Academic Commons

Theses Doctoral

Physiology-based Mathematical Models for the Intensive Care Unit: Application to Mechanical Ventilation

Albanese, Antonio

This work takes us a step closer to realizing personalized medicine, complementing empirical and heuristic way in which clinicians typically work. This thesis presents mechanistic models of physiology. These models, given continuous signals from a patient, can be fine-tuned via parameter estimation methods so that the model's outputs match the patient's. We thus obtain a virtual patient mimicking the patient at hand. Therapeutic scenarios can then be applied and optimal diagnosis and therapy can thus be attained. As such, personalized medicine can then be achieved without resorting to costly genetics.
In particular we have developed a novel comprehensive mathematical model of the cardiopulmonary system that includes cardiovascular circulation, respiratory mechanics, tissue and alveolar gas exchange, as well as short-term neural control. Validity of the model was proven by the excellent agreement with real patient data, under normo-physiological as well as hypercapnic and hypoxic conditions, taken from literature.
As a concrete example, a submodel of the lung mechanics was fine-tuned using real patient data and personalized respiratory parameters (resistance, R_rs, and compliance, C_rs) were estimated continually. This allows us to compute the patient's effort (Work of Breathing), continuously and more importantly noninvasively.
Finally, the use of Bayesian estimation techniques, which allow incorporation of population studies and prior information about model's parameters, was proposed in the contest of patient-specific physiological models. A Bayesian Maximum a Posteriori Probability (MAP) estimator was implemented and applied to a case-study of respiratory mechanics. Its superiority against the classical Least Squares method was proven in data-poor conditions using both simulated and real animal data.
This thesis can serve as a platform for a plethora of applications for cardiopulmonary personalized medicine.

Files

  • thumnail for Albanese_columbia_0054D_12039.pdf Albanese_columbia_0054D_12039.pdf binary/octet-stream 9.47 MB Download File

More About This Work

Academic Units
Biomedical Engineering
Thesis Advisors
Chbat, Nicolas W.
Degree
Ph.D., Columbia University
Published Here
July 7, 2014
Academic Commons provides global access to research and scholarship produced at Columbia University, Barnard College, Teachers College, Union Theological Seminary and Jewish Theological Seminary. Academic Commons is managed by the Columbia University Libraries.