided to focus upon the following issues	 which we consider

particularly important and interesting�

� Tools that require the allocation of a large amount of resources	 either at the invocation

or incrementally during their work session �for example because they must keep track

of the current state of the system and of all the data used within the program	 in order

to satisfy further requests�	 and�or support rather long work sessions� We refer to them

as large size	 long�lived programs�

� Tools that support heavy interactive dialogue with the user and frequent data exchange

with the environment during their sessions� Typical examples are tools based on in�

terpretive query systems	 such as KBSA programs written in Lisp	 or databases� Note

how the similarities between the classes of heavy�interaction and large size	 long�lived

programs are rather numerous�

� Tools whose instances can be shared among di�erent users	 either in a isolated or col�

laborative way	 and either sequentially or simultaneously� In the context of a multi�user

PCE such as Oz is	 sharable tools represent a class that can have endless uses and

supporting them is an issue of utmost importance�

� As an extension of the previous point	 we would like to come up with a mechanism that

allows to convert certain tools	 that are designed for and usually employed in single�user

�

scenarios	 to a shared use	 even if necessarily restricted and partial� We see potential

for this in very di�erent families of applications	 from multi�bu�er text editors to non

multi�threaded interpretive and query systems�

Thus	 large size	 long life	 heavy interaction and sharability represent the dimensions of

interest of this project and of the intended expansion of the integration domain of Oz�

The purpose of this research is therefore threefold�

�� To experiment with a technique for tool integration based on multiple enveloping pro�

tocols�

� To investigate a protocol able to deal with large size	 long�lived interpretive and sharable

tools�

�� To provide Oz with an instance of such an enveloping mechanism	 pursuing the goal of

enhancing its �exibility and widening the domain of processes that can be modeled and

supported by our system�

� Background

All the work presented in this paper has been carried on in the context of the Oz project� Oz

is a multi�user PCE that employs a rule�based approach to realize the process description and

stores all the data	 the software components and their mutual relations in an object�oriented

repository	 called the objectbase �����

The PSL at Columbia University has been working on PCEs for several years and Oz is

its most recent e�ort� The system bene�ts of course from our previous experience	 most

speci�cally the one gained in developing and testing the Marvel ��x PCE ��� ���	 to which

Oz is intended to be the successor�

While Oz inherited from Marvel most of its main features	 some crucial enhancements

have been planned and implemented� One of the most important is the modi�cation of its

client�server architecture from a single�server to a multi�server structure	 in which servers

can be geographically distributed and can each support its own process and data model

�

�see Figure ��� Also	 di�erent process models can be partially shared among servers	 via an

import�export mechanism	 which allows to de�ne common sub�processes and to specify what

collaboration is permitted between the processes that import rules from others and the ones

that make them available�

Some of the characteristic features of Marvel that are retained by Oz are�

� Object�Oriented Data Model� software artifacts are stored as instances of user�

de�ned classes� Multiple inheritance is supported� In addition to hierarchical relations	

objects are connected by directed links	 to allow arbitrary semantic connections be�

tween objects in unrelated subtrees of the objectbase� Also informations about tools is

abstracted by objects of the special class TOOL�

� Rule�Based Process Model� the process �and consequently the behavior of the

environment� is described by a set of rules� Each rule can either be invoked by an

human agent or automatically instantiated by the process ���	 and consists of several

di�erent parts �see Figure ��

� The signature� a name and a list of typed parameters the rule accepts� the user

invokes the rule by name and provides all its arguments with correct types�

� The condition section� �rst	 additional objects related to the ones bound via the

rule parameters are gathered from the objectbase� then the rule processor veri�es

if some speci�ed properties hold for the bound objects� On the basis of this check

it is then decided if the conditions are satis�ed�

� The activity section� a rule�speci�c operation is performed on the collected

data� It is in this context that Black Box tool integration takes place and envelopes

are employed� In the wrapping protocol inherited from Marvel	 exploiting the

abovementioned SEL language	 envelopes are implemented as augmented versions

of normal shell scripts ���� they handle the passing of parameters to the envelope

from the environment	 invoke the tool inside the script	 customize its execution

using the parameters as arguments and return to the system the results of the

�

cl
ie

nt
cl

ie
nt

cl
ie

nt

O
z

Se
rv

er

O
bj

ec
tb

as
e

F
ile

 S
ys

te
m

en
vi

ro
nm

en
t

cl
ie

nt
cl

ie
nt

cl
ie

nt

O
bj

ec
tb

as
e

F
ile

 S
ys

te
m

en
vi

ro
nm

en
t

O
bj

ec
tb

as
e

F
ile

 S
ys

te
m

O
z

Se
rv

er

ad
m

in
is

tr
at

or
lo

ca
l

ad
m

in
is

tr
at

or
lo

ca
l

O
z

C
on

ne
ct

io
n

Se
rv

er

O
z

C
on

ne
ct

io
n

Se
rv

er

O
z

C
on

ne
ct

io
n

Se
rv

er

Figure �� The Client�Server structure of Oz

�

�rule�name� �param��� param��� ���	

condition section

�

activity section

�

effect �

effect �

���

Figure � A generic Rule in MSL

execution plus a status code� In SEL	 each activity follows a rather straightforward

input � execution � output sequence�

� One or more mutually exclusive sets of e�ects	 to be chosen in accordance with

the status code returned by the activity� the e�ects are statements used to assert

the results of data manipulation by the envelope into the objectbase and to modify

the state of the process�

The process model and the data de�nition are written by the process designer �also

referred to as the Administrator� using the Marvel Strategy Language �MSL� �����

� Rule Chaining� This is the process
 assistance model	 the way in which process en�

action is carried on� Backward chaining takes place when the conditions of a rule are

not entirely satis�ed� in this case	 the system selects and tries to �re those rules	 whose

e�ects could ful�ll those requirements� Forward chaining may take place after the ef�

fects of a rule are asserted� following the modi�cations incurred in the environment	

the system automatically �res those rules whose conditions match the new state of the

process� Both backward and forward chaining are recursive and provide the PCE with

automation facilities to enforce the process
 policies and its desired behavior�

� Built�In Commands� it is a set of basic commands used to browse through and

manipulate the objectbase� They can be seen as a source of direct access to the data	

as opposed to the indirect access provided by rules� It is possible to incorporate such

�

low�level interaction within the process model	 since MSL allows to specify conditions

and e�ects also for the built�in operations�

Besides the project aiming to the construction of a new tool integration protocol that is the

object of this thesis and to which we gave the name of Rivendell	 other new features im�

plemented or planned for Oz are support for disconnected and low bandwidth operation ����	

automatic maintenance of user agendas as �to do� lists ����	 delegation of process steps as

a collaboration facility between users	 and an advanced rule�based language for specifying

concurrency control policies ����

� Related work

As we pointed out in the previous sections	 tool integration is of central importance to every

e�ort to build e�cient and practical SDEs� therefore many studies have concentrated on

de�ning and exploring the meaning and the dimensions of the term integration as applied to

SDEs� Wasserman ���� for example identi�ed �ve di�erent kinds of integration�

� Platform� it is concerned with interoperability of tools	 achieved through the use of a

common set of system services	 such as networking and operating system facilities�

� Presentation� the stress is on giving to a toolkit the same �look�and�feel�	 via common

GUI concepts and design�

� Data� it requires the abilities of sharing data between di�erent tools and handling the

data relationships among objects produced by them�

� Control� it is concerned with monitoring the tools
 operation	 and using such informa�

tion to guide the development process�

� Process� it realizes the support of a well�de�ned software development process	 by

de�ning and tracking its steps�

�According to this categorization	 the work presented in this thesis would be categorized

mainly as Control integration��

��

Moreover	 Earl ���� proposed a well known reference model for Computer Aided Software

Engineering Environments �CASEEs	 another term for addressing SDEs�	 sometimes referred

to as the �Toaster Model�	 in which a lot of emphasis is on the issues of portability and

interoperability of tools� Generic tools	 possibly coming from many independent sources	

should be integrated by providing them with common data integration	 data repository and

operating system services on the architectural end	 and with task management services	 on

the user
s end� the latter should abstract from the user the details relative to the peculiarities

of each individual tool� �Our work is specially concerned with task management issues��

In the attempt to ful�ll the various requirements and de�nitions of tool integration	 and

to overcome its inherent di�culties	 the SDE community has developed a large spectrum

of di�erent approaches	 to investigate new options as well as to propose general solutions�

Systems and methods are quite numerous	 even when one decides � as we will do in the

rest of this Section � to neglect the wide category including all the organic collections of

tools that �as for example in the case of UNIX ���� are sometimes claimed as being SDEs

in themselves and that mostly realize only platform integration�

Many methods embrace the White Box paradigm	 even if there is a lot of variation among

them	 for example with respect to the amount of tool code that must be generated or modi�ed

to achieve integration�

An extreme approach in this sense is the realization of a set of custom tools	 all man�

aged by a common framework designed ad hoc� typical and well�known examples of such

frameworks are the language�based editors in Gandalf ��	 which integrate those program�

ming activities speci�cally oriented towards the coding and building of a complex software

project	 or interpretive systems such as Smalltalk ��� or Re�ne ����	 in which all the tools

are combined together at run�time in the memory space of the interpreter�

For many other SDEs	 the common framework realizing a form of White Box integration

of their toolset � focused on the data dimension � is represented by the database where

the results of all the development activities	 in their intermediate and �nal stages	 are stored

and shared� The tools are on the one hand forced to be closely related	 since they must be

able to use the same data formats	 and on the other hand bene�t in terms of performance	

��

because they can reuse data produced by other utilities during previous operation� Some

examples are GRAS ����	 based on an extension of the classic Entity�Relationship data model	

and Damokles ����	 that employs schemas in the form of attributed graphs� Adele ���� ��

enhances this methodology by implementing a system of triggers connected to the state of the

database	 so that data modi�cation by one tool is recognized and may cause the invocation

of other ones	 leading to further action�

The idea of assigning the role of the main integration principle to a common object ori�

ented data repository has been employed quite widely	 for example also by several of the

projects aimed to de�ne standards for building generic tools with a high degree of porta�

bility and interoperability	 and therefore widely reusable	 even if only under the standard
s

speci�cations� PCTE ���� ���� is probably the most representative and generally accepted

example of such standards� The goal of PCTE is to create a set of services and facilities	

called a public tool interface	 complete enough to support tool writers in very di�erent sit�

uations and domains� many SDE prototypes and projects ���� ��� ���� in Europe as well as

in the USA already exploit this facility� Another proposed standard that exploits an object

oriented repository for its integration mechanism is the Ada�speci�c CAIS�A �����

A di�erent approach to the White Box paradigm	 that is intended to be more cost�e�cient

than building custom toolsets around a given framework is represented by the class of systems

based on event noti�cation	 whose stress is on control integration� One of the �rst and most

well�known examples is Field ����	 developed at Brown University� its basic principle is the

addition of interface modules that send and receive codi�ed messages to the code of generic

tools� The messages produced by a tool are sent to a centralized component	 known as the

Broadcast Message Server �BMS�	 to inform it about the actions performed during the work

session� The server elaborates them and produces further information that is sent to other

tools	 in order to coordinate their operation according to a given working model kept in the

server�

Another system using a form of event noti�cation is Yeast ���� it has a client�server

structure	 in which the server process accepts from the clients event pattern de�nitions

linked to action speci�cations� it is also able to recognize the occurrences of events	 in a

�

computer system	 such as time passing	 timestamp modi�cations etc�	 or can be noti�ed of

such occurrence	 either interactively by users or automatically by tools� In response to an

event recognition YEAST takes the actions that have been previously associated to that

event�

Polylith ���� combines an event�driven approach with another technique in the spectrum of

White Box integration� tool fragmentation� While whole external tools can be incorporated

in Polylith	 by relinking with the provided libraries that support the interface to the system
s

kernel	 more often tools are identi�ed with simpler services � or modules or subroutines

� whose structure is declared in a service database	 and whose free combination and

communication is used to obtain the performance of various complex	 full��edged applications

and to carry out all the tasks in the environment�

Tool fragmentation is the basic integration principle of several systems	 like RPDE ��� ����	

Odin ��� and IDL ���� ����� RPDE maintains tables that represent its tool fragments as the

cross�product of objects �i�e� structural components that can be manipulated by applica�

tions� and roles and methods �i�e� procedural components used to act upon objects�� Odin

has a very similar concept of objects and of the tool interactions that manipulate them� it

also provides a language to specify tasks and composite tools	 whose operators are repre�

sented by tool fragments and where objects play the role of their operands� Similarly	 IDL

proposes a notation to de�ne the structural and functional features of its tools	 each of which

can be seen as a �building block� with a front�end for input	 a composite structure de�ning

its algorithm	 and a back�end for its output� IDL declarative statements also describe how

to connect several of these components into composite tools�

While White Box	 in all of its �avors	 is the kind of integration most frequently imple�

mented by SDE developers	 less work has been done on Grey Box methods� The Grey Box

paradigm does not require any code modi�cation to the tools	 which instead must provide

an extension language or an application programming interface �API�	 so that functions

can be written to interact with the environment� Unfortunately	 relatively few commercial

applications are equipped with features that allow to build arbitrary functional interfaces

to the engine of an SDE� An attempt to address this limitation is presented by Notkin

��

and Griswold ����	 who proposed a mechanism to dynamically and incrementally extend the

functionality of generic software systems	 without modifying the underlying source code�

We maintain that Black Box integration	 via tool wrapping �also referred as to tool envelop�

ing� is probably the most �exible and general methodology � even if it inherently presents

a considerably high degree of complexity � since its conceptual aim is the encapsulation in

the environment of external tools with no changes to their code	 nor need for other kinds of

functional extensions�

It is generally recognized that the initiator of studies along these lines has been the IS�

TAR ���� ��� system� While it provides its own toolkit and development and integration

facilities to help building new dedicated programs according to the needs of each environ�

ment	 ISTAR also allows use of third�party applications	 simply by encapsulating their calls

into the code of ad hoc written tools �the ISTAR envelopes�	 that also provide the correct

interaction with the ISTAR
s database and user interface�

As we already pointed out in Sections and � Marvel and Oz both employ shell�script

envelopes for executing their activities �i�e� process�related tasks� and abstractly represent

external programs as objects in a toolbase�

Another example is o�ered by ProcessWEAVER ����	 a commercial system embracing

Black Box integration and combining together a broadcast message server and a process

engine� Also in ProcessWEAVER tools are modeled as objects of class TOOL and envelopes

have the form of interpreted procedures with a syntax similar to UNIX shell scripts�

� Requirements

The current SEL protocol for tool enveloping in Oz is very simple and quite useful� it

can adequately and e�ciently support a wide range of conventional tools� However	 by

analyzing its structure and features	 it is possible to recognize both its strongest points and

its limitations and therefore to outline the functionality that is necessary or desirable for a

complementary wrapping mechanism	 in order to augment the integration capability of Oz

to extended and�or new domains�

��

We can recognize in SEL envelopes three separate sections that are executed in sequence�

� Acceptance of external parameters �representing the input of environment data to the

wrapped tool��

� Execution of a utility program �the tool�	 customized by and operating on some or all

of the envelope parameters	 which take the role of arguments provided to it at the time

of tool invocation�

� Following the end of the tool operation	 output of data to the environment� they may

include modi�ed versions of some of the input parameters or new objects	 plus a status

code which de�nes one among the possible set of statements in the e�ect portion of the

rule	 that must be executed�

The simplicity of this paradigm is together its greatest strength and limit� most Unix

utilities	 for example	 accept all of their arguments at invocation time from their command

line and return simple status information at the end of the execution� SEL successfully

replicates and exploits such features	 thus allowing easy integration of a huge family of tools�

However	 there are numerous classes of tools that don
t �t this description and typically

allow or require greater or more complex interaction with the user or the environment in

which they are invoked� Examples are endless and fall in many di�erent categories�

� Interpretive and query systems are designed to accept a series of functions	 each having

its own parameters and result data� If the tool invoked were such a system	 in SEL

each of these functions would necessarily map to a di�erent instantiation of the same

program� This would be not only highly impractical	 but also sometimes unacceptable	

because the user would operate each time on a separate instance of the tool and fail to

use one of the typical properties of an interpretive system� the ability to keep track of

its internal state and of the state of the loaded data	 due to past queries	 and to use

this information to produce the output to the current one�

� Many common tools allow the users to interact freely	 loading and saving data or part

thereof on the �y	 at any moment during their work session� Since the envelopes are

��

the only interface between the data repository of Oz and the tool and because of their

simplistic input � execution � output interaction model	 it is not possible to support

incremental input and output to these tools� In the past and in the context of the Marvel

system	 we have conducted experiments and tried to overcome this speci�c problem	

at least for a limited class of software products	 by using a Grey Box approach �	

that does not require modi�cations to the source code of the tool	 but is limited to

tools that can provide their own extension facilities� As a test case	 we selected the

GNU Emacs text editor and exploited its E�Lisp extension language� While partially

successful	 our experiment could not satisfactorily address some issues �among which

the potential interaction and interference between multiple rule chains generated by

di�erent argument sets and the separate management of their possibly di�erent return

status codes�	 and lacked the necessary generality and robustness�

� The life span of each tool is limited by SEL to the duration of the activity phase of the

rule� Following invocations of the same rule will map to new instances of that tool� This

is possibly computationally expensive	 for tools that need to allocate a lot of resources

at start�up� Such overhead could be avoided	 if the tool could outlive the single rules

that exploit it�

� The SEL paradigm generally assumes that rules �red by each single user and their

associated activities have limited or no impact on the work of others� Oz
s concurrency

control mechanism ���	 tailorable for each rule signature	 controls the sharing of the

data among users� beside that	 Oz assumes that each activity is carried on substantially

in isolation� This limits its domain	 with regard to the ever�growing category of multi�

user collaborative systems� a �rst extension	 that is already supported by our system	

is the possiblity to invoke from the same envelope N copies of a multi�user system on

behalf of N users at the same time� however SEL has no way to handle asynchronous

participation in groupware task	 i�e�several users connecting to and leaving a multi�user

session on a long�lived external system at di�erent times�

�This research has been carried out within PSL by George Heineman� a Ph�D� student at Columbia
University�

��

By considering the above issues	 the most important characteristics of a theoretical new

kind of envelopes for Oz become evident� in the �rst place	 we are interested to extend Oz
s

domain by integrating tools that are not properly handled by SEL because of their large size	

their support for complex interaction patterns	 their interpretive nature	 or their support for

sharability and�or cooperation� In order to achieve at least partially the above goals	 the

new protocol must have a series of features that di�er from SEL� we think we identi�ed its

most relevant requirements in the following list�

� To allow a longer life span for the instances of its tools� this would minimize overhead

at invocation and better exploit their peculiar properties	 like in the case of query and

interpretive systems� A tool instance that outlives a single rule and can be reused by

consecutive ones is quali�ed from here on as persistent� A new protocol for invoking and

closing persistent programs must consequently be conceived� moreover	 the environment

must be able to dispatch its user interface to di�erent displays	 since persistent tools

can be used during their life time by users on di�erent machines from the one that

originally started them up�

� To support incremental feeding of data into the tool and the retrieval of partial results

while in the middle of its work session� we need to introduce more �exible and free inter�

action patterns between the tool	 the user and the data repository of the environment�

To do this	 tight encapsulation of all the tool
s operations inside a shell script must turn

into a looser way to monitor its execution and its input and output� It is noticeable

that this problem is similar to what we tried to address with the abovementioned Grey

Box experiment�

� To build a facility that allows users to share the same instance of certain tools	 by

using a method speci�cally conceived to convert and extend those designed for isolated

work to some form of teamwork capability	 and by providing easier integration and

accomodation in Oz of systems that are intrinsically multi�user� We are interested in

sharable tools that support both isolated and collaborative multi�user operation and

we therefore consider the management of persistent tools	 which can be exploited in

��

turn by multiple rules	 in principle �red by any user	 as the �rst necessary step in

this direction� Extending this concept	 we can then generally think of a multi�user

collaborative program �in the Rivendell sense	 at least� as a persistent tool which

allows the environment to run multiple activities on it at the same time	 instead of only

sequentially� A mechanism to distinguish between tools that have this property and

others that don
t �and a way to deal with possible overlapping requests for the latter

category� is therefore needed� It is clear that such a scenario carries along numerous

problems that are not limited to the integration facility of a PCE	 but involve other

main components	 as the concurrency control policies and the process model� we did

not mean to investigate such issues thoroughly in this work and consequently upgrade

Oz	 but by implementing a way to handle in principle this class of tools	 we opened the

way to their on��eld analysis and provided real test cases�

To achieve all of this	 we planned to introduce in Oz what we called a Multi�Tool Pro�

tocol �MTP� for integration	 where Multi refers to the submission of multiple activities and

to the interaction of multiple users with the same tool instance� Moreover	 we decided to

address multiple platforms �in the case in which our system operates over a heterogeneous

collection of workstations and servers	 but executables are available for only a restricted

subset of the architectures� and multiple tool instances �i�e	 the management of a set of

executing instances of a tool	 e�g�	 when licensing limits the number of instances that can

operate at the same time	 a common situation with COTS server licenses��

While the requirements discussed above clearly outline MTP as an integration facility

that is quite di�erent from the existing SEL protocol	 they do not necessarily guarantee

that more generality would be achieved by switching to it� Instead	 they merely try to solve

the problems arising in integrating some rather speci�c classes of tools	 mostly disjoint from

the ones already successfully dealt with by SEL	 or in some cases similar to them in nature

but used di�erently� We therefore decided that the new protocol should not replace the old

one	 by taking over its functionality and by adding new features on top of it	 but rather be

complementary and alternative to SEL� Thus	 as a supplementary design requirement	 we

need a way to de�ne in the process model the integration method of choice among SEL and

��

MTP	 on a per�tool basis� The process administrator would be in charge of analyzing the

character of the tools and of the two separate options and to choose which �ts best�

To reach these goals we realized it was necessary to redesign many of the components

of Oz �some of them extensively	 other ones only marginally�	 as well as to conceive and

implement some new ones that perform tasks and provide features that were not previously

supported�

� Design

In order to realize our new MTP mechanism and to implement in it the features we con�

sider necessary for an easier integration of large size	 interactive and collaborative tools	 we

recognized that changes and upgrading were necessary to the general architecture of Oz and

to several of its components	 beginning with its client�server structure	 the corresponding

executables and their communication interface	 the process modeling language	 the rule pro�

cessor in the servers and its direct counterpart in the clients	 the Activity Manager	 which

is speci�cally in charge of tool integration�

All the main modules of the system needed to be modi�ed to a certain extent and this

consideration in�uenced some general choices in the overall software design� we decided

to introduce these changes in a modular way	 by keeping as our basic working platform

the version of Oz supporting only SEL and by adding on top of it the code necessary to

implement MTP	 but keeping it functionally isolated from the rest as much as possible�

The problem was to be able to maintain complete backward compatibility between pro�

cesses written to use only the old wrappers and the new version of our PCE� to guarantee

this	 support of the usual SEL protocol has become the default behavior of Oz and during the

execution of the corresponding rules no part of the new enveloping mechanism comes into

play at all� it is invoked only for those activities that actually bene�t from it on a per�rule

basis� Such an approach was bene�cial in the sense that for MTP only the minimal necessary

functionality has been added on top of pre�existing core code	 which is in common with the

SEL protocol� on the other hand	 a lot of care had to be given in this reusing process	 in order

��

�tool�name�

 superclass TOOL

�activity�name�
 string � ��envelope�name� �parameters� locks��

�activity�name�
 string � ��envelope�name� �parameters� locks��

���

end

Figure �� Original TOOL declaration in MSL

to adapt the newer code to the old one nicely �for example deciding where the new modules

had to be �plugged in� and when they should be activated� and to preserve e�ciency�

We believe that such attention to modularization has been of great impact on the �nal

outcome of the Rivendell project and also that it is in general a crucial trait	 in order to

obtain a functional multi�envelope integration facility for an SDE�

��� Modi�cations to the Process Modeling Language

The de�nition of the process	 actuated in Oz by the Administrator of the environment

via the dedicated language MSL	 includes the description of instances of the TOOL class�

These originally had only the functions of capturing the correspondence between an activity

name	 as stated in a rule and an envelope name �the tool�wrapping script written in SEL�

to be executed in that context	 and of specifying optional locks on the objects selected as

the parameters of the activity �that is	 the arguments passed to the script�	 in order to

implement the appropriate concurrency control policy for that rule� The syntax used in a

TOOL declaration in MSL was originally the one dysplayed in Figure ��

By introducing an integration mechanism based on multiple enveloping protocols	 the

Administrator must also decide when it is most appropriate to use each of the various

methods� This should be done on a per�tool basis	 since each di�erent approach is designed

and tailored to accommodate families of tools with very speci�c properties� Therefore it was

natural to plan to extend the process language by giving a new syntax and adding more

information to the TOOL class declarations	 to distinguish between SEL�tools and MTP�

tools� To preserve backward compatibility to processes written using the unextended version

�

�tool�name�

 superclass TOOL

� protocol
 �SEL� MTP�

path
 string

architecture
 �sun�� ����

host
 string

instances
 integer

multi�flag
 �UNI�QUEUE� MULTI�QUEUE� UNI�NO�QUEUE� MULTI�NO�QUEUE�

	

�activity�name�
 string � ��envelope�name� �parameters� locks��

�activity�name�
 string � ��envelope�name� �parameters� locks��

���

end

Figure �� TOOL de�nition augmented for Rivendell

of the language	 we designed such addition to MSL as optional� When a TOOL instance

lacks it	 the system assumes as a default that SEL is to be used for all the activities listed

under it� Besides the choice of the appropriate protocol	 we found out that more information

can be necessary at this same level	 at least when MTP is involved� The �nal format of a

TOOL class de�nition is shown in Figure ��

The optional part is included between the brackets and contains the following data�

� protocol� this �ag is used by the Administrator to actually distinguish between SEL�

tools and MTP�tools	 so that the appropriate wrapping method is employed� To prac�

tical e�ects and for the current version of Rivendell	 omitting the whole optional

speci�cation and assigning to protocol of the value SEL are equivalent� in particular	

when SEL is assigned the rest of the information between brackets is ignored� With

further development this might change	 since some of the other �elds can provide useful

information also for an augmented or improved version of the SEL protocol�

� path� it indicates the full pathname in the �le system where the executable for the

tool resides� this might be either its binary code	 or �as is usually the case for complex

systems� a script that invokes it and also manages some customization of it	 to be

executed at start�up	 in relation to the characteristics of the PCE and to the context of

�

the process� Of course	 no default value can be provided for this �eld�

� architecture� it is used to indicate the architecture of the machine on which the tool

and the corresponding envelope must run� the default value is sun� while other machine

con�gurations can be easily speci�ed �

� host� it is used alternatively or complementarily to the previous �eld	 when it is neces�

sary to run the tool on a unique machine	 whose Internet address is given here� When

this information is not speci�ed	 the system refers to the architecture speci�cation

to retrieve the corresponding default host �speci�ed by the administrator in a service

�le kept within the environment
s directory� that supports it	 on which the persistent

tool will be run� However selected	 the host must be located within the same Internet

domain	 sharing the same network �le system �NFS� of the server where the process

model resides� for reasons connected to how MTP envelopes are implemented that will

be clari�ed in Section ����	 the tools cannot be located remotely with respect to the

server
s NFS	 containing the environment
s data repository� This imposes limitations

on the availability and usefulness of MTP in the context of the import�export mech�

anism provided in Oz to allow sharing of process rules among servers� since they can

be geographically distributed and thus have limited or null visibility of other Internet

domains�

� instances� it de�nes the maximum number of copies of the tool that can be simul�

taneously active in the environment� a value of �	 which is also set as default	 means

that an arbitrary number of instances can co�exist� It is used to comply with ��oat�

ing� license restrictions which limit the availability of copies of a software product that

can be used by a licensee at any moment� MTP cannot however in its current version

take into account those instances running outside the environment	 but of course still

counting with regard to the ��oating� license limitations� this is a serious �aw in its

performance	 that must be addressed in future development	 via some sort of exception

handling mechanism�

�This multi�architecture capability has not been implemented in Oz� yet�

� multi��ag� this piece of information is of great importance to decide the behavior of

MTP in managing the interactions between multiple human users	 with their requests to

and their operations on the environment	 and the persistent tools	 as will be explained

later on� It distinguishes among four categories of tools	 with di�erent properties with

respect to their multi�user and multi�processing capability� They represent substantially

the cross�product between two orthogonal dimensions�

� UNI vs� MULTI� whereMULTI indicates that the same instance of the program

can be shared by several users	 while UNI allows only for isolated work of each

user on his�her own tool copy�

� QUEUE vs� NO QUEUE� for QUEUE tools	 whether UNI or MULTI	 simul�

taneous processing and execution of multiple activities is not supported	 while that

is allowed by NO QUEUE ones	 both UNI and MULTI�

The basic class	 representing the chosen default	 is UNI QUEUE�

This set of data	 speci�cally added for MTP	 could have been included in the most usual

way as a subset of the attributes for the class TOOL� from many points of views	 including

generality and modularity of all the de�nitions in the process model	 this would have been

the optimal and most conceptually correct solution	 since it would have fully exploited the

object oriented nature of Oz
s data de�nition mechanism� However	 we decided to consider

it instead as a separate	 special feature that is exceptionally attached to the syntax and the

semantics of the TOOL class in the MTP case� Once again	 the reason is mainly backward

compatibility to the previous versions of MSL	 which is preserved by our choice	 because

of the optional character of our addition	 which would have been lost otherwise� TOOL is

currently a root class for MSL �as is ENTITY	 from which all the classes of objects stored

in the data repository descend� specially conceived to capture the concepts of envelope and

tool into the process model in an object�oriented fashion	 and it was not originally designed

to contain any attributes beside the envelope names� In the future we plan to modify this

structure	 providing Oz with a complete toolbase	 in order to better describe the character of

�

the external applications to be integrated in the processes and of the acitvities that involve

them�

��� Modi�cations to the Architecture

Oz inherited from Marvel its client�server structure	 enhancing it with the capability of

having multiple geographically distributed servers talking to each other and to the clients�

Each server retains and actuates its own process model	 by managing the corresponding

objectbase and by dealing with and controlling the rule processor and the concurrency control

policies� the clients realize the access to the environment for human users	 via a graphical user

interface that provides them with views of and a query facility on the di�erent objectbases

associated with all the servers and allows to manipulate objects via Oz
s built�in commands

and to �re environment
s speci�c rules� moreover	 clients include the Activity Manager that	

in connection with the Rule Processor in the server	 deals with running and wrapping external

tools� A modular socket�based component is of course present in all the servers and the

clients	 to provide the communication channels and protocols needed to reach and talk to all

the other active parts in the system� there are also	 particularly in the servers	 numerous other

layered modules taking care of di�erent functions	 that are not essential for our discussion

at this point �See Figure ���

This kind of structure models quite well a situation in which all the active agents in

the environment �represented by the client programs� are connected to and dependent on

human users �which in the Oz case manage and actuate fragments of the software process

interacting with their own client
s user interface� and are permanently relying on a set of

always available centralized services provided by the servers� while the life�span of clients

depend only on the length of the work session of their users	 a server must be up at least as

long as any client is open and attached to it� the existence of a certain environment �or part

thereof	 in a multi�server scenario� is tied to the duration of the server in which it is loaded�

In the situation pictured by the requirements for Rivendell	 we need to introduce new

long�lived entities that provide services to any client and therefore must have in this sense

the same behavior of the servers� the persistent tools� We therefore also need to assign to

�

Server

Client

Inter Process Communication (IPC)

Inter Process Communication (IPC)

Client-Server Interface

Lock Manager

Transaction Manager

Rule ProcessorBuilt-Ins

Session Manager

Environment Support

User Interface

Application

Query Processor

Object Manager
Data

Manager

Storage Manager File Manager

Figure �� A View of the Client and Server Componentizations

�

some component of the client�server architecture the role to spawn and manage them and

to achieve their integration by realizing MTP enveloping�

One of the most natural approaches to this problem could have been to use the servers

as our tool providers� this would have guaranteed that MTP�tools had the same kind of

persistency as the servers and that	 once started up	 were always available inside an active

environment� However	 we considered that a direct hierarchical dependency of persistent

tools from servers is in contrast with a modular design� Oz servers	 among their components

and functionalities	 don
t contemplate anything that is in charge of forking new processes

and exchanging with them information in the envelope fashion� To achieve that	 we should

have considerably changed their layered architecture	 also replicating much of the code taking

care of such tasks that is already present in the clients�

On the other hand	 the limited duration of normal clients could not support a persistent

tool
s instance	 since this might be needed well after the client that has forked and taken

care of it is closed by its associated user�

Therefore we felt the need to introduce the concept of a new kind of component in the

architecture	 with the only speci�c purpose of dealing with persistent tools for MTP� it

should be invoked automatically when the �rst instance of a tool on a certain host is needed�

then it should deal with all the persistent programs running on the same machine	 on behalf

of the users of the environment	 and it should run for an inde�nite amount of time	 until a

server shutdown closes the environment that it services�

To reach this goal	 we relied on a new kind of client	 which is being developed by our team

for a di�erent project in the Oz context	 aiming to support low�bandwidth and disconnected

operation by the environment
s users ����� On that experience we built what we qualify

as Special Purpose Clients �SPCs�	 as opposed to Oz
s usual ones �that we will call from

now on General Purpose Clients � or GPCs�	 because their only functionality is MTP

enveloping� We brie�y outline here their most important features�

� they are mainly a convenient mechanism to handle the needs of the new protocol	

designed to introduce as little change as possible in the Oz system�

� they don
t need any GUI and run on the same host as the tool they provide in the

�

background	 since no human interacts directly with them�

� the only useful components typical of GPCs that remain inside SPCs are the commu�

nication module and a modi�ed version of the Activity Manager that realizes the core

of the new wrapping approach�

� their invocation and management	 including communication and shutdown	 are carried

out by the server	 that sees and services them mostly as it does normal clients�

	�
�� Inter�Process Communication

The SPC idea is conceptually simple and elegant	 but needs a lot of insight into inter�process

communication issues� Usually	 during the execution of a rule we have a dialogue between

the client that �red it and a server� to the latter is assigned the evaluation of the conditions

�that may initiate recursive backward chaining� and	 after the end of the activity phase	 the

assertion of the e�ects and the evaluation of their consequences	 leading possibly to forward

chaining� the former deals	 if the conditions are satis�ed	 with running the activity	 forking

the external tool	 wrapping it with a SEL script and exchanging relevant data with this

envelope�

This complicated mechanism implies frequent message passing between the two processes�

in MTP	 by introducing with SPCs a new component that is in charge of managing the

activity	 on behalf of the GPC	 we furthermore increase the complexity of such communica�

tion� The SPC can be seen here as a proxy for the GPC during the activity phase	 since it

must completely replace it in the dialogue with the server	 but must also correctly redirect

the I�O between the GPC
s GUI and the tool� The communication pattern becomes quite

intricate	 also because the current Oz architecture does not support direct client�to�client

communication� clients always talk and listen either to their own local servers �i�e�	 a server

that runs on the same subnet and shares the same software process de�nition�	 for anything

that is related to rules
 execution	 or to remote ones	 when accessing the browsing facility

and the built�in commands of other processes�

�

User Interface

Activity
Manager

GPC

Activity
Manager

SPC

XMOVE

CLIENTCLIENTCLIENTGPCs

GUI

D
A
T
A

TOOL

Tools

Host: Machine B

Activity
Manager

SPC

XMOVE

GUI

D
A
T
A

TOOL

Tools

Host: Machine A

Platform Platform

SERVER

Object Management

Services

Ob Image

Query

Finder

Synchronization

Coordination

Add
Delete

Rule Processor

Interfaces

Process Server

Language−Dependent
Runtime Support

Query

Figure �� Architecture for MTP Operations

�

We decided to solve the problem by using the server as an intermediary and a message

dispatcher between the two kinds of client and we conceived a mechanism	 under which at

any point during the operations following the �ring of an MTP�rule	 both the user
s GPC

and the SPC used as its proxy only talk to the same server	 which in turn is faked to believe

that all the messages received from and sent to the SPC are actually exchanged with the

GPC	 as during a normal SEL activity� The presence of a new party becomes thus completely

transparent to the server and the basic communication model of Oz is preserved	 by paying

the price of some additional implementation complexity �on which we will further expand

in Section ���	 together with a discussion on the bene�cial and detrimental facets of our

solution��

	�
�
 Dispatching the Tools

As we can see from Figure �	 an SPC lives	 together with the tools it provides	 on a certain

host	 while the GPCs it services may run on di�erent ones	 on the same LAN� This presents

us with a problem	 for all the tools that come with their own X�based GUI� in the �rst place	

we are not guaranteed that an X server is running on the SPC
s machine	 but also in that

case we need to redirect the program
s GUI to the display of the machine where the GPC

resides	 in order to allow the associated human user to interact with it�

To obtain this	 we employed a utility	 also developed at Columbia University in the context

of a separate project	 called xmove ����	

which allows the GUI of a program to be transferred across hosts and terminals� Also

xmove has a client�server structure	 in which the server accepts commands from the client

and performs the corresponding operations on the windows it controls�

The xmove server is in our system spawned by the SPC and operates on all the programs

forked on its own machine� as a default	 when the tool is initially forked and in the case no X

server is active on that host	 all the GUIs are sent to a machine speci�ed in the initialization

parameters of the xmove utility� later on	 to move to the appropriate monitors the GUI of

various tools every time an activity uses them	 we use a small component we implemented

inside the SPCs	 that serves as the xmove client and issues the necessary commands�

�

This way we can dispatch the tools
 user interfaces to those clients that at any time need

to operate on them	 while their programs actually keep running on the machine assigned

to them in the MSL speci�cations� This mechanism implies that users must take turns

in accessing most utilities	 since xmove does not support duplication of the GUI	 but only

its transfer� note however that this problem does not involve those multi�user and multi�

threaded systems that can create multiple copies of their interface components in response

to overlapping requests of access by di�erent agents� The xmove clients implemented wothin

our SPCs are able to discriminate between the applications that need GUI redirection and

the ones that don
t�

It is noticeable that	 by using xmove	 we not only solve the crucial problem of dispatching

the interface from the original machine where MTP�tools run to the hosts where they have

been invoked	 posed by our proposed architecture� we also can extend the use of certain

tools	 that are single�user by nature	 but can now be shared to a certain extent and in

rudimentary sense also become collaborative� For example	 a single�user interpretive system

with its own user interface can be invoked persistently by User A	 who works with it as long

as he�she needs it and then relinquishes its control	 leaving it in a certain state� at this point

User B	 a di�erent agent	 can �re a rule on that same tool and operate some more on it

using its transferred user interface	 possibly even carrying on a di�erent part of the same

job initiated by User A	 since the internal state of the application has not undergone any

change in the meanwhile� We codi�ed this possibility by introducing	 as will be discussed in

detail in Section �����	 the MULTI QUEUE class of tools for our new protocol�

��� The Protocol

The abovementioned changes to the process language and to the overall architecture of

the Oz system are the necessary prerequisites for the realization of the new integration

approach	 since they respectively de�ne the parameters of its use �the augmented TOOL

class de�nition� and provide a platform to actuate and manage it �the SPCs and xmove��

Anyway	 by themselves they do not provide any insight into what should be the working

protocol of MTP	 and only basic support for its machinery�

��

In the SEL case we could implement with its shell script facility a true envelope that com�

pletely encapsulates the external program from the moment of the invocation and throughout

all the execution� Using SEL
s augmented features we can provide the tool	 on a per�activity

basis	 with arguments taken from the objectbase and to manage all the I�O with the envi�

ronment	 including the modi�cation to its internal data and the return of the �nal status

code� In MTP it is not feasible to employ the same approach	 based on very tight wrapping	

given the persistent natures of the tools in play� Since tools outlive activities and possibly

also the users that invoked them in the �rst place	 we need for them a more �exible view of

the envelopes�

This leads to what we call loose wrapping� here the principle of encapsulation is substituted

in most circumstances by the one of control and the envelope per se may not exist as a single	

explicit and well de�ned component of the system	 but its role may be played by numerous

di�erent pre�existing parts of it	 each acting during a speci�c phase of the tool
s life cycle

and operation and performing some of the many functions that are needed� The advantage

we see in control	 as exerted by these implicit envelopes	 over encapsulation provided by

explicit ones	 is that it makes possible in the context of persistent tools to produce a kind

of permanent and generic way to dialogue with them	 always active within the environment�

entities like our SEL envelopes	 instead �even if it were possible to extend them to take care

of persistent programs�	 would take control in an exclusive fashion of the external utilities	

on behalf of only a single user�

To design our new envelopes	 it is important to outline all the tasks that an explicit wrapper

for MTP must carry on	 analyze them	 separate them and assign each of them to the most

appropriate component in our architecture	 always trying to preserve its overall structure

and modularity� In Rivendell we recognized a number of separate basic functions	 that we

can separate into two main sets� the ones that replicate	 with some obvious di�erences	 part

of the general functionality of any enveloping system and	 more speci�cally	 of SEL	 and the

additional ones that are a direct consequence of MTP
s own needs and purposes� We list

these requirements here	 according to the above categorization	 and intend to discuss below

how they have in�uenced the building of the new protocol and how they have been inserted

��

in it�

� General�purpose enveloping services�

�� The ability to fork and invoke an instance of a persistent tool at the user
s will and

the complementary ability to conclude its work session when it is no longer useful�

� The ability to bind and customize the already running instance of a tool to an MTP�

activity	 including the ability of providing the set of environment data	 derived from

the parameters of the corresponding rule	 on which the program will operate�

�� The ability to interface the envelope for the activity with the GPC that is running

it	 in order to support the textual I�O �ow between them�

�� The ability of recognizing the end of an activity and of selecting one of the multiple

possible set of e�ects	 among the ones expected by the associated MSL rule�

�� The ability of returning to the environment
s repository partial and �nal results of

the tool
s elaboration on the parameters�

� Peculiar services of MTP�

�� The ability of dispatching the GUI of an MTP�tool to the displays of the GPCs

that are executing a related activity�

� The ability to limit the number of co�existent copies of a given tool according to

the speci�cations set out in MSL and to record and service the unsatis�ed requests

as soon as the resources become again available�

�� The ability of exploiting the persistency of MTP�tools	 in order to share their in�

stances among multiple users	 partially emulating multi�user capability also for

some programs that are not usually employed in a moderately collaborative sce�

nario�

�� The ability of coordinating overlapping requests to access an instance of a persistent

tool coming from separate users	 so as to avoid deadlocks and starvation on the one

hand	 and unintended concurrency of several activities for programs that don
t

support some form of multi�tasking on the other hand�

�

Condition portion of the rule

Activity begins

activity invocation
 �tool� �envelope� �argument set�

execution of commands

return of �return argument set�

Activity ends

Effect portion of the rule

Figure �� Structure of an SEL Activity Within a Rule

	���� Tool Sessions

In the current SEL approach	 external tools are instantiated and terminated from inside

the envelopes	 every time an activity is executed� there is a ��to�� mapping between each

instance of a tool	 with its duration	 and each activity	 that we can conceptually represent

as in Figure ��

SEL provides with its wrapping mechanism the loading of the initial argument set into

the tool and the retrieval from it of the results in the return argument set	 while among

the commands in the body of the activity there is the invocation of one or more external

utilities	 used to manipulate this data� The PCE does not need to explicitly deal with the

tools themselves �i�e�	 to use dedicated primitives for managing their invocation	 management

and termination�	 since all of that is abstracted from its point of view and hidden inside the

envelopes�

This cannot be achieved in the case of MTP	 since the execution of instances of the tools

and their life cycle are not anymore contained inside any wrapper that tightly encapsulates

them� to the contrary	 they must be explicitly dealt with by a new component of the system
s

architecture	 namely the SPCs� It is therefore clear that we need to establish a way to manage

persistent tools	 de�ning for this purpose some new concepts in the PCE and supporting them

with a set of new commands �issued by the users and executed by the SPCs�	 dedicated to

their management�

To achieve this	 we introduced the idea of sessions	 in order to represent the life span of a

��

OPEN�TOOL �tool� �session�name�

�tool� �MTP�activity A� �argument set A� �by User ��

�tool� �MTP�activity B� �argument set B� �by User ��

�tool� �MTP�activity C� �argument set C� �by User ��

�tool� �MTP�activity D� �argument set D� �by User ��

���

CLOSE�TOOL �tool� �session�name�

Figure �� A Tool Session in MTP

persistent tool� a session is begun by an explicitOPEN�TOOL command	 its body is made

of multiple activities	 with their own sets of parameters and the related operations	 and it

is closed by the complementary CLOSE�TOOL command �See Figure ��� To each session

is also assigned a name in order to distinguish it from other sessions involving di�erent

instances of the same tool� The use of named sessions is also relevant in the integration of

multi�user applications	 as will be shown later on�

The body of a session can therefore be seen as a collection of separated activities that

use the pre�existing resource of the persistent utility	 on behalf of one or more users of

the environment �depending on the nature of the tool	 as speci�ed in the extended MSL

de�nition��

The OPEN�TOOL and CLOSE�TOOL primitives deal with persistency and are used to

limit the duration of a speci�c tool instance	 since their main purpose is to respectively fork

and kill it	 although several other accessory functions are necessarily dependent on them�

For example	 they implicitly operate on what we call the Session Queue of a tool	 a feature

that allows satisfaction of the constraints posed by the instances �eld we introduced in the

MSL class de�nition for TOOL	 accordingly limiting the maximum number of copies of that

program that can be simultaneously active in an environment� When an OPEN�TOOL is

issued	 the system must �rst of all check if that request is satis�able under those constraints�

If the boundary is hit	 the request is not serviced	 but gets recorded in the Session Queue

for that tool� when already running sessions are terminated by a CLOSE�TOOL command	

queued ones are sequentially extracted and automatically initiated�

��

Also	 OPEN�TOOL commands must lead to the initiation of our SPCs when and where

they are needed� in our design the actual forking of a certain persistent program on its

assigned host must be performed by the resident SPC	 but none is installed at the start�up

of the environment� Therefore	 when an OPEN�TOOL involves a certain machine for the

�rst time	 the server must create an SPC and establish a connection to it	 as a preliminary

operation to the instantiation of that session� only then the original OPEN�TOOL �and

possibly other commands referring to the same host that could be received and queued

meanwhile� can be serviced correctly�

Another feature we considered important to add is the ability to �re a rule involving an

MTP�activity without having previously opened a copy of its associated tool� We wanted

to replicate the usual behavior of rules employing SEL	 which don
t need any preliminary

operation in order to be used	 and to allow agents to select all rules in the easiest and most

natural way� �This feature can be precious also in the case users they ignore or don
t want

to worry about the de�nition of the underlying process model	 and most speci�cally about

the integration protocol chosen by the Administrator in each single case�� To support this

convenient facility	 we introduced what we qualify as atomic sessions� When the rule is

�red	 the system checks if the associated agent has registered for any active session involving

a copy of the necessary tool� If not	 the rule is momentarily suspended	 while an implicit

OPEN�TOOL command is executed by the server� the resulting tool session is marked as

atomic	 so that no other unrelated rule can exploit that copy of the tool� After the end of

the original MTP�rule and of all the possible chaining deriving from it �since it might need

to reuse the same instance of the tool within its rules�	 the session is automatically closed

by an implicit CLOSE�TOOL� All of these operations are transparent to the human user	

except for the fact that atomic sessions must still comply with the constraints posed by the

instances �eld	 so that the request may be sometimes �frozen� in the Session Queue of the

invoked tool	 while waiting for the end of another session� �It would be possible to avoid this

behavior	 with a more �exible policy on the matter � possibly on a per�tool basis and only

when there are no licensing restrictions	 by leaving to the Administrator the evaluation of

how crucial the resources reserved by each program	 even momentarily	 are for the e�ciency

��

of the overall system � so that atomic sessions are in certain cases allowed to break the

boundary on the number of instances� However	 in general even atomic sessions are not

necessarily brief	 given that the usage of many of the tools that we intend to integrate with

MTP � i�e�	 interpretive systems � can be inde�nitely long	 and there is little chance to

foresee for how much time they will be holding computing resources��

	���
 MTP Activities

While sessions are the MTP mechanism used inside the environment to provide and get rid

of persistent copies of external programs	 they don
t give any insight on how the wrapping

itself must be carried out� This point must be addressed at the level of granularity of the

activities	 i�e� of each single component of the sessions
 bodies�

As we already outlined	 we decided to employ for MTP loose wrapping	 as opposed to

tight encapsulation	 exempli�ed by SEL scripts� The idea we followed	 in order to exert

some control on the operation of the tool and to implement the needed form of interaction

and dialogue among the environment �and in the �rst place its data repository�	 the human

agents who employ MTP activties and the corresponding tools	 is that of equipping the

system	 and in particular the SPCs in charge of the new integration approach	 with a set of

internal procedures or external accessory software artifacts	 sometimes of general use	 other

times partially or completely customizable� Each of these components has a speci�c role in

the integration process and comes into play in one or more of the various sequential phases

listed below	 which we identify as constituent parts of an activity using the MTP approach�

�� A reservation phase	 in which a copy of the desired utility is acquired on behalf of

the activity and its associated user	 or	 if none is active in the environment	 yet	 one is

instantiated inside an atomic session� This phase is entirely carried on in the context

of the session mechanism explained above�

� An initialization phase	 in which the data gathered by the conditions of the rule are

passed from the objectbase to the tool and other customization functions are performed

if needed� We employ for this a simple shell script	 which accepts as its parameters �le

��

paths corresponding to objects in the data repository	 the path to a dedicated temporary

directory	 that is created at the same time the tool is started up and on which it operates	

and some more data used for internal housekeeping� The �lename of the script is kept

inside the TOOL class de�nition	 in the envelope name �eld and is forked by the SPC	

that maintains a set of pipes to communicate with it� The �rst task of the script is to

copy the �les into that directory	 thus making them visible to the external application�

then any series of shell commands can be used to perform whatever customization is

necessary� �nally	 via the pipes	 the script sends to the SPC a series of special messages	

used to initiate the loading of the data �les from the temporary directory into the tool�

The SPC recognizes such messages and displays their associated textual information

to the user inside a special pop�up window� its purpose is to inform the human agent

attending to the activity of all the necessary steps to complete the acquistion of its

arguments� for example	 the string in the window might indicate the command line or

the mouse action that should be used to perform the loading�

Although we would have preferred to come up with a totally automatic loading pro�

cedure	 as is accomplished by SEL	 we realized that it is hardly possible	 if we want

to reconcile persistency and a Black Box approach� In SEL	 tools are not persistent	

but live only inside the envelope that invokes them from the shell� therefore it is easy

to specify on the same command line all of their arguments �on the other hand	 SEL

is of little help in several cases	 like tools that don
t necessarily accept all the argu�

ments from the command line	 but use other conventions and means	 or the ones where

incremental loading of additional data after start�up is acceptable and desirable�� In

MTP tools are already running and therefore we cannot use the same command line

approach	 and only human agents can directly interact with them	 through their user

interface� However	 the environment	 using the messages and the pop�up window	 may

still provide assistance and guidance to the users	 in the loading operations as much as

in other contexts	 in a practical way� Moreover	 MTP activities can this way provide a

more re�ned and detailed level of guidance	 telling users what they must do within the

tool	 i�e� what speci�c button to push� and so on�

��

We also thought of and experimented with a di�erent mechanism	 that falls in the Grey

Box category and is therefore useful only for those applications equipped with their

own extension language or programming interface� in this case it is possible to augment

their functionality so that textual messages issued from the shell script �containing the

path of the �les to be loaded� would be captured directly by the tool	 which could then

automatically acquire them using a loading procedure of its own� A promising test case

we worked on involves once again the Emacs text editor� Although more elegant than

mere assistance to users via a pop�up window	 this method lacks generality	 because

of the limited range of tools to which it is applicable and because it presupposes the

ability and the will of the environment designers to customize the integrated applications

by implementing	 possibly in a di�erent fashion for each single case	 the functional

extension to obtain such automated loading� for this reason we decided not to support

it in the context of Rivendell	 even if we plan to include it in some test environments

and keep exploring its potential�

�� An operation phase	 in which the agent who �red the rule freely uses the tool with its

features and manipulates the data that have been made available to it in the previous

phase	 exactly as he�she would have done from outside the PCE� There is no di�erence

or limitation	 because the tool is accessed directly and not through any wrapper� The

only requirement of the protocol �that cannot however be automatically enforced in

any way� is that the execution must not be terminated through its provided internal

commands	 menu buttons or procedures	 but only with the environment primitive for

handling sessions �CLOSE�TOOL��

�� One or more data recording phases may occur during the operation phase	 whenever

the user wants or needs to save intermediary results of the work he�she is performing�

When saving	 a tool updates the copies of the �les kept in its own temporary directory	

rather than the ones in the objectbase� We use an ad hoc small utility program	 a

watcher	 spawned by the same SPC that handles the tool and at the same time	 to

keep track of what �les involved in the MTP activity are modi�ed and to communicate

��

such information to the SPC	 via a set of pipes� There is a watcher keeping under

surveillance each of the tools
 temporary directories	 while a table of the updated �les

is maintained in the SPC and is used in the �nal phase of the activity�

�� The conclusion of the activity	 in which the control of the tool is released	 one of the

possible e�ects de�ned in the rule is selected and the data resulting from the execution is

stored back in the objectbase� While in SEL it is up to the envelope to catch the return

code of the tool after the user closes it	 in MTP the tool remains inde�nitely active�

therefore the only solution is to let the operator decide when his�her work is �nished

and to provide a way to communicate this fact to the client� We use for this a couple of

buttons	 inserted in the window provided by the GPC for all activities� The meaning

and consequences of selecting each button are opposite� one causes the watcher to save

all the �les that were updated during the activity into the objectbase	 by copying them

back from the tool directory	 and maps then to a given set of e�ects� the other assumes

that the work done has for some reason corrupted part or all of the data and performs

no action on the copies in the objectbase	 but only discards the temporary ones� Also	

a di�erent set of e�ects is chosen� MTP presents to its users a classical commit vs�

rollback option	 that currently limits MTP�rules to have only two sets of e�ects	 while

MSL would support an arbitrary number �� In principle	 it would certainly be possible to

modify Rivendell to accept and support rules with an inde�nite number of e�ects	 as

we have in SEL	 by providing a menu with a button for each of them� the only problem

is that the naive user might not always know the di�erences among them �in SEL rules

they are often subtle and clear only to the Administrator	 since this kind of complexity

is kept transparent to the clients	 but can nevertheless lead to the instantiation of very

diverse chains and process fragments�	 unless a satisfactory and self�explanatory label

or caption �maybe provided as an adjunct to the e�ects
 syntax� is attached to them�

The structure of an MTP activity	 as seen above with its features and its procedures	 is

successful in integrating generic tools in a semi�automated fashion� Human intervention is

�However� in practice� there are few cases in which more than two are used� since the choice between
success and failure is generally su�cient to represent the outcome of most tools�

��

necessarily heavier than in the SEL approach	 since persistency leads to looser wrapping and

this gives to the system less information and less control over the state and the operation

of the tools� Another drawback is the need to perform a transfer of the �les involved in the

activity into the tool
s directory and back� This is done in order to allow our watcher to keep

under control the operation of the program and its consequences on the �les	 as well as to

provide a mapping of intermediate steps in the processing of the data during a long duration

activity	 without risking in the meanwhile the integrity of what is stored in the objectbase�

On the other hand	 it imposes a serious limitation	 because the tool instance and its SPC

must reside on the same local area network of the environment in which the MTP tool is

de�ned� if a user imported a part of a process from a remote server and then tried to �re

one of those rules on its local objects	 the transfer operations would fail	 since the designed

SPC and the server would run under two di�erent �le systems�

	���� Sharability and Multi�Processing Capability

The purpose of Rivendell is not only to propose a new Black Box integration protocol that

is alternative to SEL	 but also to actively support with it some speci�c families of tools with

their own peculiar properties� One of the most important subjects of our research is to study

di�erent ways to allow multiple users of the same environment to work together	 exploiting

the same resources and even collaborating	 when this is applicable� Therefore	 in MTP we

put a lot of stress on those facets and features that can be used to achieve such a goal	 by

trying either to accommodate in the most natural way those applications that are inherently

designed for teamwork	 or to conceive a way to exploit in a multi�user and multi�processing

context those tools that	 even if not commonly employed that way	 we consider specially

useful and also �exible enough�

A crucial role for this issue is played by the categorization of tools into four classes	

associated with the valid values of the multi��ag speci�cation in the extended version of

MSL� UNI QUEUE	 UNI NO QUEUE	 MULTI QUEUE and MULTI NO QUEUE� Each

of these labels represents and enforces in the protocol a di�erent working model	 when

overlapping activities occur on the same copy of a tool	 in response to requests issued either

��

by the same user or by various ones� Moreover	 together they are intended to cover as widely

as possible the spectrum of the possible behaviors and needs of tools involved in multi�user

and multi�tasking processing in connection with a PCE ��

UNI QUEUE This represents the basic category� with it	 we try to describe and ac�

commodate the behavior of applications that are strictly single�user and that would not ade�

quately support concurrent operations derived from simultaneous MTP activities� Therefore	

each copy of such tools is reserved to the same unique user	 the one that opened it in the �rst

place	 and the body of the associated session is made up of a simple sequence of activities

that never overlap� To guarantee this last constraint	 we introduced the concept of Activity

Queues	 in which we record and keep the requests to initiate activities that are issued while

the current one is being processed	 until its end� A work session for a UNI QUEUE utility

can be seen in Figure ��

The most important advantage of the activities which exploit the UNI QUEUE facility of

MTP over the ones using SEL	 is that multiple operations can be sent to the same copy of the

tool	 under the complete control of the process engine� In SEL	 additional operations afer the

�rst one	 which is speci�ed within the original rule	 can be invoked only outside such control�

The user would have to understand the format of the hidden �le system internal to Oz
s data

repository to access any other �les� moreover	 the system would not be automatically noti�ed

of the modi�cations that occurred to those �les�

UNI NO QUEUE This class represents the following step	 after UNI QUEUE	 with re�

gard to the complexity of the requirements for integration that must be satis�ed� Here

again each tool instance is reserved for just one user	 but he�she is permitted to freely run

on it multiple activities at the same time	 thus fully exploiting its multi�tasking capabil�

ity� The basic assumption the Administrator needs to verify when labeling a program as

UNI NO QUEUE is that the nature of the tool can support the manipulation of multiple

�Note that� since in the case of Oz it is possible to have di�erent GPCs active at the same time under the
same user id� we must always distinguish between the term user and the term client� when deciding how to
service requests for single�user programs� we must take therefore into account that it is not enough to make
single�user programs accessible only by the client from which the corresponding OPEN�TOOL command has
been issued� but a more re�ned policy is needed�

��

User �
 OPEN�TOOL �tool� �session S��

Session S� begins

User �
 �tool� �MTP�activity A� �argument set A�

Activity A begins

���

Activity A ends

User �
 �tool� �MTP�activity B� �argument set B�

Activity B begins

���

User �
 �tool� �MTP�activity C� �argument set C�

Activity C is stored in the Activity Queue of S�

�Activity B continues�

���

Activity B ends

Activity C begins �automatically resumed�

���

Activity C ends

User �
 CLOSE�TOOL �tool� �session S��

Session S� ends

Figure �� Example of Session of a UNI QUEUE tool

�

User �
 OPEN�TOOL �tool� �session S��

User �
 OPEN�TOOL �tool� �session S��

Session S� begins

User �
 �tool� �MTP�activity A� �argument set A�

Activity A begins

���

Activity A ends

User �
 �tool� �MTP�activity B� �argument set B�

Activity B begins

���

User �
 �tool� �MTP�activity C� �argument set C�

Activities B� C carried out in parallel

���

Activity C ends

���

���

Activity B ends

User �
 CLOSE�TOOL �tool� �session S��

Session S� ends

Figure ��� Example of Session of a UNI NO QUEUE Tool

disjoint data sets �the arguments of each activity�	 without causing any interference among

them� Since the misclassi�cation of a program without some kind of multi�tasking capability

as UNI NO QUEUE may lead to the accidental loss of the work done during an activity	

when an overlapping one is issued	 the administrator should take special care in validat�

ing his�her declaration	 via thorough tests on dummy data	 before inserting them into live

environments�

A session can map to something similar to Figure ���

In this case	 we assume that the machinery needed to deal with multi�tasking	 like Ac�

tivities B and C in Figure ��	 is provided by the tool� The only basic di�erence from the

approach used with UNI QUEUE is that we need not employ for it an Activity Queue� what

we do is actually only seconding the nature of the utility	 without exerting any control on

the sequence of the requests it services	 so that UNI NO QUEUE can be seen as the �lazy�

��

version of UNI QUEUE�

The previous two categories are designed for utilities that don
t allow the sharing of process�

ing resources or of the data among multiple environment
s users and enforce this constraint�

Those tools that can be adapted to or present some form of multi�user capability fall either

in the MULTI QUEUE or in the MULTI NO QUEUE class�

MULTI QUEUE From the point of view of the protocol	 these tools have a lot in common

with UNI QUEUE ones	 with the important di�erence that they are not restricted to service

only the user that opened them� This class allows the most basic form of sharing of the

tools� users	 from their GPCs	 can only take turns in using them	 being forced to wait in the

Activity Queue until the previous MTP activity is �nished	 and then exploiting the essential

xmove utility to acquire the GUI on their display	 every time they issue overlapping requests�

Given its properties and its implementation	 this class is suitable to e�ciently achieve one of

the most interesting goals we posed for our research� extending the use of certain single�user

applications to a rudimentary	 but nevertheless useful form of sharability and teamwork� It

is easy to imagine multiple agents working one after the other on di�erent stages of the same

complex task	 by taking alternate control of a MULTI QUEUE tool�

There is however an important detail that cannot be left aside� users need a way to specify

when they want to use for their activities the same copy of the tool that is already active in

the system	 rather than a new one� The problem comes directly from the concept of atomic

sessions we introduced above� this is often an e�ective and convenient way to simplify the

use of MTP rules	 but presents us with the following situation� say User � has initiated a

session on the MULTI QUEUE tool Tool A and User
 �res a rule that employs the same

tool� Since User never issued an OPEN�TOOL command for it	 the associated activity

would map to an separate instance of that tool	 enclosed in an atomic session� On the other

hand	 by issuing an OPEN�TOOL User would begin a new	 separate session with its own

tool copy�

��

The solution we chose relies on the restriction that a user cannot participate in more than

one session for any tool at any time and on the concept of named sessions	 through which

we are able to give a more articulate semantics to the OPEN�TOOL and CLOSE�TOOL

commands	 when applied to MULTI tools� Therefore in Oz	 to get access to a sharable

pre�existing application	 those users that did not invoke it in the �rst place must use OPEN�

TOOL	 specifying the name of that same session as a parameter� we de�ne such an action as

joining a session� Users leave a session when they select	 as a parameter for CLOSE�TOOL	

the name of a session that they previously joined and that has currently more than one

participant� this operation does not necessarily kill the MULTI tool instance	 but may only

change internal information about the association between that user and that named session�

Termination of the program is allowed only for the last participant in each session �who is

not necessarily its initiator��

We also added one more level of complexity to the session mechanism that can be employed

when MULTI QUEUE tools come into play	 mainly with the purpose of achieving an optimal

use of the often costly processing resources employed by many persistent programs and to

try to limit as much as possible the number of their copies active at any moment in the

environment� when an MTP rule using a MULTI QUEUE tool is �red outside any session

and a copy of that tool is already available �in the context of a non�atomic session	 because

in that case it is reserved only to the original user�	 and currently not involved in any other

activity	 we allow the system to use it	 automatically attaching and detaching the activity	

and thus its rule and the deriving chain	 to that session� We de�ne this situation as a borrowed

session and it constitutes an alternative to an atomic one	 with the advantages of avoiding

the processing overhead of starting up a new instance and of saving a substantial amount

of resources� However	 this feature presents also some disadvantages� for example when the

internal state of the tool is relevant to subsequent operations	 the borrowed activity and	

even more important	 the following ones by the �legitimate� users might give impredictable

outcomes� moreover	 a user borrowing a copy of a tool for a lengthy operation could greatly

hinder the participants in the session� It would probably be useful in the future to implement

a mechanism to decide	 on the base of the nature of each MULTI QUEUE tool and�or

��

according to the will of the users who join a particular session	 whether to allow the �lending�

of a tool instance or not�

Given all of the above	 it is easy to see that the MULTI QUEUE class provides a lot

of �exibility and various diverse coordination models for a hypothetical team of Oz users�

the possible combinations are much more numerous than for the UNI tools and also more

complex� �See Figure ����

MULTI NO QUEUE This is the class that has been explicitly conceived and designed

to accommodate inherently multi�user systems	 taking into account their peculiarities and

especially their architectures� We decided to address mainly two families of such applications�

the ones that use the very popular and well�known client�server hierarchy	 and those that

support a non�hierarchical structure	 which resembles the model of a network connecting

separated and independent components	 which have the same importance and play identical

roles �and that we for brevity qualify from now on as nodes� ��

From these two di�erent architectures derives an asymmetry that must be resolved by our

protocol and that involves mainly the forking and killing of such tools� It is most common

that the �rst agent to invoke a client�server system brings up �rst of all a server process	 which

then provides him�her with a client	 where usually the user interface plus other decentralized

services dedicated to a single user reside� When other agents want to join that same system

and invoke it	 it is necessary only to create copies of the client process	 which are dispatched

to them and connected to the pre�existing server� In a similar way	 users that decide to

close their clients don
t in�uence the life span of the server	 except possibly the last one	

since terminating the last client usually means that the server
s functionality is not needed

anymore� This should be taken into account by the primitives of our PCE in charge of

starting up and closing such tools�

All of these distinctions disappear if the structure is not hierarchical while others	 since

each invocation maps to a di�erent copy of the same node program	 which itself has the

�We identify as instances of such a structure either systems employing a simple peer�to�peer architecture
as well as some instances of the ones built on bus architectures� since in the latter some hierarchy among
the di�erent nodes may or may not be present

��

User �
 OPEN�TOOL �tool� �session S��

User �
 OPEN�TOOL �tool� �session S��

Session S� begins

User �
 �tool� �MTP�activity A� �argument set A�

Activity A begins

���

User �
 OPEN�TOOL �tool� �session S��

�User � joins session S��

���

Activity A ends

User �
 �tool� �MTP�activity B� �argument set B�

Activity B begins �on borrowed session S��

���

User �
 �tool� �MTP�activity C� �argument set C�

Activity C is stored in Activity Queue of S�

���

Activity B ends

Activity C begins �automatically resumed�

���

User �
 CLOSE�TOOL �tool� �session S��

�User � leaves session S��

���

Activity C ends

User �
 CLOSE�TOOL �tool� �session S��

Session S� ends

Figure ��� Example of Session of a MULTI QUEUE Tool

��

ability to build links to the others	 already activated	 which constitute identical parts of the

same system� Also	 in the network�like architecture the killing of any of the nodes can change

the way the overall system works and communicates	 but does not in�uence its duration�

Therefore no special treatment is actually required in this case	 either during the start�up

and termination phases�

It is clear that our OPEN�TOOL and CLOSE�TOOL commands should act very di�erently

in each of the two scenarios above	 and in order to decide their own behavior they would also

need to acquire some additional information that is not relevant for other categories of tools�

However	 our conclusion was that to impose further complexity on such primitives was not

desirable nor practical	 since it should have been done most likely at the process language

level	 asking the Administrator to supply a more detailed description of the nature of each

MTP tool than is already required�

The �exibility of MTP and speci�cally the option to use customizable shell scripts to take

care of tools
 invocation	 rather than directly forking them	 was seen as an alternative way

to solve this problem� We found that is usually possible to come up with scripts which

take in account the peculiarities of both these multi�user architectures and automatically

perform whatever is necessary to service correctly either an OPEN�TOOL or a CLOSE�

TOOL� for example they can exploit the tool
s dedicated directory to store and retrieve

temporary data	 like the number of clients attached to a server after each OPEN�TOOL and

CLOSE�TOOL	 the port numbers used to dialogue with the server and so on� Resorting to

scripts is therefore quite easy and useful	 but in many senses shows some precise limitations

of our design and of the functionality of Rivendell	 since they are currently not an actual	

intrinsic component of it	 nor a built�in customization method	 but rather a �back door� we

use for its convenience and which requires on the part of the process designers some inside

knowledge of both the tools
 structure and of MTP machinery� we believe this information

should instead in principle be abstracted from the Administrator in some way and future

development should go in that direction	 trying however to establish a satisfactory trade�

o� with the amount of information that should be kept in the process description for each

MULTI NO QUEUE tool� An interesting approach could be to formalize the scripts as

��

inherent components of our protocol	 to augment them �similarly to what we did with SEL�

by coming up with a convenient syntax and the associated semantics to describe in a general

way a wide range of tool customization operations and to consequently o�er within our PCE

a new powerful utility for the tool modelling that is necessary during the process design

phase�

Anyway	 in its current stage MTP is able to ensure �via the abovementioned execution

of the shell scripts in response to every OPEN�TOOL command�	 either in the case of the

client�server or of the network�like architectures	 that all the participants to the same named

session access the same instance of the multi�user system� From the Oz clients
 point of

view	 each OPEN�TOOL maps to the instantiation of a new portion of the system	 which

is dispatched and made available to the GPC	 exactly in the same fashion as the other

categories of tools �note that	 according to the architecture of Rivendell	 also in this case

the node or the client processes actually run on an SPC �	 while only their correspondent

GUIs are sent by xmove to the hosts where the GPCs reside�� Most of the complexity of

dealing with such composite systems and with their structure is e�ectively kept hidden from

the naive user and involves only the Administrator	 since the only important notion that

users must recall is that each time they select a new name for their sessions they start up

a separate multi�user system	 while by choosing an existing session they obtain a new node

or client process for an already active one	 thus joining other agents within the environment

who are sharing its resources and its data�

One of the most interesting facets of this model is the fact that	 to a great extent	 we are

able to deal with each single part of such a complex system as if it were an independent

software artifact� This at the same time has favorable consequences and presents us with

some intriguing problems� On one side	 once a multi�user system is initiated	 control of one of

its portions is obtained by each GPC joining that session� the GPC then takes active part in

the session by �ring rules completely on its own� The transparency or visibility to other GPCs

and their associated users of such activities depends exclusively on the nature of the tool	

�While running each component from its own GPC would be desirable and even possible from many
multi�user systems� it would require the replication in the GPCs of a lot of the speci�c SPC functionality�
especially in order to deal with the sessions and the related primitives�

��

which may either support collaboration or not� The integration protocol is not concerned

about such issues and leaves up to the tool
s functionality their management and to the

PCE
s concurrency control component the de�nition of a policy which must appropriately

resolve con�icts that could arise on the data �if it is stored in the PCE
s repository��

On the other side	 GPCs consider a node or client process assigned to them as a stand�

alone application and this leads possibly to a need for further categorization internally to

the MULTI NO QUEUE class	 with respect to multi�tasking capability� For example	 a

client�server system is commonly able to comply with simultaneous responses to commands

coming from separate clients	 but	 depending on the structure and implementation of the

client processes	 it might or might not allow processing of operations which are issued on the

same client and which overlap in time	 a scenario that might certainly occur	 if the user of

the environment decided to �re multiple rules on the same tool�

A possible solution would be again more �ne�grained information provided at the process

de�nition level �say	 an additionalQUEUE�NO QUEUE �ag to be looked up when dealing

with MULTI NO QUEUE applications and referring to the nature of their clients or nodes�	

even if it is possible to imagine systems that would present us with this problem at multiple

levels and	 in principle	 even recursively� We however decided again to limit the detail of

the tool description in MSL and to adopt for now	 a rather conservative approach to this

matter� we disallow GPCs to execute overlapping activities on their assigned component of

a multi�user system and we use the mechanism of the Activity Queue	 imposed on every

single node or client	 to enforce this constraint	 even if this choice may sometimes seriously

limit the exploitation of the power of some tools�

The schema of a hypothetical MULTI NO QUEUE session can become quite complicated	

as in the example of Figure ��

��

User �
 OPEN�TOOL �tool� �session S��

Session S� begins system component � dispatched to User �

User �
 �tool� �MTP�activity A� �argument set A�

Activity A begins

���

User �
 OPEN�TOOL �tool� �session S��

�User � joins session S�� system component � dispatched to User �

User �
 �tool� �MTP�activity B� �argument set B�

Activity A� B are carried over in parallel

by components �� � respectively

���

User �
 �tool� �MTP�activity C� �argument set C�

Activity C is stored in Activity Queue of

system component �

���

Activity B ends

Activity C begins �automatically resumed�

���

Activity A ends

User �
 CLOSE�TOOL �tool� �session S��

�User � leaves session S�� system component � is killed

���

Activity C ends

User �
 CLOSE�TOOL �tool� �session S��

Session S� ends all existing system components are killed

Figure �� Example of Session of MULTI NO QUEUE Tool

��

� Implementation Issues

��� TripartiteMessage	Based CommunicationDuring MTP Rules

In their current implementation	 Oz clients cannot directly talk to each other	 while servers

don
t have this lmitation� All Marvel and Oz past versions relied on the fact that �at least�

one of the two ends of a communication channel must be a server� Therefore	 client�to�client

communication may happen only through a server	 which is employed to pass the information

from one end to the other�

During recent development	we recognized that	 since the complexity and the number of

messages exchanged in Oz constantly grows while new features	 especially distributed or

delegated ones	 are designed and built	 a bottleneck problem could occur at some point�

This is possible particularly if we consider that work shared among agents and groupware

are becoming increasingly crucial issues in SDE technology� As an experimental step in

that direction and with the introduction of SPCs	 MTP has been one of the �rst scenarios

that presented us with the need for a more complex interaction during rules
 execution	 and

possibly for direct client�to�client message exchange� However	 we judged such upgrading

not to be in the scope of the Rivendell project	 being rather a networking problem	 to

be faced in parallel on�going lines of research� Therefore	 we chose to exploit the current

architecture as well as we could	 by performing only functional modi�cations on top of the

communication protocol	 rather than structural ones to its core�

In SEL	 if a user �res a rule from his�her own GPC	 a message is sent to the server	 where

the conditions are evaluated by the Rule Processor �potentially causing recursive backward

chaining�� when the activity part of the rule is �nally reached	 a message goes back to the

GPC	 causing it to fork a process executing the envelope that encapsulates the external

tool� the relevant input to and output from its work session is completely managed by the

envelope and the GPC
s user interface	 while the �nal status information �together with the

results of the processing� is passed again to the server that performs the evaluation of the

e�ects and	 when it is appropriate	 forward chaining� �See Figure �� ���

�The numbers associated to the arrows give a temporal order to the various phases�

�

I P C

GPC

Envelope
Tool

5

EXECUTE Message

Rule Signature

Tool I/O flow

Server

2

6

7 Effect
Evaluation

I P C

Interface

Activity
Manager

User 1

3

Condition
Evaluation

Envelope

Spawning

4

Rule Processor

Return code
 and data

Figure ��� The Sequence of the Events and Messages for the SEL Protocol

��

In MTP things become much more complicated	 since to SPCs is delegated a part of the

work that in the usual integration mechanism is performed directly inside GPCs� once again	

the initial message that �res a rule and instantiates a process fragment is sent from the GPC

to the server	 but the server	 after the evaluation of the conditions must select the SPC on

the right machine and ask it to perform the corresponding activity	 according to the MSL

speci�cations stored in the TOOL class� The associated tool output must be sent to the

GPC and be displayed inside the window dedicated to each activity	 while input from the

user	 captured by the same component of the GUI	 must go to the SPC and then be fed into

the wrapped program� the status code that concludes the activity is produced by the GPC

and must be sent to the SPC again through the server	 thus causing the end of the MTP

activity	 the registration of the results into the objectbase and �nally the beginning of the

e�ect phase of the rule�

As it is evident by looking at Figures �� and �� the pattern of communication becomes

much more complicated in the MTP case� To handle this without too much additional

machinery we needed to reconcile it as much as possible with the usual two�ends scheme�

The principle we embraced is to maintain in a table which SPC is proxying for a given GPC

during each activity� This table is built and kept in the server and when messages arrive

from the SPC their signatures are changed so that they are processed as if they were coming

from the GPC� The only exceptions are special messages that carry the I�O of the external

program� while in SEL the server is not concerned at all with such data	 in MTP it must

just redirect it from the SPC to the corresponding GPC and vice versa	 by looking up the

pair of clients in the table�

This way	 the complexity of the new communication model is almost completely hidden

from the servers	 as much as from the two kinds of client� they all behave almost completely

accordingly to the old model� the clients always talk to their local server and the server is

�fooled� into believing that it always communicates with the GPC that �red the rule in the

�rst place�

However	 there is an obvious drawback� this model introduces some communication over�

head	 compared to a hypothetical one where SPC and GPC interact freely	 since those

��

I P C

GPC

Rule Signature

Server

2

Effect
Evaluation

I P C

Interface
User 1

Condition
Evaluation

Rule Processor

3 SPC
 Selection

I P C

Activity

Manager

Envelope
Spawning

5 Tool
Envelope

SPC

7 Activity

4
EXECUTE Message

Activity
Termination

8

Tool I/O flow6

10

9 Return code and data

Termination Code

Figure ��� The Sequence of the Events and Messages for the MTP Protocol

��

messages that have to pass through the server must undergo additional processing and are

often also sent across the network twice� Also	 some new coordination problems and race

conditions	 due to messages coming from the two di�erent sources	 can arise in the server

which takes care of an MTP rule and must be taken into proper account in the current

implementation� This problem has been analyzed and avoided	 by adequately designing and

testing the whole tripartite message protocol between GPC	 server and SPC and by care�

fully trimming the procedures in the server
s code which poll in the correct sequence all the

sockets connected to the two kinds of client� For this reason	 whenever an extension becomes

necessary and new message types are added to support more features	 developers must to

deal with the complexity of this part of the communication subsystem and must be careful

to implement their enhancements in a compatible way� We foresee that in the future the

whole subsystem will probably be redesigned	 e�g� using a bus architecture�

��� Startup of MTP Tools

The property of persistency we decided to give to programs integrated by our new protocol

is clearly responsible for the most extensive and important modi�cations introduced into

the overall structure of our system	 beginning with the creation of SPCs� Persistent tools

are automatically instantiated via a speci�c primitive and by a dedicated piece of software

and the corresponding operations involve some complex implementation details	 speci�cally

when dealing with two �special cases�� initiation of tools residing on hosts where no SPC is

already active and atomic sessions�

�
�� Initiation of SPCs

The new MSL de�nition of the TOOL class provides enough information to determine the

host on which each MTP program must reside� This speci�cation has a twofold purpose� �rst

of all we consider important to share the load of running possibly computationally�expensive

applications	 like the ones we plan to integrate with Rivendell	 among di�erent machines�

moreover	 it can e�ectively address those cases in which a given tool is for any reason �e�g�

license agreements� restricted to run only on certain hosts� Note how this feature is of general

��

value and could bene�t also a future enhanced version of SEL�

Accordingly to our design	 Oz employs a distinct Special Purpose Client to manage all

the instances of persistent tools assigned to a given host� the SPC must also reside there	

since it is its duty to fork them� When the environment is initiated	 however	 no SPCs are

present� an SPC is only created when needed for the �rst time	 that is	 whenever the �rst

instance pertaining to a given machine is requested by an OPEN�TOOL command�

To service that request correctly	 a sequence of operations must be performed� the system

must �rst of all start up and initialize the SPC and then ask it to fork the tool	 thus initiating

its session� Therefore	 when receiving an OPEN�TOOL command from a GPC	 each server

looks up its client table to see if any SPC is active on the machine where the tool must run�

If this is not the case	 the server saves the OPEN�TOOL with all its associated parameters

and issues a request to the Oz daemon	 an autonomous component of the system	 in charge

of initiating both servers and SPCs on their designated workstations� We use this approach

for two main reasons� in the �rst place	 in our architecture the clients are not dependent

on their local servers and are never forked by them	 but rather live independently and are

linked to them only via sockets� moreover	 after the server has passed its request to the

daemon	 it can go ahead and perform other operations	 namely the processing of messages

and commands coming from other clients and servers	 while the daemon works on its own

to satisfy the server and fork the SPC� This is clearly more convenient than to engage the

server itself in the creation of SPCs	 thus delaying the work of all the other agents working

in the environment and dependent on it�

When a new SPC is up on the chosen host	 it retrieves on its own the communication

address to talk to its local server	 information kept in a �le inside the root directory of the

environment� then it issues a special message to inform the server of its existence and a

registration protocol is executed by the two parties	 after which the communication channel

is �rmly established and the new client takes its place in the table maintained by the server	

so that it can be regularly polled for service�

It is only at the end of the registration procedure that the original OPEN�TOOL can be

resumed and satis�ed	 since now the system is ready to comply with it� We also take into

��

account that in the meanwhile more commands depending on the same SPC might have

been issued �for example	 MTP rules in the context of the session just initiated	 or more

OPEN�TOOLs for di�erent instances on that host	 and so on� and we are able to deal with

them	 by bu�ering them momentarily until the SPC is ready� Moreover	 we associate a

timeout to each of these frozen requests	 in case a failure happens in the forking or in the

registration procedure	 so that the server can get back to the GPCs waiting for a reply and

inform them that some problem occurred	 preventing the processing of those commands�

�
�
 Atomic Sessions

Every rule involving an MTP activity must be part of a tool session	 since in our model

the session is in charge of establishing a relation between persistent applications forked

with an OPEN�TOOL command and the process fragments using them� When an MTP

rule is �red outside any session and no borrowing is applicable �See the paragraph on

MULTI NO QUEUE in Section ������	 we need to enclose it in a dedicated and atomic

one	 whose body is composed exclusively of the associated activity� This is necessary in

order to provide to the rule the tool instance it needs to operate on its arguments and is ac�

complished by automatically executing OPEN�TOOL and CLOSE�TOOL commands before

and after processing the rule respectively	 transparently to the user who �red it�

This task is performed by the server	 since it keeps in a table information about all the

active sessions	 with indication of the tools involved and of the users who joined them� when

an MTP rule is �red	 it is easy to check	 by looking up that table	 if the user is already

registered for a copy of the tool described in the rule
s activity part� If this is the case	 the

server checks the type of the tool and if it is already engaged in some other operation	 then

acting accordingly	 either by queueing the activity or executing it� Otherwise	 it is necessary

to �freeze� the execution of the rule and save its signature in a dedicated data structure	

while an implicit OPEN�TOOL procedure is carried on by the server and by the appropriate

SPC� nobody else can join such an atomic session	 which also does not accept other requests	

except the ones possibly deriving from chaining from the original rule�

When the tool is �nally available the conditions of the rule are re�evaluated	 since the

��

state of the environment might have been changed in the meanwhile� This implies that

backward chaining from the original rule could be initiated and performed from inside the

atomic session� In the same way	 after the end of the activity	 the automatic CLOSE�TOOL

command is not issued until the e�ects and consequential forward chaining are executed�

The choice of extending the duration of an atomic session to all the chaining deriving from

an MTP rule is suggested by the empirical evidence that the rules in the chain may often

use the same external program	 specially when dealing with complex	 long�lived systems� In

that case it is certainly more correct and e�cient to permit the use of the atomic instance

also during the chain	 than to open new ones for each rule in the chain�

This may be still necessary	 however	 if the rules in the chain involve other kinds of tools

and would be again realized using atomic sessions for them� The importance of the concept

of atomic sessions is here once again evident	 because they permit to preserve also in MTP

complete automation of the process actuation via chaining	 which is one of the most valuable

characteristic traits of the Oz PCE�

�
�� Parametrizing MTP tools

The OPEN�TOOL primitive accepts only one explicit argument	 a name for the session� this

may be insu�cient in several cases	 for example to correctly invoke certain applications that

require some information at start�up �e�g� a database system might need to know which

particular database it has to load�	 or to provide command line switches that change in one

way or another the behavior and the use of the tool� Our model has therefore a serious

limitation in its power to describe persistent tools and their properties�

We bypass this problem at the implementation level	 by relying on the customization shell

scripts we often invoke at OPEN�TOOL to initialize the copies of the tools	 coupled with

our watcher utilities �on which we expand further in Section �����

The approach is reasonably simple� as its �rst operation	 the script creates into the tool
s

directory a dedicated �le	 which contains a prompt for the user	 asking for the necessary

pieces of information� the script then enters a loop	 waiting for a response �le to be created

��

in the same directory �� Whenever the prompt �le appears	 it is detected by the watcher	

that encapsulates its textual content within a special message sent to its associated SPC	

and from there to the core of the Oz system� The user who issued the OPEN�TOOL is

then requested to provide the parameters	 inside a little dialog window� His�her response is

passed back to the watcher	 that is in charge to write it in the response �le� Such an event

is in turn caught by the customization script	 that retrieves the information in the �le and

then can invoke the instance of the MTP tool with the correct arguments�

This method realizes for the persistent tools an alternative way to access data	 outside

the protocol de�ned by Oz for its environments� therefore none of the control procedures

of our system and of the user�de�nable policies can be enforced� This does not represent a

serious data integrity problem as long as the method is used to parametrize the tools only

with data comlpletely external to the environment
s repository �e�g� within a separate tool
s

repository��

��� Queueing Sessions and Activities

We saw above how in various di�erent occasions MTP employs queueing or bu�ering mech�

anisms to momentarily stop processing certain requests	 while the system provides the re�

sources or realizes the conditions which are needed to comply with them� The management

of such features has some interesting facets and o�ers some implementation challenges we

had to face�

� Some of the categories of tools we de�ned for MTP support ActivityQueues	 maintained

by the server in the context of each session� Problems can arise when a user tries to close

a tool instance while its Activity Queue is not empty	 since it is necessary to resolve

the con�ict among the rules in the queue �which still need to access the copy of the

external application� and the CLOSE�TOOL primitive� Various policies are possible to

deal with such situations�

�All of this can be achieved by exploting common Unix commands�

��

� Immediate servicing of the CLOSE�TOOL	 while each single rule still in the queue is

enclosed in an atomic session and executed separately from the others� This solution

has many drawbacks� �rst of all	 it possibly causes huge start�up overhead	 because

the system must provide as many copies of the tool as the number of entries in the

Activity Queue� Moreover	 if this number is greater than the instances value	 we

have to deal again with queueing some of the requests	 in the form of atomic sessions	

for an indeterminate amount of time� Last but not least	 this approach can be often

logically wrong	 since the queued rules might have been issued speci�cally for that

instance of the tool	 in order to bene�t from its state and from the operations

previously carried on by it� We face what can be de�ned as a session mismatch�

� Delayed service of the CLOSE�TOOL	 after all the rules waiting for that instance

have been serviced� Even if this option seems to address successfully some of the

weak points of the previous approach and speci�cally session mismatch	 it is not

a feasible solution� It is possible that while the process fragments deriving from

queued rules are performed	 other rules involving that same instance are �red by

agents who are unaware of the impending CLOSE�TOOL	 thus further delaying

its execution indeterminately� To alleviate this problem it is possible to mark the

session in a special way	 so that no more activities are dispatched to it� This is

potentially confusing for the users who have joined that session and who try to

access it after the CLOSE�TOOL	 but before the processing associated with the

last queued rule is terminated� formally the session is still up	 but user are �thrown

out� of it	 most likely forced to employ atomic sessions instead�

� Immediate service of CLOSE�TOOL and transfer of the whole Activity Queue to

another existing session for the same tool	 or	 if none is available	 to one created

for this purpose which remains invisible and unaccessable to clients� Even if this

approach still does not address properly the important problem of session mismatch	

it avoids unnecessary overhead	 realizes prompt response to the CLOSE�TOOL

command	 is not confusing for participants to the session who have not issued the

CLOSE�TOOL and also keeps a partial logical consistency	 since the rules in the

��

queue	 that were meant to be processed on the same instance still are	 even if

this could have little meaning in case they were strictly dependent also on previous

operations� Anyhow	 we decided to follow this line of thought in the current version

of Rivendell	 being aware that some more sophisticated e�ort �e�g� an agreement

mechanism when closing a session with multiple participants� is desirable for future

implementations�

� Rule execution is suspended in MTP basically when the necessary resource represented

by the tool invoked by an activity is not available� When the system veri�es this is

the case	 the rule has actually already been instantiated and its �rst section	 with

veri�cation of conditions and binding of objects from the data repository	 has taken

place� During this phase the system is in charge of placing locks on the objects	 as

speci�ed in the MSL tool de�nition and according to the concurrency control policy

established by the Administrator� Locks are usually released only at the end of the rule

execution	 but since that event is delayed for a potentially long period	 we decided that

�frozen� rules cannot keep their locks� This avoids interference with other rules that

might need and be prevented to access a subset of the same data� This	 besides the

fact that the state of the process and the data might have changed in the meanwhile	

is another reason why it is necessary to re�evaluate the conditions of those rules and to

re�acquire locks when they are �nally resumed�

� Another issue strictly linked to the Activity Queues above is the decision about when

extraction from them should take place� The answer may seem obvious� when the

activity currently using the tool is over� It turns out instead that other approaches may

be more e�cient� As we argued above	 it is quite reasonable that chaining generated

by an MTP rule involves again the same external application	 perhaps in di�erent ways

and with diverse purposes� It is after all a natural consequence of our strife to integrate

either certain families of programs like large size systems with numerous functions often

related to each other	 or query�based ones	 since they encourage to perform complex

procedures that are composed and actuated by a sequence of steps	 each executing a

�

R1

R1.2

R1.3

R2

R2

R1.3

R1.2

R2.2

R2.2

R2.3

R2.3

Rule Execution
Activity Queue

T

I

M

E

Figure ��� Sequence of rules
 execution in the hypothesis of chains
 alternation

part of the whole processing and dependent on the previous ones� It is therefore likely

that if we extracted a request from the Activity Queue while forward chaining from the

original rule is in progress	 some of the elements of the chain would �nish up in the

queue themselves	 of course until the end of the resumed activity� This would lead to an

alternation between two �or more� chains of rules	 taking turns with the same program

�see an example in Figure ���� It is easy to see that such events are highly undesirable	

since it would take a long while to conclude each of the chains	 with unpredictable

consequences on the e�ciency of the environment and possibly on the consistency of

��

R1

Rule Execution
Activity Queue

T

I

M

E

R1.2

R2

R1.3

R2.2

R2.3

R2R2

Figure ��� Sequence of rules
 execution as it is in Rivendell�

��

the state of the whole process	 given the considerations we made above on object locks 	�

For these reasons	 we decided to perform the extraction only after the end of the whole

chain	 originating from the activity currently holding the tool instance� This avoids all

the possible con�icts	 even if forces longer waiting times on the queued requests�

��
 The Watchers

These utilities play a fundamental role in our integration mechanism	 since they constitute

the devices in charge of interfacing between the environment and the tools 	 taking over

� together with the scripts executed during the initialization pahse of the activity �See

Section ����� � much of the functionality o�ered by SEL envelopes� MTP is conceived in

such a way that external programs run pretty much in isolation after they are forked by their

corresponding SPC and after any necessary initialization is performed by their customization

scripts� they have no direct connection to any component of the system and dialogue with

the environment
s users via their own user interface �as it is provided and supported by

xmove�	 just as if they had been invoked outside of Oz�

It is up to the watchers to inform the SPCs of all the actions of the external applications

which are relevant to the PCE and especially to its data repository� they are in charge of

maintaining control over the temporary directories where the copies of the objects on which

the activities operate are located �see Section ����� and to notify the corresponding SPCs

every time the objects are modi�ed by the tools� When the activities are terminated	 they

then perform the transfer of all the �nal results back to the objectbase� Moreover	 they can

be involved in the customization phase	 whenever a tool instance is started up and requires

to obtain from the user some parameters which are not available through the OPEN�TOOL

primitive �see Section ������

Most of these tasks are accomplished by using service
les	 which are also kept in the tools

directories	 each encoding or storing di�erent kinds of information� the most important is

perhaps the
letable	 which contains a correspondence between each of the data �les present

	In Figure 	
 we show what actually happens to rule�s execution and the Activity Queue under the
current implementation�

��

in the directory and objects of the environment	 plus markers to distinguish to which activity

of those currently active in the tool session they pertain �
� Other �les with reserved names

are as well internally used by the watchers to exchange with other parts of the system	 via the

SPC	 various kinds of information needed by the watchers in di�erent phases �see Figure ����

Watchers revolve around a simple principle� they are able to keep under constant control

the tools
 directories and to recognize whenever a �le is created or updated there� Following

such an event	 they decide what action to take	 depending on wether the �le name corre�

sponds to one of the entries in their �letable or to one of their reserved ones� In the �rst case	

they need to inform the SPC that the tool has performed an intermediate saving of some of

its arguments	 otherwise they operate on their own to extract data from that speci�c service

�le and perform whatever is appropriate	 given the

reserved name of the �le and its content� �Again	 an example of the use of such service

�les is the procedure used to parametrize tools	 illustated in Section ������

Their simplicity is also a source of �exibility� it is possible to implement several di�erent

�avors of watchers	 and to modify the services they provide as accessory functions to the

main one �that is	 the control of �le events inside a directory�� we realized their potential

and the range of tasks they can accomplish in collaboration with other parts of the system

is indeed wide ��� Our Grey Box integration experiments	 for example	 rely on a slightly

more complex version of the watcher	 coupled with an ad hoc function written for the tool

in its extension language and loaded at start�up by its initialization script� Whenever a new

environment �le is written for the �rst time in the controlled directory	 this event is easily

caught by the watcher	 which in turn noti�es the tool
s extension module� This is then in

charge of automatically executing its standard loading procedure to acquire the �le	 thus

bypassing the need for the user to issue it manually�

�
This kind of data is crucial with special respect to the saving operations at the end of an MTP activity
��The central idea around which our watchers are built has been conceived by George Heineman� who also

has done much of the work aimed to explore their potential�

��

SPC

Watcher

Tool

Tool dedicated directory

Service
Files

Environment

Objects

Activity

Manager

Figure ��� The work context for Rivendell watchers

��

� Examples of Integration

MTP tries to o�er to process designers a wide range of options	 which have been studied

to address the variability in the nature of COTS applications and to face adequately the

di�erent challenges they pose to Black Box integration�

Part of the �exibility of our approach is due to the use of customizable shell scripts for

the initialization of the tool instances following the OPEN�TOOL primitive	 and	 at the

activity level	 to prepare and load the associated data which are then processed by the tool�

Their goal is to permit a satisfactory and smooth wrapping of the external programs	 in

relation to the characteristics of our system and above all to the category assigned to the

tool via the multi �ag speci�cation in its MSL de�nition� An Administrator who is also

a shell programmer with average expertise and with some knowledge of the purpose and

the functions of these components inside the overall protocol would be able to easily set up

the scripts� Indeed	 such classi�cation	 even more than the abovementioned customization

scripts	 by capturing the di�erent properties of each of its four supported categories	 is

the part of the system where most of the integration power of MTP resides� Even if it

surely does not fully represent the possible diversity in the structure and the functionality

of generic COTS tools	 we believe it allows enough �exibility to accommodate a wide range

of them with relatively few constraints and limitations� It certainly was bene�cial that in

Oz MTP is coupled with the SEL approach	 which can adequately service a complementary

and huge portion of a hypothetical toolset� this way the MTP design could neglect some

related issues	 its domain of interest remained limited and it could more closely be adapted

to speci�c families of applications and to their peculiarities�

For each of the four classes described in the tool speci�cations	 we have carried on various

experiments	 in order to de�ne the degree of integration that can be reached and to iden�

tify limitations �either to the generality and the characteristics of the domain successfully

addressed	 and speci�cally to the completeness of our support to single meaningful cases�

and unresolved problems we hope to address in future development of our multi�envelope

system� We exemplify our work here	 presenting some interesting results for each category�

��

��� UNI QUEUE� Idraw

Idraw is a popular public domain drawing tool	 commonly used to obtain pictures and

diagrams in a postscript form	 that provides an intuitive graphical interface employing an

approach based on mouse movement and menu selection to operate on a virtual sheet shown

inside an X window� It is strictly single�user and has the limitation of working on only one

picture at any time� it is necessary to save the current project before loading a di�erent one	

since no bu�ering is supported� Idraw is in this sense an example of quite a large category of

programs with similar properties and limitations� From our point of view	 it presents some

additional features of interest� it engages a considerable amount of system resources �large

size� and needs a relatively long initialization time �� following its invocation�

For all of these reasons	 MTP integration as a persistent tool	 via the UNI QUEUE

paradigm	 seemed the most appropriate way to deal with the nature of Idraw	 since it

adapts well to the simple conceptual structure of this application� Moreover UNI QUEUE	

by disallowing multiple overlapping activities	 preserves at any moment through its Activity

Queue mechanism the integrity of the current data and of the work performed on it	 hence

enforcing on the process the respect of the intrinsical limitations of the wrapped program�

In general	 UNI QUEUE appeared suitable to deal with all applications which	 like Idraw	

don
t present any speci�city with respect to multi�processing or multi�user capability and to

interpreter�like interaction	 but are however more conveniently handled as persistent tools

because of their size� Together	 the cnovenience inherent in having such programs persistent

and the queueing capability actually constitute the most valuable improvement introduced

by UNI QUEUE integration	 with respect to SEL� they allow to run sequences of activities

on the same instance without losing its intermediate state information and to manage all

the incoming requests in the correct fashion�

��On a Sun Sparc 	� workstation� it amounts to about 	 seconds

��

��� UNI NO QUEUE� Emacs

Emacs is one of the most common and widely employed text editors available� its sophis�

ticated functionality and the huge number of options and features provided make it a very

useful tool	 which reaches in itself the status of a small single�user programming environ�

ment� All of its commands are expressed with sequences of keystrokes	 augmented with

mouse pointing and selection� its latest versions present also menu selection at least for its

main functions�

Among the properties of Emacs	 one of the most important for us is its multi�bu�ering

capability	 through which it can deal at the same moment with multiple �les �or other kinds

of data displayable in its window�	 keeping all but the current bu�er in the background and

switching among them at the user
s command� Coupled with the ability to split its display

and hence show more than one of the loaded bu�ers	 this feature is of great use to perform

complex and incremental editing sessions involving as many di�erent data sets as needed�

Our SEL protocol has satisfactorily integrated Emacs	 but without being able to exploit

its multi�bu�ering feature� each editing session from within the environment	 since tightly

wrapped by our scripts and accepting arguments only at the beginning	 refers to a single

�le� Emacs has for a long time represented one of the typical cases of partial success of our

Black Box SEL protocol	 in which some peculiarities of the application don
t �t well in the

wrappers
 design and are left unsupported	 but it is nevertheless possible to integrate the

program� As seen in Section �	 several attempts to extend our enveloping mechanism have

therefore taken this tool as a testbench	 trying to resolve the problems posed by incremental

data exchange with the environment�

InMTP	 we also gave a lot of attention to such issues and came up with the UNI NO QUEUE

class	 which represents our proposed solution� Our mechanism allows to run multiple ac�

tivities overlapping in time	 during the life�span of a copy of the editor and hence to load

Emacs bu�ers with all the desired data for editing� When saving intermediate results	 our

watcher utility is able to map each modi�ed �le to the corresponding activity and hence to

discriminate what objects must be modi�ed inside the environment at the end of each of

them� Compared with previous attempts based on extensions of SEL	 one major improve�

��

ment is the capability of handling each of the overlapping activities completely in isolation

from the others	 especially in its data recording and conclusion phases�

Another very important feature presented by Emacs is its extension language	 called E�

Lisp	 that allows the users to de�ne their own new functions and commands	 customizing

the program to their needs� We exploited it while experimenting with the Grey Box version

of MTP	 which accounts for a nicer	 totally automated input of the activity arguments into

the tools	 achieved with little modi�cation to our watcher and an ad hoc E�Lisp function�

Emacs is of course only an example of the programs which can �t in the UNI NO QUEUE

frame� In principle	 all the tools that can support simultaneous and independent service

of multiple requests fall in this category	 since it is easy to attach to each activity and its

associated rule a separate internal processing thread that takes care of it�

��� MULTI QUEUE� FUF

FUF is a sophisticated uni�cation�based tool running on a Lisp platform	 used	 among

other things	 in the �eld of Natural Language Processing for the generation of sentences

from syntactic data structures� It allows to de�ne hierarchical procedures to accept and

manipulate the input structures	 by applying one or more layers of uni�cation rules	 in order

to obtain as output at the end of the overall processing the valid surface forms	 under the

constraints posed by the rules� FUF is a typical Lisp�based interpreted application	 that

supports various kinds of interactive tracing facilities and has the option to test and execute

various data and program �les	 by loading and swapping them on the �y� As with most

interpretive tools	 it maintains su�cient information in memory	 to re�ect the progress of its

elaboration through the series of commands issued to it since start�up� Moreover	 like many

query systems living on top of Lisp	 it requires a great deal of resources and can certainly

be de�ned as a large size tool�

The MULTI QUEUE category allows in the �rst place the reuse of each copy of such

computationally expensive programs	 which can this way be shared by various users in

a sequential way� Another important point in favor of this class is that the information

retained in the tool
s memory space and representing both the current state of the system

��

and the history of its performance is fundamental to generate the answer to new queries�

Because of this	 it is possible and often desirable from the process point of view to consider

a MULTI QUEUE tool as a semi�permanent global service for agents in the environment

engaged in some complex and composite software task� This makes even more valuable the

ability of such a class to support long duration work sessions that go beyond any single

activity and to ensure common access to them to any set of clients�

Coming to our testbench application	 we can certainly imagine a scenario in which	 in

order to process some data with FUF	 multiple uni�cation procedures are needed	 each of

which is the responsibility of a di�erent member of a development group� our paradigm

would facilitate the testing and execution of the various phases of the project through a sort

of �although modest� teamwork� Sequentially	 each developer would load in FUF its own

program and run it on the appropriate data	 at the same time producing with its output the

input for the next step and putting the system in the correct state to begin a new procedure�

Of course	 the same situation and collaborative model could be referred to other programs	

which outside the framework of Oz could not be employed in this way� from other interpretive

tools	 like AI ones running under Lisp	 or single�user databases	 to more canonical utilities	

like document production ones	 just to exemplify some applications of the same principle�

The most relevant consequence of the creation of this class is indeed that it	 by exploiting

Activity Queues and the xmove facility providing control of the user interface to any user

involved in a session	 allows us not only to conveniently integrate a vast and peculiar family

of tools	 but also to actually modify at the same time their intrinsic single�user nature and

extend their use along the lines described above� It is a completely new feature in our

system	 which is solely provided by MTP	 and we believe it is one of its most interesting

and meaningful results	 because it e�ectively widens the spectrum of scenarios and tasks for

which our SDE is suitable and of the options it o�ers to process developers and users�

��
 MULTI NO QUEUE� Marvel

We decided to use as a testbench for this category the predecessor of Oz	 which is also a

multi�user PCE with a client�server structure	 but with the important di�erence of being

�

single�server� The main reasons for this choice are the familiarity we have with Marvel as a

complete multi�user system and our interest in making as easy as as possible the development

of processes for the Administrators	 since the software task of building	 testing and validating

complexOz processes is often non�trivial� �� To achieve this goal	 we need to be able to use Oz

instances as tools	 internally to P�Oz	 while representing with rules and objects respectively

all the process de�nition phases and the data like the environments
 own directories	 the

MSL speci�cations	 the SEL envelopes	 the MTP scripts and so on� Obviously	 a �rst step

in this direction is the ability to use P�Oz to build and run Marvel processes	 which in many

senses can be seen as proper subsets of the more complex Oz ones�

Marvel	 as a typical client�server system	 poses in the most general case a problem we

already outlined in the discussion on the MULTI NO QUEUE category in Section �����	

that is	 the need to treat di�erently the OPEN�TOOL primitive initiating a session �when it

is necessary to start�up both the tool
s server and a client� from the ones subsequently issued

to join the session and obtain further copies of the Marvel client� Conversely	 the last CLOSE�

TOOL command in a session must deal with shutting down the tool
s server� Moreover	 since

in our system it is possible to set up and employ a daemon	 in order to bypass the manual

invocation of the server at the start�up of the environment and to automatize this operation	

Marvel can also be used to simulate the behavior of non�hierarchical architectures	 which

don
t need special treatment for the activation of its �rst component� The technicalities of

initiating and killing both �avors of multi�user systems are usually easily dealt with by the

initial customization scripts invoked at OPEN�TOOL�

MTP	 with its MULTI NO QUEUE class	 is therefore able to support a generic multi�

user tool	 by forking and providing copies of the program to every participant in a session�

however	 there are some important di�erences between the integration of collaborative and

non�collaborative tools	 that must be taken into proper account� In the latter case	 in which

each user works on his�her own	 in isolation from the rest of the system �typical examples

are represented by most databases or similar query processors� the di�erent requests are

��PSL developed in the past a P�Marvel environment for Marvel� that can be used to build and maintain
Marvel processes� It proved to be an interesting and useful utility� that added value to the project� We plan
to realize a similar environment for and within Oz�

��

handled by the intrinsic multi�tasking capability of the tool and con�icts due to overlapping

argument sets are sporadic and anyway resolved either before the activity phase of the rules	

by the default concurrency control mechanism of Oz	 or by the internal policies of the tool�

In the former case	 instead	 even if it is once again safe to assume that most of the multi�user

machinery is o�ered by the wrapped tool itself	 the problem of shared use of data becomes

more systematic� A simple example is that of a multi�user editor	 employed in the context of

a groupware task	 as the one described by Dewan and Riedl for their FLECSE ���� toolset�

the program itself permits and is able to deal with concurrent modi�cation of its internal

data	 but for the environment
s data repository managed by Oz it is necessary to come up

with an ad hoc concurrency control policy that allows multiple write locks on the object

containing the edited �le�

Such �exibility must be provided by the PCE with some feature �in Oz it can be achieved

by de�ning and loading appropriate control rules for the environment ����� this is not in

the strictest sense a part of the wrapping facility	 but is nevertheless essential	 in order to

be able to take advantage of the integration of this class of tools�

The approach used within MTP to support access to a multi�user program for di�erent

agents is of special importance in the case of asynchronous systems� As we already pointed

out in Section �	 it is currently possible to run N components of a multi�user synchronous

system at the same time	 using SEL and a specia system support mechanism ��� However	

the very nature of SEL envelopes does not allow the handling of asynchronous situations	

which are instead easily dealt with by the concepts of persistent tool	 through the session

mechanism� The necessary research and work to integrate these two separate approaches

will be pursued as one of the future extensions to Oz�

�� Lessons Learnt and Suggested Future Experiments

The examples mentioned above represent only a few of the possible cases that can be e�ec�

tively addressed by Rivendell� However	 they already have given us valuable feedback on

what are the strong points and the limits of MTP and suggested future research lines�

��This feature was developed by Israel Ben�Shaul for his PhD thesis ����

��

For example	 we could see that our method still falls short � under certain points

of view � with regard to an easy Black Box integration of multi�user systems via the

MULTI NO QUEUE paradigm� One of the most evident proofs is that the envelope scripts

to be executed at the moment of the OPEN�TOOL commands are usually much more com�

plicated than for any other class ��� The problems mainly reside in the mismatches that

occur because of the client�server vs� network archtectures and the open�session vs� join�

session cases� We realized that a more detailed description of the operations to be performed

in each of these situations is needed at the level of the session�handling primitives	 which

should be probably enriched both in their syntax and semantics�

Another important addition to such primitives would be their parametrization	 that would

allow to provide them with arguments coming from the environment� Supply of arguments

to OPEN�TOOL is currently allowed only through a �back door� mechanism	 that employs

the watchers and the SPC and holds no relation to the data de�nition in the objectbase	

nor accounts for any control on what data is accessed by the process� A serious drawback

descends� it is not possible to enforce any concurrency control	 a problem that is again

particularly serious in the case of MULTI NO QUEUE tools	 in which the participants to the

same session most likely share a relevant number of objects� By formalizing the parameters

acquisition during the customization phase of a persistent tool	 we could overcome this

problem	 by using the same coordination mechanism already provided at the rule level�

Another improvement that is clearly needed is a mechanism to write envelopes �either

the customization or the activity ones� in a more user�friendly and automated way� SEL

supports a language providing some primitives that augment common shell script and that

are compiled into shell commands by an ad hoc utility� This is very convenient to hide many

repetitive sets of statements and to abstract burdensome levels of details	 thus making the

task of writing envelopes easier for the Administrator� MTP would greatly bene�t from such

a facility in the same way as SEL does	 since repetitive and internal housekeeping commands

are quite frequent and at the present stage must still be carefully and manually inserted into

��In our experience� we could see that the complexity of the envelopes usually gives an empirical measure�
ment of the di�culties found by the process designer to adapt the tool to the constraints imposed by the
integration protocol�

��

the script by the process designer�

To explore the potential of our integration method and �nd the best ways to improve

it	 we also plan to continue experimenting with an increasing number of tools that fall the

categories of interest of MTP� Among the ones we have been considering	 there are�

� Relational and object oriented databases	 as typical query systems	 and at the same

time as large�size tools that are quite demanding with respect to computational re�

sources �single�user databases can be instances of UNI QUEUE or MULTI QUEUE	

while multi�user ones can be classi�ed as non�collaborative MULTI NO QUEUE��

� Single groupware applications aimed to the production of documents or of program

source code	 as for example DistEdit ���� that deals with group editing	 or GroupDesign

��� that is oriented towards drawing in structured graphics	 as is the LBLWhiteboard	 a

public domain product �all of these collaborative applications can be well representative

of MULTI NO QUEUE��

� Tool�kits that support collaboration within some set of software activities	 like the

abovementioned FLECSE	 which employs various dedicated groupware tools	 all built

on the common framework provided by Suite ����

� Complex and large�size knowledge�based CASE tools and systems	 as Concept Demo ���	

that employs AI planning formalisms to guide the process of developing software arti�

facts	 or Re�ne	 that proposes a programming language	 a data repository in the form

of a knowledge base	 and a set of dedicated utilities	 all aimed to the production of Lisp

applications�

	 Contribution

��� Outcome of This Study

Our work has been totally implemented and integrated within the code of Oz� the PSL of

Columbia University plans to conduct further research along these lines	 to address the most

��

problematic issues and to pursue the most promising facets presented by Rivendell�

In the context of Oz	 MTP has contributed to expanding the spectrum of COTS tools

that can be e�ciently wrapped and serviced within an environment	 increasing the use of

our SDE	 as well as its conceptual generality�

We believe we have introduced with Rivendell a few original and useful concepts in

the domain of Black Box tool integration for PCEs� among them	 in our opinion the most

interesting are�

� The idea to employ multiple enveloping protocols for Black Box integration	 with the

purpose of increasing the �exibility and the modeling power of an environment already

exploiting tool enveloping�

� The presentation of a protocol that tries to address the needs of classes of COTS tools

that are rarely included in generic SDEs	 at least in a Black Box fashion	 partially

because of the intrinsic di�culties in their integration � given some of their character�

istics	 as large size	 long duration	 and complex interaction models �interpretive and�or

collaborative��

� The introduction of a categorization of those tools accordingly to their multi�tasking

and multi�user capabilities	 with the purpose of facilitating accommodation and most

complete exploitation of their most valuable features	 while ameliorating the complica�

tions inherent in their peculiarities�

� The realization of a new �avor of client process for our PCE	 maintaining no direct

interaction with the human agents in the environment	 but to which can be delegated

certain speci�c operations	 that are not feasible or convenient for the normal interface

clients ��� We believe this is a contribution that is relevant beyond the scope of the

Rivendell project	 since it is an architectural feature that can be useful in the most

general context� For example	 the delegation to an SPC of a certain process fragment

��The design and implementation of this system component has be carried out in close collaboration with
Peter Skopp� of the PSL at Columbia University� who has been developing a �proxy� client for Laputa ��
��
The main di�erence is that an SPC can service di�erent GPCs in their tool�related operations while each
proxy is dedicated to a single client� as auxiliary in low�bandwidth operation�

��

can overcome architectural walls �e�g�	 it is possible to ask to SPC running on a DEC host

to perform a compilation for that architecture	 even if the user is currently operating

with his�her own GPC from a Sparc workstation	 or vice versa��

� The new concept of loose wrapping in tool enveloping	 as opposed to the usual envelopes

that completely encapsulate the external programs during their entire processing cycle

and life span� Loose wrapping does not modify or limit in any way the use of the

program	 since it is only interested in checking its operation at some meaningful stages�

By embracing this approach	 it can also be possible to conceptually identify what such

important events are	 from the point of view of a system requiring Black Box integration

�Some work addressing similar theoretical issues and involving Marvel has been carried

out in the context of the Provence ���� project��

� In connection with loose wrapping	 the idea of interfacing our envelopes with pre�

existing	 long�lived instances of the programs �i�e� persistent tools� rather than with

new ones	 initiated ad hoc for the processing needs of the single activities�

� The extension of some intrinsically single�user tools to partial multi�user operability	

performed by our protocol� This allows to describe	 explore and exploit new collabora�

tive scenarios for SDEs	 without the need to acquire and successfully integrate complex

systems explicitly designed for groupware�

� A new mechanism to e�ectively exploit full multi�user COTS products �especially asyn�

chronous ones	 see Section ���� from within our PCE	 opening the �eld to the discussion

and implementation of collaborative process models	 which could be based on this work

and rely on our approach to integration and could concentrate on di�erent related issues

as concurrency control	 delegation	 and the like�

��� Open Research Opportunities

The area of research over tool integration inside SDEs is certainly much wider of what is

covered in this work� Even if we limit our scope to the Black Box protocols and to the families

��

of tools we addressed in Rivendell	 we can easily recognize that numerous alternative

points of view and approaches exist	 that are at least as valid and worthy of exploration as

ours� Moreover	 we can see that also within the lines of our research there is room for great

improvement and extension	 and for the investigation of a number of interesting issues�

Among them	 as we have already mentioned	 an important role would be played by the

augmentation of the session�handling primitives and in certain senses of the session concept

altogether	 within the context of the de�nition of a software process� A fuller integration

of sessions with the other facets of Oz could lead to interesting consequences� for example	

the ability to attach agendas to an open session �i�e� to de�ne a series of tasks that users

willing to join or leave a certain collaborative session must perform�� another possibility could

be the instantiation of �possibly even delegated	 i�e� created on behalf of di�erent agents

within the environment� sessions as an e�ect of rule chaining or also of the selection of the

OPEN�TOOL and CLOSE�TOOL commands themselves �actually we already have proved	

by handling Session Queues and atomic sessions	 that the above is practically feasible��

Another interesting issue is in our opinion the loose wrapping approach to enveloping	 that

could be seen as an hybrid between conventional envelopes and a broadcast message server	

as in Field	 or its proposed extension Forest ���� ��	 in which the attention is shifted from

the external program as a whole	 to single meaningful events caused within the environment

by its use� This kind of monitoring can be a precious information resource not only for

a speci�c SDE	 but in general� Therefore it holds promise as a mechanism that could be

used to support the interface between very diverse CASE systems that nevertheless need

to share data or to collaborate in some fashion	 with the only requirement that they must

be able to dialogue with the monitoring components ��� To achieve this	 utilities sporting

a more sophisticated design based on both theoretical considerations �i�e� what classes of

��The most relevant di�erence is that in generic message bus systems the tools are expressly and accurately
designed or modi�ed to create� send� receive and interprete messages informing other components of their
activities� while in our approach it is up to the watchers to capture the meaningful events by �spying� on
the tools� which are not in any way conscious of their presence and purposes�

��An example of a di�erent CASE system that could be interfaced to Oz viaRivendell is ProcessWEAVER�
we believe that certain similarities we found in it� such as the presence of a toolbase where the external
applications are declared and modeled� and the wrapping approach carried out by interpreted envelopes�
could be quite useful in this respect�

��

tool�speci�c events are interesting from the points of view of integration and cooperation�

and on architectural and implementation�speci�c issues	 should substitute our unambitious

�lightweight� watchers�

�
 Appendix

���� Rivendell Administrator Manual

������ De�nition of MTP Tools

SEL is the default for tool categorization in MSL� In order to create an MTP tool	 the process

Administrator must explicitly insert speci�c information in the MSL TOOL de�nition� As

shown in Figures � and � additional data is required for MTP	 in the form of six parameters

enclosed in square brackets�

The setting of the parameters should comply with the following guidelines�

� protocol � MTP

� path � String indicating the complete path in the environment
s �le system for the

tool
s customization envelope �See Section ������	 or	 if no speci�c operation needs to

be performed at start�up	 the complete path to the tool
s executable� No default is

provided for this parameter	 that must always be provided when the value of protocol

is �MTP��

� host � String containing the complete Internet address �IP form� of a machine located

in the same Internet domain and sharing the same �le system as the Oz server where

the process de�nition and data are stored� It is used to designate the host where the

SPC handling the MTP tool must run �and	 as a consequence	 where all the instances

of that tool will live�� When this speci�cation is missing	 the address is deduced by

looking up the architecture �eld� in case that information is also missing	 the default

host machine is the same where the GPC asking for the MTP tool runs� Note� It is

perfectly legal to assign the same machine to more than one MTP tool� however	 for the

��

sake of e�ciency	 the Administrator should always be aware of the computational load

implicit in handling each of the di�erent applications and try to set the parameters in

such a way to keep it as low and balanced as possible�

� architecture � The default value is �sun��� String values for other architectures that

support Oz can be speci�ed� This parameter comes into play if no value for host is

given	 but a restriction on the architectures on which the tool is available is present �e�g�

due to licensing or structural issues�� In this case	 the Administrator should create into

the environment
s directory a text �le	 named �MTP default� Its content should be

in the following form�

�architecture A�
 �host machine A�

�architecture B�
 �host machine B�

�architecture C�
 �host machine C�

���

and indicates what is the default machine to be chosen for each supported architecture�

For example�

sun�
 foo�bar�columbia�edu

dec
 foodec�bar�columbia�edu

���

� instances � Non�negative integer	 specifying the maximumnumber of instances of the

tool allowed to be running in the environment at the same time� The value � is legal

and it is used to indicate that no upper limit is enforced� The purpose of this parameter

is to deal with �oating license restrictions	 as well as to limit the burden posed on the

tool
s dedicated host machine	 especially by computationally expensive persistent tools�

� multi �ag � The four legal values are� UNI QUEUE	 UNI NO QUEUE	MULTI QUEUE	

MULTI NO QUEUE� Each of these categories is handled di�erently by the MTP pro�

tocol	 since they presuppose diverse multi�tasking and multi�user capabilities� What

��

follows is sketchy descriptions of each category and of the properties they model and

support� refer to past Sections � and ����� for an extensive and detailed discussion of

their peculiarities and of the corresponding work models	 as supported by Rivendell�

� UNI QUEUE It is intended to encompass tools which have neither outstanding

multi�tasking nor multi�user capabilities	 but are intrinsically �heavyweight�	 with

regard to initialization time and amount of allocated resources� This category allows

the issuing of multiple overlapping activities on the same instance of the tool	 but

services them in a sequential order�

� UNI NO QUEUE It applies to single�user applications that support the separate

and simultaneous handling of disjoint data sets without interference� In this case	

multiple activities � each with its own parameters � can be directed to the same

instance of the tool and are serviced in parallel by the protocol� It is important

that the Administrator validates his�her choice to include a given application in the

UNI NO QUEUE category by preliminary testing the functionality of the tool and

its e�ective ability to manage overlapping threads� applying the UNI NO QUEUE

work model on tools that do not support multi�tasking might result in the loss of

part of the work previously accomplished during the tool session�

� MULTI QUEUE It presupposes or enforces some form of sharability of the tool
s

resources among multiple human agents	 in a sequential way� It allows di�erent

users to require service to the same copy of an application	 and �passes around the

token� in a FCFS fashion� the tool is dispatched to the next user as soon as it is free	

i�e� after the end of the currently executing activity� Typical candidates for this

category are exempli�ed by interpretive or query�based applications	 or single�user

databases�

� MULTI NO QUEUE It is intended to describe complete multi�user systems	

made up of multiple components	 each of which is assigned to a di�erent user	 and

all concurrently operating	 either collaboratively towards completion of a common

task	 or independently	 but nevertheless sharing some centralized computational

�

resource� The protocol dispatches the components to all clients who request them	

by joining a speci�c session� each session �and not each single component� maps

to an instance of the multi�user tool� Submission of multiple activities to each

component is allowed	 but they are serviced sequentially	 exactly as if the com�

ponent were a UNI QUEUE tool on its own� Multi�user databases	 client�server

systems	 collaborative tool suites are some examples of applications that fall into

this category�

Important� The listing of activities	 each of which is executed during a rule and maps to

an envelope	 with the optional additions of lock information on the envelope
s parameters	

maintains for MTP the same syntax used by SEL� However	 the semantics are di�erent�

the position	 of the activity declaration	 i�e� the tool it is assigned to in the MSL TOOL

class de�nition	 was simply a convention for the SEL protocol	 but is crucial for MTP� This

happens because each instantiation of that activity will be directed to and executed on an

instance of that persistent tool	 as de�ned by the six parameters enclosed in square brackets

we discussed above�

�����
 MTP Envelopes

MTP introduces two separate kinds of wrappers that are currently composed as plain shell

scripts	 following in certain cases �xed and repetitive command patterns� Besides scripts

invoked and executed during each activity	 which correspond to SEL envelopes	 there are

optional tool customization ones	 that are run at invocation of an instance of a persistent

tool�

Customization Envelopes The Administrator has the choice to assign to the host �eld

in the TOOL declaration either simply the path to the binary code of that application	 or

the path to a customization envelope	 that is used to perform preliminary operations and

that invokes the tool itself from inside its body�

The reasons for such a choice can be very di�erent� for example the script can be used

just to invoke a tool with some parameters de�ned ad hoc	 or extracted from the Unix

��

���bin�sh

���

� invocation of the program ��MTP�tool�� with some parameters

�and recording of its Process ID

MTP�Tool �x �w �

CLIENT�PID���

���

� trap a request to kill this tool instance after the execution of a

�script ��Close�Script��� containing a series of ad hoc commands�

trap � Close�Script �CLIENT�PID exit �� �

Figure ��� Excerpt of a Tool Customization Script� Command To Be Executed Before Exit

environmental set�up of the machine that executes it� in other cases	 they are used to de�ne

what is to be performed whenever the tool is closed	 as clean�up actions or the like	 via a

trap mechanism �See Figure �� for an example�� in more complex situations	 typically for

multi�user tools	 a series of preliminary checks might need to be performed and data must

be retrieved	 in order to correctly instantiate the copy of the tool� �See Figure ����

Moreover	 we implemented in customization envelopes a way to request to the user invoking

the tool to provide additional parameters to the script � and the tool
s instance � in an

interactive way� The excerpt of an hypothetical envelope in Figure � shows the sequence of

shell commands to be performed for each argument �	�

Activity Envelopes An activity envelope is invoked every time an MTP activity is exe�

cuted by the system� The envelope �les are kept in the environment
s directory and follow

the same name convention as SEL compiled envelopes	 that is ��activity�name��env�� Their

purpose is to parametrize the persistent tool with the arguments of the correspondent rule

and to load them in the application
s memory in a semi�automatized way	 as explained in

Section ����� Di�erently from SEL envelopes	 they are not concerned with returning results

to the nevironment at the end of the activity	 since this task is accomplished by the watcher

program employed by MTP �See Section ���� �

�	Notice that the �le names prompt and reply found in the excerpt are crucial� since they are service
�les recognized and manipulated appropriately by our watcher utility �See Section �����

��

���bin�sh

�initialize variables

VARIABLE�X��

VARIABLE�Y��

CURR�DIR��pwd�

� look if service file Useful�Info has already been created

FOUND��find � �name Useful�Info �print�

�if environment dir� is not found

if � �x�FOUND� � �x� 	 �Useful�Info not present

���

�invoke tool MTP�Tool with certain parameters

MTP�Tool VARIABLE�X CURR�DIR

else �Useful�Info already present

���

�invoke tool MTP�Tool with other parameters

MTP�Tool VARIABLE�Y CURR�DIR

fi

Figure ��� Excerpt of a Tool Customization Script� Preliminary Operations

��

���bin�sh

���

� prompt the user with a request to provide a path for the data directory

echo �type data directory path
� �� fake�prompt

echo � �� fake�prompt

mv fake�prompt prompt �create prompt file in the tool

�dir� to the benefit of the watcher

� Watcher takes care of the prompt to obtain an answer from the user within

� a file named ��reply��

� look out for that answer

FOUND��find � �name reply �print�

while � �x�FOUND� � �x� 	

do

sleep � �wait for � seconds

FOUND��find � �name reply �print�

done

� acquire content of the reply file

read DATA�DIR � reply

���

� invocation of the program ��MTP�tool�� on the directory DATA�DIR

MTP�Tool DATA�DIR

���

Figure �� Excerpt of a Tool Customization Script� Interactive Request of An Argument for
the Tool to The User

��

The shell commands issued within the scripts follow a �xed sequence and are conceptually

divided in � phases	 in which each envelope does the following�

�� It copies the �le arguments provided by the rule into the persistent tool
s dedicated

directory �the path to this directory is also passed to the envelope as an initial param�

eter��

NOTE� Since the parameter passing mechanism has not been chaned from SEL	 there

are currently two serious limitations that will be removed in the future� it is the Ad�

ministrator
s responsibility to keep track of the position of the �le parameters in the

sequence of arguments and therefore to provide the correct arguments to the cp state�

ment� moreover arguments including a set of objects are not correctly handled� Both

of these shortcomings could be easily overcome if MTP envelopes were compiled	 thus

augmenting them with a dynamic argument passing and with an argument type decla�

ration	 similar to the ones implemented for SEL�

� It creates a service �le named �letable in that same directory	 to the bene�t of the

watcher utility	 that will use it throughout the duration of the activity� The statements

accomplishing this are repetitive steps that could be easily be transformed in a single

command	 were MTP envelopes compiled in the same fashion SEL ones are�

�� It performs a series of echo commands	 whose arguments are textual strings all beginning

with the pre�x ����� and contains the instructions for the tool
s user	 in order to

guide the loading of the arguments of the activity in the tool
s memory� The content of

each echo statement is shown to the user in a special pop�up window	 in sequence� The

pre�x is essential in order to di�erentiate these special messages from other output	 that

would be sent instead to the window dedicated to the activity �its rframe� and displayed

there� This part of the activity envelope is actually the only that is really dependent on

the nature of each single tool� nevertheless	 the echo commands with pre�xed argument

could be easily transformed in a new primitive of compiled MTP envelopes�

A commented and complete example of an activity envelope can be seen in Figure � and

can be used as a template�

��

���bin�sh

�input parameters

� �� tool dir� ������� MTP additional parameter

� �� file

� �� status

� �� file

� �� rule identifier ������� MTP additional parameter

� �� client identifier ������� MTP additional parameter

������� �st part
 copy of file arguments into the tool directory ������

cp �� �� �� �copy all FILE parameters in the tool dir�

������� �nd part
 preparation and creation of ��filetable�� ������

FileName���basename ��� � for all the FILE parameters

FilePath���echo ����FileName�� � for all the FILE parameters

FileName���basename ��� � for all the FILE parameters

FilePath���echo ����FileName�� � for all the FILE parameters

F�LIST�DUMMY����filelist�tmp � always

F�LIST����filetable � always

touch �F�LIST�DUMMY � always

echo �� �� �FileName� �� �� �F�LIST�DUMMY � for all the FILE parameters

echo �� �� �FileName� �� �� �F�LIST�DUMMY � for all the FILE parameters

FOUND��find �� �name filetable �print� �always

if � �x�FOUND� � �x� 	 �always

then �always

mv �F�LIST�DUMMY �F�LIST �always

else �always

F�LIST�CAT����merge�list �always

cat �F�LIST�DUMMY �F�LIST � �F�LIST�CAT �always

rm �F�LIST�DUMMY �always

mv �F�LIST�CAT �F�LIST �always

fi �always

������� �rd part
 customized on the single tool �������

echo �� ��TYPE
 CTRL�O � tool�dependent

echo �� ��SELECT �FileName� � tool�dependent

echo �� ��CLICK on �Open� button � tool�dependent

�if the status argument of this envelope has a certain value� take action

if � �� � �Status�foo� 	

then

echo �� ��TYPE
 CTRL�X �FileName� � tool�dependent

fi

Figure �� Template of an Activity Envelope
��

���� Rivendell User Manual

���
�� Sessions� Handling Instances of MTP Tools

In order to operate on MTP tools persistently �
	 the user must in general issue session�

handling primitives	 represented by the OPEN�TOOL and CLOSE�TOOL commands� These

commands are made available on Xview and Motif clients through the Session menu� No

support for tty clients has been implemented to date�

To initiate a session	 the user must click on the corresponding button and select the OPEN�

TOOL menu entry� A submenu is displayed	 showing the identi�ers of all the tools de�ned

as MTP by the Administrator in the toolbase of the process model� Selection of the needed

tool is accomplished by choosing its identi�er�

At this point a new submenu appears	 listing the options of the OPEN�TOOL command

for that tool� These include an entry markedNew �the default�	 that must be selected when

asking for a new instance of the application �an entirely new session�	 plus entries showing

identi�ers for each currently active session employing that program the user is allowed to

join� �� These identi�ers are generated by the system at the moment of session initiation

and include the user ID of the agent who created them�

Following the OPEN�TOOL command	 the system executes whatever is necessary to com�

ply with the request� this may include some requests for initial parametrization of the ap�

plication	 which are performed by providing the user with a message and a prompt	 asking

him�her to indicate his�her choices with textual input� If the invocation is successful	 Oz

�nally returns a message in the client
s Message Window	 reporting the type of operation

accomplished� The nature and the current state of the tool are then checked by the system	

and	 if it is the case	 its User Interface is dispatched to the user
s monitor for immediate

use ��� In case the requested instance of a tool is not available	 due to failures either by the

tool itself or by the system	 the user is noti�ed with a pop�up message� When the access to

�
See Section for the meaning of this term in the context of MTP�
��This applies only to collaborative tools of the MULTI QUEUE and MULTI NO QUEUE classes�
��In general� this applies to tools of the UNI QUEUE� UNI NO QUEUE and MULTI NO QUEUE classes

that sport GUIs� while for MULTI QUEUE ones it may or may not happen� depending if the instance is
currently executing activities on behalf of other participants in the session�

��

an instance is precluded by limitations speci�ed in the toolbase �i�e� the maximum number

of instances the system can support� the user is noti�ed and asked if he�she wants to rollback

his�her request altogether or to place it in a queue� in the latter case it will be automatically

serviced whenever enough tool resources become available for it�

To terminate a session	 the user must select within the Session menu the CLOSE�TOOL

option	 which again lists entries for all the MTP tools� each of those shows the identi�ers

for the currently open sessions	 plus the label Queued� The latter is used when asking to

delete requests which are still unserviced and waiting in the queue	 while selection of one

of the former labels is interpreted as a request to leave an active tool session� The systems

acts accordingly	 displays a message with the results of its operation in the client
s Message

Window	 or	 in case of failure or of illegal requests �i�e� issued on sessions in which the

user has not taken any part�	 with a pop�up message� The actions performed may or may

not lead to killing the UNIX process made previously available to the by the OPEN�TOOL

command	 depending if the user is the last active participant in that tool session or not�

Important� the current version of Rivendell does not support �implicit� termination

of a session �that is	 to close the copy of a tool via its own internal command�s��	 but cannot

disallow it� It is crucial that the users train themselves to �nish up their sessions only with

the provided session�handling primitive and not with the tool
s means�

Note� If the user intends to employ a tool in a non�persistent fashion	 similar to the

working model supported by the SEL integration protocol	 he�she is free not to employ the

session�handling primitives described above� MTP supports atomic sessions �See Section ��	

consisting of one MTP activity only �See Section �����	 automatically and transparently

instantiated by Oz at the rule invocation	 and closed at the end of the corresponding task

�that is	 the chain generated by that rule��

���
�
 MTP Activities� Interacting with the Tools

Once the user has obtained access to a copy of an MTP tool	 via the session mechanism	

as explained in Section �����	 he�she is free to invoke rules that involve that application

and manipulate pieces of data in the objectbase of the environment	 following the usual Oz

��

model�

The selection of a rule and its parametrization with arguments taken from the objectbase

are accomplished in the usual way	 based on selection of an item within the Rules menu and

mouse pointing on the objects displayed in the main client window� A di�erence resides in

that MTP supports overlapping requests for multiple rules employing the same pre�existing

tool instance� The user is free to �re rules at will	 which are all directed to his�her controlled

application� The consequences of such actions are di�erent	 depending on the class of the

tool� they might be immediately executed �for UNI NO QUEUE ones� ��	 or sequentially

queued� In the latter case	 a noti�cation message is immediately displayed in the Message

Window of the client and the execution of that rule is delayed until the end of the currently

active task�

The successful �ring of a rule has two consequences�

�� The creation of an Activity Window �or Rframe�	 managed by the Graphical User

Interface of the Oz client� This window is quite similar to the ones used in SEL activities	

with two main di�erences� the string MTP Activity� is displayed in the header of the

window	 immediately before the signature of the rule	 and two supplementary buttons	

labeled Good and Bad	 are present in its top�right corner� This are used to terminate

the activity and to assign its return code	 as explained below�

� If the tool
s GUI is not yet present on the user
s monitor it is dispatched there by the

system	 for immediate use�

The role assumed by the Rframe is separated by the one played by the tool
s GUI� the latter

accommodates direct and full interaction of the user with the features of the application	

while the former is intended	 as it is in SEL	 to show the progress of the task initiated by the

rule	 in all its components �that is	 during the span of its rule chain�s�� in the top half	 and

to support I�O �ow between the user and the envelope executing the activity in the bottom

half�
��With this property � MTP intends to support incremental loading of various sets of data into memory

during the tool�s life cycle� this is useful for those programs that can handle multi�tasking or multi�bu�ering
and that is not provided by the SEL approach �See Section
���� for an example of a UNI NO QUEUE
session� showing overlapping activities�

��

Another very important di�erence from SEL is the way the activity and its corresponding

envelopes are carried out� MTP currently accounts for only semi�automated execution of

its activities� User intervention is usually necessary in the phase of loading data into the

memory of the external program� this is accomplished by the system displaying appropriate

messages in a pop�up window	 with the purpose of guiding the user in such operation� The

messages accurately indicate	 according to the tool
s nature	 what actions must be taken to

successfully load the parameters of the activity �e�g� menu selections	 mouse actions	 typing

of textual commands or of shortcuts��

After this initialization phase	 which must be correctly followed by the user	 manipulation

of the data with the means o�ered by the program is completely free for an inde�nite

amount of time� Saving of intermediate processing results via the tool
s means is captured

and supported by the protocol in a transparent way�

More user interaction with the protocol is requested by MTP in order to recognize the

end of an activity� for this purpose	 we have implemented a typical dual commit vs� rollback

choice	 that is given to the user through the Good and Bad buttons mentioned above� When

Good is selected	 the system recognizes the successful end of the MTP activity	 records into

the objectbase all the modi�cations operated on the various pieces of data involved and

executes a corresponding set of e�ects� If Bad has been chosen	 all the changes are discarded

and do not in�uence the state of the environment and of its objectbase	 and an alternative

set of e�ects takes place� Clicking on Good without having made any modi�cation to the

arguments of an activity defaults to the set of e�ects	 in the current version of Rivendell�

This behavior is di�erent from that of SEL envelopes	 which always save the results of the

activity	 regardless of its return code�

The control of the MTP tool is held by the user until the end of the chaining resulting from

the termination of the activity and dependent on the chosen set of e�ects	 then is released�

In the case of an atomic session �See Section ������	 this event also causes the killing of the

tool
s instance�

�

References

��� Naser S� Barghouti� Supporting cooperation in the marvel process�centered SDE� In
Herbert Weber	 editor	 �th ACM SIGSOFT Symposium on Software Development En�
vironments	 pages � ��	 Tyson
s Corner VA	 December ���� Special issue of Software
Engineering Notes	 �����	 December ����

�� Noureddine Belkhatir	 Jacky Estublier	 and Walcelio L� Melo� Adele � A support to
large software development process� In Mark Dowson	 editor	 st International Con�
ference on the Software Process� Manufacturing Complex Systems	 pages ��� ���	 Re�
dondo Beach CA	 October ����� IEEE Computer Society Press�

��� Israel Z� Ben�Shaul� Oz� A Decentralized Process Centered Environment� Technical
Report CUCS������	 Columbia UniversityDepartment of Computer Science	 December
����� PhD Thesis�

��� Israel Z� Ben�Shaul and Gail E� Kaiser� A paradigm for decentralized process modeling
and its realization in the oz environment� In �th International Conference on Software
Engineering	 pages ��� ���	 Sorrento	 Italy	 May ����� IEEE Computer Society Press�

��� Israel Z� Ben�Shaul	 Gail E� Kaiser	 and George T� Heineman� An Architecture for
Multi�User Software Development Environments� Computing Systems� The Journal of
the USENIX Association	 ������ ���	 Spring �����

��� Christian Bremeau� The PCTE Contribution to Ada Programming Support Environ�
ments �APSE�� In Fred Long	 editor	 Software Engineering Environments International
Workshop on Environments	 volume ��� of Lecture Notes in Computer Science	 pages
��� ���	 Chinon	 France	 September ����� Springer�Verlag�

��� Geo�rey Clemm and Leon Osterweil� A mechanism for environment integration� ACM
Transactions on Programming Languages and Systems	 ������ �	 January �����

��� Michael DeBellis	 Kanth Miriyala	 Sudin Bhat William	 C� Sasso	 and Owen Rambow�
KBSA Concept Demo� Technical Report RL�TR������	 Rome Laboratory	 April �����

��� Prasun Dewan and Rajiv Choudary� A High�level and Flexible Framework for Im�
plementing Multiuser User Interfaces� ACM Transactions on Information Systems	
��������� ���	 October ����

���� Prasun Dewan and John Riedl� Toward Computer�Supported Concurrent Software En�
gineering� Computer	 ������� �	 January �����

���� Klaus R� Dittrich	 Willi Gotthard	 and Peter C� Lockemann� DAMOKLES� a database
system for software engineering environments� In Reidar Conradi	 Tor M� Didriksen	 and
Dag H� Wanvik	 editors	 Advanced Programming Environments	 volume �� of Lecture
Notes in Computer Science	 pages ��� ���� Springer�Verlag	 Berlin	 �����

��

��� Mark Dowson� ISTAR � an integrated project support environment� In ACM SIG�
SOFT�SIGPLAN Software Engineering Symposium on Practical Software Development
Environments	 pages � ��	 Palo Alto	 CA	 December ����� Special issue of SIGPLAN
Notices	 ���	 January �����

���� Mark Dowson� Integrated project support with ISTAR� IEEE Software	 ������ ��	
November �����

���� Anthony Earl� Principles of a Reference Model for Computer Aided Software Engineer�
ing Environments� In Fred Long	 editor	 Software Engineering Environments Interna�
tional Workshop on Environments	 volume ��� of Lecture Notes in Computer Science	
pages ��� ��	 Chinon	 France	 September ����� Springer�Verlag�

���� J� Estublier	 S� Ghoul	 and S� Krakowiak� Preliminary experience with a con�gura�
tion control system for modular programs� In Peter Henderson	 editor	 ACM SIG�
SOFT�SIGPLAN Software Engineering Symposium on Practical Software Development
Environments	 pages ��� ���	 Pittsburgh PA	 April ����� Special issue of SIGPLAN
Notices	 �����	 May �����

���� Christer Fernstrom� Process WEAVER� Adding process support to UNIX� In �nd In�
ternational Conference on the Software Process� Continuous Software Process Improve�
ment	 pages � �	 Berlin	 Germany	 February ����� IEEE Computer Society Press�

���� F� Gallo	 G� Boudier	 and I� Thomas� Overview of PCTE and PCTE!� ACM SIGPLAN
Notices	 ���	 February �����

���� David Garlan and Ehsan Ilias� Low�cost	 adaptable tool integration policies for inte�
grated environments� In Richard N� Taylor	 editor	 �th ACM SIGSOFT Symposium on
Software Development Environments	 pages � ��	 Irvine CA	 December ����� Special
issue of Software Engineering Notes	 �����	 December �����

���� Mari Georges and Claude Koemmer� Use and Extension of PCTE� The SPMMS Infor�
mation System� In Fred Long	 editor	 Software Engineering Environments International
Workshop on Environments	 volume ��� of Lecture Notes in Computer Science	 pages
�� �	 Chinon	 France	 September ����� Springer�Verlag�

��� Mark A� Gisi and Gail E� Kaiser� Extending a Tool Integration Language� In Mark
Dowson	 editor	 st International Conference on the Software Process� Manifacturing
Complex Systems	 pages �� �	 Redondo Beach CA	 October ����� IEEE Computer
Society Press�

��� Adele Goldberg and David Robson� Smalltalk��� The Language and its Implementation�
Addison�Wesley	 Reading MA	 �����

�� A�N� Habermann and D� Notkin� Gandalf� Software Development Environments� IEEE
Transactions on Software Engineering	 SE���������� ���	 December �����

��

��� William Harrison� RPDE�� A Framework for Integrating dtool fragments� IEEE Soft�
ware	 ������� ��	 November �����

��� George T� Heineman� Process modeling with cooperative agents� In Brian Warboys	
editor	 �rd European Workshop on Software Process Technology	 volume �� of Lecture
Notes in Computer Science	 pages �� ��	 Villard de Lans �Grenoble�	 France	 February
����� Springer�Verlag�

��� George T� Heineman	 Gail E� Kaiser	 Naser S� Barghouti	 and Israel Z� Ben�Shaul�
Rule Chaining in Marvel� Dynamic Binding of Parameters� IEEE Expert	 ������ �	
December ����

��� G� E� Kaiser	 N� S� Barghouti	 and M� H� Sokolsky� Preliminary Experience with Process
Modeling in the Marvel Software Development Environment Kernel� In ��rd Annual
Hawaii International Conference on System Sciences	 volume II	 pages ��� ���	 Kona
HI	 January �����

��� Gail E� Kaiser	 Peter H� Feiler	 and Steven S� Popovich� Intelligent assistance for software
development and maintenance� IEEE Software	 ������� ��	 May �����

��� Alain Karsenty	 Cristophe Tronche	 and Michel Beaudouin�Lafon� GroupDesign� Shared
Editing in a Heterogeneous Environment� Computing Systems	 ������� ���	 �����

��� Brian W� Kernighan and John R� Mashey� The UNIX programming environment� Com�
puter	 ������ ��	 April �����

���� N� Kiesel	 A� Schurr	 and B� Westfechtel� GRAS	 a graph�oriented database system for
software engineering applications� In Hing�Yang Lee	 Thomas F� Reid	 and Stan Jarz�
abek	 editors	 �th International Workshop on Computer�Aided Software Engineering	
pages � ��	 Singapore	 July �����

���� Michael J� Knister and Atul Prakash� DistEdit� A Distributed Toolkit for Supporting
Multiple Group Editors� In CSCW��� Conference on Computer�Suppported Cooperative
Work	 pages �� ���	 Los Angeles	 California	 October �����

��� S� G� Kochan and P� H� Wood	 editors� UNIX Shell Programming� Hayden Books	
Indianapolis	 �����

���� Balachander Krishnamurthy and Naser S� Barghouti� Provence� A process visualiza�
tion and enactment environment� In Ian Sommerville and Manfred Paul	 editors	 �th
European Software Engineering Conference	 number ��� in Lecture Notes in Computer
Science	 pages ��� ���	 Garmisch�Partenkirchen	 Germany	 September ����� Springer�
Verlag�

���� Programming Systems Laboratory� Marvel ��� administrator
s manual� Technical Re�
port CUCS������	 Columbia University Department of Computer Science	 October
�����

��

���� David Notkin and William G� Griswold� Extension and Software Development� In
�th International Conference on Software Engineering	 pages �� ��	 Ra"es City	
Singapore	 April �����

���� Robert Munckand Patricia Oberndorf	 Erhard Ploedereder	 and Richard Thall� An
Overview of the DOD�STD�����A �proposed�	 The Common APSE Interface Set	 Re�
vision A� In Peter Henderson	 editor	 ACM SIGSOFT�SIGPLAN Software Engineering
Symposium on Practical Software Development Environments	 pages �� ��	 Boston
MA	 November ����� ACM Press� Special issues of Software Engineering Notes	 �����	
November ���� and SIGPLAN Notices	 ���	 February �����

���� Harold Ossher and William Harrison� Support for change in RPDE�� In Richard N�
Taylor	 editor	 �th ACM SIGSOFT Symposium on Software Development Environments	
pages �� �	 Irvine CA	 December ����� Special issue of Software Engineering Notes	
�����	 December �����

���� Steven S� Popovich and Gail E� Kaiser� An architectural survey of object manage�
ment systems� International Journal of Intelligent � Cooperative Information Systems	
���#������ ���	 December ����

���� James M� Purtilo and Pankaj Jalote� An Environment for Developing Fault�Tolerant
Software� IEEE Transactions on Software Engineering	 �������� ���	 February �����

���� Reasoning Systems	 Palo Alto CA� Re
ne Software Development Tool	 �����

���� Steven P� Reiss� Connecting Tools Using Message Passing in the Field Program Devel�
opment Environment� IEEE Software	 ������� ��	 July �����

��� David S� Rosenblum and Balachander Krishnamurthy� An Event�Based Model of Soft�
ware Con�guration Management� In Peter H� Feiler	 editor	 �rd International Workshop
on Software Con
guration Management	 pages �� ��� ACM Press	 June �����

���� Wilhelm Schafer	 editor� �th International Software Process Workshop� State of the
Practice in Process Technology	 Wadern	 Germany	 March ����� IEEE Computer Society
Press�

���� �nd International Conference on the Software Process� Continuous Software Process
Improvement	 Berlin	 Germany	 February ����� IEEE Computer Society Press�

���� Peter D� Skopp� Process centered software development on mobile hosts� Technical
Report CUCS�������	 Columbia University Department of Computer Science	 October
����� MS Thesis Proposal�

���� Peter D� Skopp and Gail E� Kaiser� Disconnected operation in a multi�user software
development environment� In Bharat Bhargava	 editor	 IEEE Workshop on Advances
in Parallel and Distributed Systems	 pages ��� ���	 Princeton NJ	 October �����

��

���� Richard Snodgrass and Karen Shannon� Supporting �exible and e�cient tool integra�
tion� In Reidar Conradi	 Tor M� Didriksen	 and Dag H� Wanvik	 editors	 Advanced
Programming Environments	 volume �� of Lecture Notes in Computer Science	 pages
�� ���� Springer�Verlag	 Trondheim	 Norway	 �����

���� Richard Snodgrass and Karen Shannon� Fine grained data management to achieve
evolution resilience in a software development environment� In Richard N� Taylor	 editor	
�th ACM SIGSOFT Symposium on Software Development Environments	 pages ���
���	 Irvine CA	 December ����� Special issue of Software Engineering Notes	 �����	
December �����

���� E� Solomita	 J� Kempf	 and D� Duchamp� Xmove� A pseudoserver for X window move�
ment� The X Resource	 ��������� ���	 July �����

���� Ian Thomas� PCTE Interfaces� Supporting Tools in Software�Engineering Environ�
ments� IEEE Software	 ������� �	 November �����

���� Ian Thomas� Tool Integration in the PACT Environment� In th International Confer�
ence on Software Engineering	 pages �� 	 Pittsburgh PA	 May ����� IEEE Computer
Society Press�

��� Ian Thomas and Brian A� Nejmeh� De�nitions of Tool Integration for Environments�
IEEE Software	 ����� ��	 March ����

���� Andrew Z� Tong	 Gail E� Kaiser	 and Steven S� Popovich� A �exible rule�chaining engine
for process�based software engineering� In �th Knowledge�Based Software Engineering
Conference	 pages �� ��	 Monterey CA	 September �����

���� A� I� Wasserman� Tool Integration in Software Engineering Environments� In Fred Long	
editor	 Software Engineering Environments� International Workshop on Environments	
volume ��� of Lecture Notes in Computer Science	 pages ��� ���	 Chinon	 France	
September ����� Springer�Verlag�

��

