Can Adaption Help on the Average ?*

G.W. Wasilkowski and H. Wożniakowski
Institute of Informatics. Linversity of Warsaw. Warsaw. Poland and
Department oi Computer Science. Columbia University, New York, New York. USA

Abstract

Summary. We study adaptive information for approximation of linear problems in a separable Hilbert space equipped with a probability measure μ. It is known that adaption does not help in the worst case for linear problems. We prove that adaption also does not help on the average. That is, there exists nonadaptive information which is as powerful as adaptive iniormation. This result holds for "orthogonally invariant" measures. We provide necessary and sufficient conditions for a measure to be orthogonally invariant. Examples of orthogonally invariant measures include Gaussian measures and. in the finite dimensional case, weighted Lebesgue measures.

Subiect Clussifications: AMS(MOS): 68C25. CR: F2.1.

Introduction

We explain the setting of the problem using a simple integration example. Suppose one seeks an approximation to $\int_{0}^{1} f(t) d t$ knowing n values of f at points $t_{1} . . \vee(f)=\left[f\left(t_{1}\right), f\left(t_{2}\right), \ldots f\left(t_{7}\right)\right]$. and knowing that f belongs to a given class F of functions. If the points t_{1}, t, \ldots, t_{n} are given simultaneously then N $=N^{V n o n}$ is called nonaduptite information. If the second point t_{2} depends on the previously computed value $f\left(t_{1}\right)$. i.e.. $t_{2}=t_{2}\left(f\left(t_{1}\right)\right.$ and if the point t_{i} depends on the previously computed values $f\left(t_{1}\right), \ldots . f\left(t_{t-1}\right)$ i.e.. $t_{i}=t_{8}\left(f\left(t_{1}\right), \ldots . f\left(t_{i}-,\right)\right)$. then $N=N^{*}$ is called udaptite iniormation.

The structure of adaptive information is much richer than the structure of nonadapuve information. Therefore one might hope that adaptive information can be much more powerful than nonadaptive information, i.e., an approxima-

[^0]tion that uses daptate information has much smaller error than an approximation that uses nonadaptive information.

What do we mean by error'? It depends which model we have in mind. Consider first the worst case model. In this model the error of an algorithm o (for our simple example) is defined by

$$
\begin{equation*}
e(0 . V)=\sup _{f \in F} \mid \int_{0}^{1} f(t) d t-\phi(N(f)) . \tag{1.1}
\end{equation*}
$$

By an ulgorithm we mean any mapping ϕ which maps $N(f)$ into \mathbb{R}. Then

$$
r(N)=\inf e(\phi, N)
$$

is called the radius of information and ϕ is optimal iffe($\phi . N)=r(N)$.
Does adaption help in the worst case? That is, does there exist a choice of points $t_{:}=t_{i} \mid f\left(t_{1}\right), \ldots . f\left(t_{i-i}\right)$ such that

$$
r\left(N^{a^{a}}\right)<r\left(N^{\text {non }}\right) ?
$$

A surprising answer is no. at least for some classes F. More preciseiy, if the class F is convex and balanced (i.e.. $f \in F$ implies $-f \in F$) then there exist points $t_{:}^{*}$ such that the nonadaptive information $N^{n o n}(f)=\left[f\left(t_{1}^{*}\right), \ldots, f\left(t_{n}^{*}\right)\right]$ is as powerful as the adaptive information $N^{\text {a }}$, i.e.,

$$
r\left(N^{\text {non }}\right) \leqq r\left(N^{a}\right) .
$$

This was established in [1] for arbitrary linear functionals. It was generalized to arbitrary linear operators and information consisting of linear functionals in [2] and [12. Theorem 7.1. Chap. 2]. A further generalization may be found in [11].

It is also known that there are nonlinear problems such that adaption does not help in the worst case: see [3.8.9.14] and [17].

We stress that in the worst case there do exist nonlinear problems for which adaption is far more poweriul. An example of such a problem is zero finding for scalar functions which change sign at the endpoints of the interval [u.b]. Then the optimal nonadaptive information has radius $(b-a): 2(n-1))$ whereas the optimal adaptive information is bisection information which has radius $16-\left(12^{-1 n-11}\right.$: see [12, Theorem 2.1. Chap. 8] and [7].

As long as F is convex and balanced. adaption does not help in the worst calse for linear problems. One may think that this is due to a model assumpton. i.c.. that the error of an algorithm is determined by its performance for the hardest f. One might hope that with a more realistic detinition of error. the onnverse result would be true, i.e., adaption helps, perhaps even significantly, core linear problems.

It seems natural to propose the average error of an algorithm as a more realistic measure oi its performance. Technically, this means that we replace supremum in 11.11 by integral, i.e..

$$
\begin{equation*}
\because^{* \times}(0 . V)=\left\{!_{f}\left|\int_{0}^{1} f(t) d t-o(. V \mid F)\right|^{2} \mu(d f)\right\}^{\ddagger} \tag{1.3}
\end{equation*}
$$

Where μ is a probability measure on F vote that even for our smpie sampie. F usually lies in an infinite dimensional ipace and therefore the anaissis oif 11.31 requires measure theory in infinite dimensional spaces. Thus the analysts of average case error is much harder than the analysis of worst case error.

Deline

$$
r^{a / g}(. V)=\inf _{0} e^{\operatorname{svg}}(\phi, V)
$$

as the aterage radius of information.
Does adaption help on the average? That is, does there exist a choice of points $t_{i}=t_{i}\left(f\left(t_{1}\right), \ldots, f\left(t_{i-1}\right)\right.$ such that

$$
r^{3 \times g}\left(N^{a}\right)<r\left(N^{n o n}\right) ?
$$

The surprising answer is no for linear problems. This was established in [10] for a finite dimensional Hilbert setting with a weighted Lebesgue measure and with a general error criterion. In this paper we show that adaption does not heip on the average for linear problems in infinite dimensional Hilbert spaces with an "orthogonally invariant" measure μ. Orthogonal invariance of μ means that the measure of a Borel set is invariant under certain linear orthogonal mappings. Examples of orthogonally invariant measures include Gaussian measures. For the finite dimensional case with μ absolutely continuous with respect to the Lebesgue measure, orthogonal invariance coincides with a weighted Lebesgue measure, see Corollary 3.1. Thus this coincides with measures studied in [10].

Our result holds for adaptive information operators which are measurable and which consist of arbitrary inner products. In particular. it holds ior adaptive information operators used in practice which are usually continuous almost everywhere. We illustrate this point by an integration example. Lisually the next point t_{i-1}, at which f is to be evaluated, depends on whether $11 t_{:} t$ $f\left(t_{2}\right), \ldots . f\left(t_{1}\right)$ lor some of them) satisfy a certain Boolean condition, i.e..

$$
t_{1-1}= \begin{cases}c_{1, t} & \text { if Cond }\left(f\left(t_{1}\right) \ldots f\left(t_{1}\right)\right)=\text { true. } \\ c_{2, t} & \text { if Cond } \mid f\left(t_{1}\right) \ldots, f\left(t_{1}\right)=\text { talse. }\end{cases}
$$

for some $a_{1,1}$ and $a_{2,1}$. Then t_{1-1}, as a function of the previously computed information, is a plecewise constant function. Thus it is not continuous but it is continuous almost everywhere for a reasonable choice of measure. See for example, the discussion on adaptive integration in [5. pp. 126-130].

We have given a number of references dealing with adaptive information for nonlinear problems in the worst case. There exist no such paper for the average case model. We hope that the study of nonlinear problems in the average case model will be one of the foci of future research.

We stress. by all means. that the worst and average case models are not the only interesting models to be studied. An asymptotic model, in which the total number of evaluations is not fixed a priori, should be analyzed. The question as to whether adaption helps for linear problems in the asymptotic case is analyzed in (J.M. Trojan. in preparation). The answer is once more no. Some preliminary study indicates that adaption does not help in the asymptotic arerage case. Results for this model will be reported in the future.

Why are we interested in the question whether adaption is more powerful then nonadaption? There are a number of reasons which include:
(i) Intrinsic mathematical interest. Adaption corresponds to certain nonlinear operators whereas nonadaption corresponds to linear operators. Mathematically the sentence "adaption does not help" means that this nonlinearity is no more powerful than linearity.
(ii) Reduction of the search for optimal information. If adaption does not help then we only hate to look at the very special and retatively easy nonadaptive case to find optimal information.
(iii) Speedup for parallel computations. Nonadaptive information is naturally decomposable and can be computed very efficiently in parallel. Adaptive information is not decomposable an is ill-suited for parallel computations. For instance. for the integration example if a function evaluation costs unity and there are n processors then nonadaptive information costs unity and adaptive information costs n.

A more detailed discussion of this subject may be found in [13].
We briefly summarize the contents of this paper. In Sect. 2 we formulate the problem. introduce the concept of orthogonal invariance and state the main theorem of this paper. The proof of the theorem requires some properties of orthog. onally invariant measures. Therefore Sects. 3 and 4 deal with characterization and properties of orthogonally invariant measures. In particular. we prove that orthogonal invariance of μ is equivalent to orthogonal invariance of its projections into linite dimensional subspaces. We also characterize orthogonal invariance for the finite dimensional case. We prove that the measure of a Boret set is invariant under a certain nonlinear mapping. This is basic to the proof in Sect. 5 that the spline algorithm is an optimal average error algorithm. The proof of the main theorem is given in Sect. 5 .

2. Adaptive Information

Let F : and F : be real separable Hilbert spaces. Let $S: F_{1} \rightarrow F_{2}$ be a linear contenuous operator. Our aim is to approximate S ! for any ! from F_{1}. We issume that instead of $/$. we know $. i / f$. Here.$~ N$ is an adaptite information operutor delined b!

$$
\forall f \mid=\left[(f) g_{1} \mid,\left(f . g_{2}\left(y_{1}\right)\right), \ldots, f \cdot g_{n}\left(y_{1}, \ldots \cdot \xi_{n-1}\right)\right]
$$

 $1 \cdot . \cdot 1$ is the inner product of F_{1}. The essence of (2.1) is that the choice of $g_{1} 11: \ldots . l_{-1}$ may depend on the ($i-1$) previously computed inner products. For brestly we shall write

$$
g_{1}(f)=g_{1} . \quad g_{1}(f)=g_{1}\left(y_{1} \ldots \ldots, y_{1-i}\right) \quad 2 \leqq i \leqq n
$$

To stress that N is adaptive we shall sometimes write $N=N^{\prime 2}$. If each $g_{i}(f)$ does not depend on l. i.e. $g_{1}(f) \equiv g$, for some $g_{\text {, }}$ from F_{1}, then.V is called nonadafitie and denoted by $. \lambda=V^{\text {non }}$. i.e..

$$
\begin{equation*}
\left.\left.\therefore_{\text {non }}(f)=\left[\left(f / g_{1}\right) \cdot 1 / f \cdot g_{2}\right), \ldots . .1 / f g_{n}\right)\right] . \tag{2.3}
\end{equation*}
$$

Note that nonadaptive information is a lintar operator whereas dapute information is in general nonlinear. Without loss of generality we assume that $g_{1}(f) g_{2}(1) \ldots . g_{n}(f)$ are linearly independent for each f from F_{1}.

K nowing $V(f)$ we approximate $S j$ by didif) where o is a mapping trom $V\left(F_{1}\right)$ into F_{2}. We call such φ an (idealized ulgorthm. We wish to approxtmate $S f$ with an average error as small as possible. The average error of p is defined as

$$
\begin{equation*}
\left.e^{3 \times 8}(\varphi . . V)=\left\{\prod_{\dot{f}_{1}}|S f-\varphi| . V(f)\right)^{2} \mu(d f)\right\}^{2} \tag{2.4}
\end{equation*}
$$

Here μ is a probability measure defined on Borel sets of F_{1} and the integral in (2.4) is understood as the Lebesgue integral. We assume that an algorithm 0 is chosen such that (2.4) is well defined. i.e., " $S f-\varphi(N / f){ }^{*}$ is a measurable function. This assumption is not restricted as is shown in [15]. Let

$$
r^{1 / g}(N)=\inf _{\varphi \in \Phi(N)} e^{a v g}(\varphi, N)
$$

be the average radius of information where $\Phi(N)$ denotes the class of all algorithms using N for which the average error is well defined.

The main problem addressed in this paper is to show that for a wide class of measures. adaptive information is not stronger than correspondingly chosen nonadaptive information. Thus the much more complicated structure of adaptive information operators does not supply more knowledge about linear problems than the relatively simple structure of nonadaptive information operators.

This result holds for "orthogonally invariant" measures μ. This concept will be delined below. We assume that $\int_{F_{1}} f: \mu(d f)<-x$. Without loss of generality we can assume that the mean element of the measure μ is zero. i.e.

$$
\int_{F}(f x) u(d f)=0, \quad \forall x \equiv F_{1}, \quad \text { and } \quad \int_{F:}(f x)^{2} \mu(d f)>0, \quad \forall x \in F_{1}, x=0 .
$$

Let $S_{:}$be the cotariance operator of μ. i.e.. $S_{A}: F_{1} \rightarrow F_{1}$ and

$$
\left(S_{x} x \cdot \|=\int_{F_{1}}(f, x \| f \cdot y) \mu(d f) \quad \forall x,!\in F_{1}\right.
$$

The operator S_{μ} is a linear self-adjoint. positive definite operator and has finite trace. If $\operatorname{dim} F_{1}=+x$ then $S_{d}\left(F_{1}\right)$ is a proper dense subset of F_{1} and S_{-1}^{-i} : $S_{-}\left(F_{1}\right) \rightarrow F_{1}$ is a linear unbounded operator. See [4.6] and also [16]. Let

$$
\left(x . H_{*}=\left(S_{u}^{-1} x, y\right) \quad \forall x . y=S_{\Delta}\left(F_{1}\right)\right.
$$

Then : $x=\sqrt{|x . x|}=\sqrt{15^{-1} x . x \mid}$.
We say μ is orthogonally ineariant iff

$$
\mu(Q B)=!(\mid B)
$$

for any Borel set B and any linear mapping $Q . Q: F_{1} \rightarrow F_{1}$. of the form

$$
\underline{Q} f=?(f . h) S_{\Delta} h-f
$$

for any h such that $15, h, h=1$ or $h=0$. For $h=0 . Q j=-J$ and 2.51 means that $\mu(-B)=\mu(B)$ where $-B=: 1:-1 \equiv B_{i}$. Note that $j \equiv S_{a}\left(F_{1}\right)$ implies that $Q f=S_{. .}\left(F_{1}\right)$ and

$$
\begin{aligned}
Q!: & =2 \cdot f h h-S_{u}^{-1} f: 2\left(f \cdot h S_{u} h-f\right) \\
& \left.=S_{u}^{-1} f f\right)=f:
\end{aligned}
$$

Thus the mapping Q is orthogonal in the norm ${ }^{\prime \cdot}$. This explains why μ is called orthogonally invariant.

It is shown in [16] that Gaussian measures are orthogonally invariant as well as measures of the form

$$
\mu(B)=\prod_{B} w\left(S_{\mu}^{- \pm} f!i(d f)\right.
$$

for some measurable function w assuming that F_{1} is finite dimensional and $;$ is the Lebesgue measure.

Note that Q resembles a Householder matrix. It is easy to check that

$$
\begin{equation*}
Q^{2}=I . \quad Q^{-1}=Q \tag{2.10}
\end{equation*}
$$

This important property will be extensively used in this paper. In Sect. 3 we characterize orthogonally invariant measures in detail.

We shall show in Sect. 5 that without loss of generality we can assume that $\left.\mid S_{i,} g_{i}(f), g_{j}(f)\right)=\dot{d}_{i}$. Let

$$
u=\sup \left\{\sum_{1=1}^{7}: S S_{u} g_{1}(f)!^{2}: f \in F_{!}\right\}
$$

For simplicity assume that u is obtained for f^{*}. i.e..

$$
\left.\left.\sum_{i=1}^{n} S S_{a} g, 1\right)^{*}\right)^{2}=\sup _{f \leqslant F_{1}} \sum_{i=1}^{n} S S_{u} g_{i}(f)^{2}
$$

Let $g_{t}^{*}=y_{1},\left.\right|^{*}$. By .inn we mean

$$
. V_{1}^{n} \cdot n_{1} \mid 1=\left[\left(1, g_{i}^{*}\right) \cdot\left|f \cdot g_{2}^{*}\right| \ldots,\left|f \cdot g_{n}^{*}\right|\right] .
$$

Vote that $\cdots,{ }^{\circ}$ is momaduptte and is obtained by fixing $g_{,}(f)$ in the adaptive information V^{-2}.
 measurable, ie. $g_{1}^{-:}(B)$ is a Borel set for a Borel set B of $\mathbb{R}^{-1} . i=2.3 \ldots \ldots n$. We are ready to state the main result of this paper.
Theorem 2.1. Le't a be wh orthogonally intariant measure. Let . ${ }^{-1}$ be measurable aduptite intormation. Then

$$
\begin{equation*}
\left.r^{N} \dot{I}_{1}\right)_{1} \geqq r^{-\infty}\left(V_{0} V_{0}\right) \tag{2.13}
\end{equation*}
$$

Thus ddaption joes not help on the arerage for linear problems. As we already mentioned in the introduction it does not heip for the worst case model.

The proul of Theorem i.l depends heashly on the propertes al arthegonally invariant measures. In Sect. ? We characterize orthogonally motrant medsures. The results of Sect 3 are of intrinstic interest. In Sect + we derme propertes of orthogonally invariant measures. Secton 5 contains the proof of Theorem 2.1. The proof is based on two resuits on orthogonally invartant measures. The first result is that for orthogonally invarant measures. the measure of a set is invariant under a certain nonlinear mapping. The second is that the measures $\mu\left(V^{a}\right)^{-1}$ are orthogonally invariant and independent of λ° Assuming these two results. the reader can skip Sects. 3 and 4 and turn to Sect. 5.

3. Orthogonal Invariance of Measure

We show in this section which measures are orthogonally invariant. Our analysis will be lirst done for a finite dimensional case, $\operatorname{dim}\left(F_{1}\right)<+r$. We find, in particular. a condition for μ to be orthogonally invariant whenever μ is absolutely continuous with respect to the Lebesgue measure i. Next we consider the general case. $\operatorname{dim}\left(F_{1}\right) \leqq-x$. We show that orthogonal invariance of μ is equivalent to orthogonal invariance of its finite dimensional projections.
(i) Assume in this subsection that $m=\operatorname{dim}\left(F_{1}\right)<+x$. Then the operator S_{1} is bounded and

$$
T=S_{u}^{-亡}: F_{\mathrm{t}} \rightarrow F_{1}
$$

is well defined. By $\eta \otimes \eta$ we mean a linear operator from F_{1} into F_{1} such that
 where $\eta=S: h$ and $\eta^{\prime \prime}=1$ or $\eta=0$. Hence, the measure μ is orthogonally invariant iff

$$
\mu\left(T^{-\mathrm{L}}(2 \eta \otimes \eta-I) T B\right)=\mu(B)
$$

for any Borel set B and any η such that $n=1$ or $\eta=0$.
We characterize orthogonally invariant measures μ which are absoiutely connanuous with respect to the Lebesgue measure i.. Recall that μ is absolutely Continuous w.e.t, to i denoted by $\mu \ll i$ iff $; 1 B 1=0 \Rightarrow \mu B 1=0$ for every Borel set B. If $\mu \ll$.. then the Radon- Vikodym theorem. see e.g. [6], guarantees the existence of a nonnegative measurable mapping $g: F_{1} \rightarrow \mathbb{R}$, such that

$$
u \mid B)=\prod_{B} g(f \mid \dot{B}(d!)
$$

For simplicity we assume that g is continuous almost everywhere. i.e.. there exists a set A, $i,\left(F_{:}-f\right)=0$. such that $f \equiv . t$ implies that g is continuous at f.
Theorem 3.1. The me'asure μ is orthogonally intarian iff

$$
\left.91 f_{1}\right)=g 1 f_{2} \text { tor any } f_{1} f_{2}=4 \text { such that } f_{1}=f_{2}=\text { (3.4) }
$$

Pronf. Suppose μ is orthogonally invariant. Take f_{1} and f_{z} from A such that $f_{1}=I_{2}$. Define $n_{1}=T_{1} i_{1}-l_{2} \quad f_{1}-l_{2} i_{*}$ for $l_{1} \neq-f_{2}$, and $n=0$ for $f_{1}=$
 $=I_{2}$. Then (3.2) yields $\mu(\underline{Q})=u B$) ior an! Borel set B. Observe that det Q^{\prime}
$=1$. This and 13.31 yeld

$$
\begin{equation*}
\prod_{B}\{g(f)-g(Q f) ; \dot{\lambda} d f)=0 . \quad \forall B-\text { Borel set. } \tag{3.5}
\end{equation*}
$$

Note that $g-g Q$ is continuous at f_{1} and $g\left(f_{1}\right)-g\left(Q f_{1}\right)=g\left(f_{1}\right)-g\left(f_{2}\right)$. Suppose that $g\left(f_{1}\right)-g\left(f_{2}\right)=0$. Due to continuity of $g-g Q$ at f_{1}, there exists a positive r such that for $f \equiv B=\left\{f \in F_{:}: f-f_{1}:<r\right\}$ we have $\operatorname{sign}(g(f)-g(Q f)) \equiv$ constant. Since i. B is >0 we have

$$
\varliminf_{B}(g(f)-g(Q f)\} \therefore(d f) \neq 0
$$

which contradicts (3.5). Hence $g\left(f_{1}\right)=g\left(f_{2}\right)$ as claimed.
Assume now that (3.4) holds. Then for an orthogonal Q in the norm we have $\mid \operatorname{det} Q!=1$ and

$$
\begin{aligned}
& =\sum_{B \cap Q(A)} g(Q f) \dot{(d f)}=\sum_{B \sim Q(A) \cap A} g(Q f) \vdots(d f) .
\end{aligned}
$$

Note that $f=.4 \cap Q(.4)$ implies $Q f \equiv A$. Since $Q f:_{*}=\mid f i_{*}$ then (3.4) yields $g(Q f)=g(f)$. Thus we have

$$
\begin{equation*}
\mu(Q(B))=\sum_{B \subset Q i+1 \cap A}^{i} g(j) i(d j) \leqq \mu(B) \tag{3.6}
\end{equation*}
$$

for any Borel set B. Setting $B=Q(C)$ we have $\mu(C) \leqq \mu(Q(C)$ for any Borel set C. Hence $\mu(Q(B) \mid=\mu(B)$. This means that μ is urthogonally invariant.

The condition $13 .+1$ means that g depends on the norm of f. More precisely, let $\mathcal{X}=\left\{\dot{f}: f=H_{i}\right.$. Deline $w: \mathbb{R}, \rightarrow \mathbb{R}$. such that

$$
w(x)= \begin{cases}g \mid f) & x=x . \tag{3.7}\\ 0 & x \neq x\end{cases}
$$

where $f \equiv$ and $f *=x$. Due to 13.4 . w is well defined. For $f \equiv . t$ we have w $f, y=g / 1$. Since

$$
\begin{aligned}
& =i_{B} \times 1 \quad i \quad i(d f) .
\end{aligned}
$$

Thus we have proven
Corollary 3.1. The meanare is arthogonally inturiam iff

$$
\mu|B|=\prod_{B} n 1, \text { |iddt. } \quad 7 B \text {-Borel set. } \sqsubset
$$

The measures considered in [10] are of the form 13.8) and therefore they are orthogonall! tavariant.
(ii) We now turn to the general case dimı $F_{1} \mid \leqq-\gamma$. It dimi $F_{1} \mid=-r$ then $T=S_{i}^{-}$: is unbounded and for $f \pm S: 1 F: 1 . T i$ is not well delined. Theretore the results of subsection (i) do not hold.

We exhibit relations between orthogonal invariance of μ and orthogonal invariance of its finite dimensional projections. Let $; 1 . \therefore \ldots$ be orthonormal eigenelements of the covariance operator S_{μ}. i.e.

$$
S_{u} i_{i}=i_{i},
$$

where $i_{:} \geqq i_{2} \geqq \ldots$. Let $X_{m}=\operatorname{lin}\left(5_{1}, \therefore_{2} \ldots . i_{m}\right)$ and let P_{m} be an orthogonal projection,

$$
P_{m}: F_{1} \rightarrow X_{m}
$$

Let μ_{m} be the projection of the measure μ onto X_{m}, i.e.

$$
\mu_{m}(B)=\mu\left(P_{m}^{-1} B\right)
$$

for any Borel set B in X_{m}, see [6]. We are ready to prove
Theorem 3.2. The measure μ is orthogonally intariant iff the measures μ_{-m} ure orthogonally invariant for $m=1,2, \ldots$.

Proof. Assume that μ is orthogonally invariant. For any m, take a mapping $Q: X_{m} \rightarrow X_{m}$ of the form (2.9). i.e.,

$$
Q f=2(f, h) S_{m} h-f
$$

where S_{m} is the covariance operator of the measure μ_{m} and $h \in K_{m},\left|S_{m} h, h\right|=1$ or $h=0$. First of all we show that $S_{m} x=S_{\mu} x, x \in X_{m}$. Indeed, for $x, y \in X_{m}$ we have

$$
\begin{aligned}
\left(S_{m}, x, y\right) & =\int_{\dot{X}}(f, x)\left(f, l^{\prime}\right) \mu_{m}(d f)=\int_{F_{:}}\left(P_{m} f(x)\left(P_{m} f, y\right) \mu(d f)\right. \\
& =\left(S_{d} P_{m} x, P_{m} y\right)=\left(S_{A} x .!l\right.
\end{aligned}
$$

Since X_{m} is an invariant subspace of $S_{A} . S_{u} x \in X_{m}$ and $S_{m} x=S_{u} x . \forall x \equiv X_{m}$, as claimed. Thus \underline{Q} can be extended to the space F_{1} with S_{m} replaced by $S_{\text {. }}$. Let B be a Borel set in K_{m}. Note that

$$
P_{m}^{-1} Q B=Q P_{m}^{-1} B .
$$

Indeed. if $f=P_{m}^{-1} Q B$ then $f=Q b-f_{i}$ where $b \equiv B$ and $f_{1} \in X_{m}^{-}$. Since $Q f_{1}=-i_{1}$. We have $f=Q\left(b-f_{1}\right) \equiv Q\left(P_{m}^{-1} B\right)$. Assume now that $f \in Q P_{m}^{-1} B$. Then $f=Q(b$ $-f_{1}$) where $b \equiv B$ and $f_{1} \equiv \mathcal{F}_{m}$. Thus $f=Q h-f_{1} \in P_{m}^{-1} Q B$ as claimed.

From 13.111.13.12) and orthogonal invariance of μ we have

$$
\mu_{m}(\underline{Q} B)=\mu\left(P_{m}^{-1} \underline{Q} B\right)=\mu\left(\underline{Q} P_{m}^{-1} B\right)=\mu\left(P_{m}^{-1} B\right)=\mu_{m}(B) .
$$

Thus μ_{m} is orthogonaily invariant which completes this part of the proof.
Let ${ }^{4} m$ be orthogonally invartant. Let Q be of the form 12.91. ie.. Q, t $=21 / h, S_{h}-f$ for some h such that $\left(S_{2} h, h\right)=1$ or $h=0$. Define

$$
Z=\left\{B: B \text { is a Borel set in } F_{1}, \mu(\underline{Q} B)=\mu(B)\right\}
$$

Observe that 2 is a r-feld Inded. if $B_{i}=Z$ and $B_{1}-B_{i}=0$ for $1=1$, then $Q B_{i}-Q B_{1}=0$ since Q is one-to-one. Then

$$
\mu\left(\underline{Q}_{i=1}^{\prime} B_{1}\right)=\mu\left(\bigcup_{i=1}^{\prime} Q B_{i}\right)=\sum_{i=1}^{\dot{j}} \mu\left(Q B_{i} 1=\sum_{i=1}^{\dot{~}} \mu\left(B_{i}\right)=\mu\left(\bigcup_{1=1}^{\prime} B_{i}\right) .\right.
$$

Thus $B_{1}=Z$. Of course $0 \in Z$ and $B \in Z$ implies that $F_{1}-B \in Z$. Hence Z is a σ field as claimed.

We now show that each closed ball $B=\{f, j-a \leqq r\}$ with $a \in X_{m_{0}}$ for some m_{0}, belongs to Z. Recall that $Q f=2(j, h) S_{u} h-f$ where $\left(S_{u} h . h\right)=1$ or h $=0$. If $h \neq 0$ then take an index j such that $P, h \neq 0$. Define $h_{j}=c P, h$ where c $=\left(S_{\mu} P, h, P, h^{-5}\right.$. If $h=0$. set $h_{j}=0$. Then $h_{j} \in x_{j}$ and $\left(S_{j} h_{j}, h_{j}\right)=1$ of $h_{j}=0$.

Deline the mapping $Q_{j}: X_{j} \rightarrow X_{j}$ by

$$
Q_{j}(f)=2\left(f, h_{j}\right) S_{u} h_{j}-f .
$$

Note that Q_{j} is of the form (2.9) for the space X_{j}. We have $h_{j} \rightarrow h$ and $Q_{j}(f)-Q(f)$ as j tends to $-x$. We now prove that

$$
\begin{equation*}
\bigcap_{i=1}^{\infty} \bigcup_{j=i}^{x} P_{j}^{-1} Q_{i}\left(P_{j} B\right) \subset Q B \tag{3.15}
\end{equation*}
$$

Indeed. let x belong to the left hand side of (3.15). Then there exists a subsequence $j_{i} \rightarrow-r$ such that $x=P_{j,}^{-1} Q_{j,}\left(P_{j,} B\right)$. Thus $P_{j,} x=Q_{j i}\left(P_{j,} b_{j,}\right)$ where $b_{1} \equiv B$. From this we have

$$
Q_{j,} P_{j,} x=P_{j,} b_{j,} \in P_{j,} B .
$$

[f $J_{i} \geqq m_{0}$ then $P_{i,} b-a=P_{f_{i}}(b-a) \leqq b-a \leqq r$ for any b from B. Thus $P_{i,} B=B$ and $Q_{i} P_{i}, x \in B$. Since B is closed then $Q_{,} P_{1} x \rightarrow Q x \in B$ and $x \in Q B$. This shows that the left hand side of 13.15) is contaned in $Q B$. From 13.15 we have

$$
\begin{aligned}
\mu|Q B| & \left.\geqq\left.\lim _{\rightarrow 1} \mu\right|_{j=1} ^{\prime} P_{j}^{-1} \underline{Q}, P, B \mid \geqq \lim _{-1} \mu P_{1}^{-1} Q_{i} P_{i} B\right) \\
& =\lim _{\mu}\left(Q_{i} P, B\right) .
\end{aligned}
$$

Since μ is urthogonaily intartant then

$$
\mu(\underline{O} P B)=\mu(P, B)=\mu\left(P_{1}^{-1} P B\right) \geqq \mu(B) .
$$

Thus

$$
\mu(Q B) \geqq \mu(B) .
$$

To prove the opposite inequality we show that

$$
\begin{equation*}
Q B=: \quad \therefore,-1, Q_{1}^{-1} P, B \tag{3.17}
\end{equation*}
$$

where $B=: t: \quad,-\| \leqq r-\therefore$ Indeed. $r \equiv Q B$ means that $x=Q h$ and $h-a \leqq$, Note that $\underline{Q}, P_{Q} \underline{h}$ tends to $\underline{Q}^{2} h=h$ as $i \rightarrow-s$. Thus there exsts an index $=i_{0}$ thi such thit $Q, P, Q b-a \leqq r+a$ for $\jmath \geqq j_{0}$. Hence $Q, P, Q b=B_{r}$. since $Q . X$ $=X_{\text {, }}$ then $Q, P, Q h=P, Q, P, Q b \in P, B_{i}$. Since $Q ;=1$ we have $P, Q h \in Q, P, B$ and

$$
\begin{align*}
\mu(Q B) & \leqq \lim _{i-x} \mu\left(\bigcap_{j=1}^{r} P_{j}^{-1} Q_{,} P_{i} B_{i}\right) \leqq \lim _{i-t} \mu\left(P_{i}^{-1} Q_{i} P_{i} B_{i}\right) \\
& =\lim _{t \rightarrow x} \mu_{i}\left(Q_{i} P_{i} B_{t}\right)=\lim _{t \rightarrow} \mu_{i}\left(P_{i} B_{i}\right) .
\end{align*}
$$

We now show that

$$
B_{c}=\bigcap_{i=1} P_{i}^{-1} P_{i} B_{c} .
$$

Since $B_{c}=P_{i}^{-1} P_{i} B_{t}, \forall i$. it is enough take $x \in \bigcap_{i=1}^{x} P_{i}^{-1} P_{1} B_{\varepsilon}$ and show that $x=B_{i}$. We have $P_{1} x \in P_{i} B_{z}$ and since $P_{i} a=u$ for $i \geqq m_{0}$ we get $P_{i} x \in B_{c}$. Note that $P_{i} x$ tends to x and B_{c} is closed which yields that $x \in B_{z}$ as claimed. Since $P_{1}^{-1} P_{t-1} B_{\varepsilon} \in P_{1}^{-1} P_{1} B_{2}$ then (3.19) yields

$$
\mu\left(B_{i}\right)=\lim _{i \rightarrow x} \mu_{i}\left(P_{i} B_{z}\right)
$$

This and 13.18 y yield

$$
\begin{equation*}
\mu(Q B) \leqq \mu\left(B_{\varepsilon}\right) . \tag{3.20}
\end{equation*}
$$

Note that (3.20) holds for any positive ε. Let $\varepsilon=k^{-1}$ with k tending to infinity. Since $B=\bigcap_{k=1}^{x} B_{k}-$ and $\left.\mu \mid B\right)=\lim _{k \rightarrow x} \mu\left(B_{k}\right.$,) we have from $(3,2)$. $\mu(Q B) \leqq \mu(B)$. This and (3.16) yield

$$
\mu(Q B)=\mu(B)
$$

For any closed ball with center lying in $\lambda_{m, 1}$ for some m_{9}.
 $\left.\left.+I I-P_{i}\right) a_{i}\right\}$ and Z is a σ-field. A belongs to Z. Hence Z contains all closed balls and therefore it contains all Borel sets. Hence

$$
\mu(Q B)=\mu(B)
$$

for any Borel set B. Since Q is an arbitrary mapping of the form 12.9). this proves that μ is orthogonally invariant. This completes the proof. \square

4. Properties of Orthogonally Invariant Measures

The prooi of Theorem 2.1 depends on properties of the orthogonally invariant measure μ which will be obtained in this section.

Let

$$
\begin{equation*}
\therefore 1 / 1=\left[1 / \cdot g_{1}, / 11.1 / 1 . g .1 / / 11, \ldots .1 / \cdot g_{n}(f)\right] \tag{+1}
\end{equation*}
$$

be measurable adaptive information. This means that $g_{1}(\cdot) \ldots, g_{n} / \cdot 1$ are measurable and are of the form (2.2). Assume that $1 S_{u} g_{1}(f) g_{1}, f 11=\sigma_{1,}, 7!\approx F_{:}$. 1 We show in Sect. 5 that this assumption is not restrictive.

Define the mapping $D: F_{1} \rightarrow F_{1}$ by

$$
\begin{equation*}
D(f)=2 \sum_{i=1}^{\pi}\left(f \cdot g_{i}(f) \mid S_{u} g_{i}(f)-f\right. \tag{4.2}
\end{equation*}
$$

The mapping D plays an important role in our analysis. Observe that D is measurable. For nonadaptive information, i.e., $g_{i}(f) \equiv g_{0 . i} . D$ is linear. For adaptive information D is nonlinear. The mapping D has four important properties

$$
\begin{gather*}
V^{a}(D(f))=\lambda^{a}(f) \tag{4.3}\\
D^{-1}=D, \tag{t.4}\\
D(f) \|_{*}=f_{*}, \quad \forall f \in S_{u}\left(F_{i}\right) \tag{4.5}\\
D(f)=-\prod_{i=1}^{n}\left(I-2 S_{u} g_{i}(f) \otimes g_{i}(f)\right) f, \quad \forall f \in F_{i}, \tag{+.6}
\end{gather*}
$$

where $(x \geqslant y)(f)=(f, y . x$. Indeed. observe that

$$
\left(D(f), g_{2}(f)\right)=2\left(f, g_{1}(f) \mid-\left(f, g_{1}(f)\right)=1 f \cdot g_{i}(f)\right) . \quad i=1.2 \ldots, n
$$

Since $g_{1}(f)$ is of the form 12.2$)$ we have $g_{1}\left(D(f)=g_{1}\right.$.

$$
g_{2}\left(D \mid f\left\|=g_{2}\right\| D f \cdot g_{1}\left\|=g_{2}\right\| f \cdot g_{1} \|=g_{2}(f)\right.
$$

and similarly $g_{i}\left(D \mid f \|=g_{1}(f)\right.$. Thus.$V^{a}\left(D\left(f i l=. V^{a}(f)\right.\right.$ which proves (4.3). To show (4.4) observe that

$$
\begin{aligned}
& =\sum \sum_{i=1}^{n}\left(f g_{i}(f) S_{A} g_{i}(f)=D(f)-f-D(f)\right. \\
& =1 .
\end{aligned}
$$

Thus $D^{2}(f)=1$ which implies that $D^{-1}(f)=D(f)$ as slaimed.
To show 14.51 observe that $f=S_{\mu}\left(F_{1}\right)$ implies $D(f) \in S_{u}\left(F_{1}\right)$ and $D(f)^{*}$ is well defined. We have

$$
\begin{aligned}
& D(f)^{:}=S_{-}^{-1} D(f) . D(f)=\left(2 \sum _ { 1 = 1 } ^ { n } \left(f g _ { 1 } \left(f 11 g_{1}(f)-S_{+}^{-1} f(D(f))\right.\right.\right. \\
& =2 \sum_{i=1}^{n} 1 \% . g .1 f 1^{2}-2 \sum_{i=1}^{n} 1 f .911111 S_{-}^{-1} 1 . S_{2}, 1 / 11-1 S^{-1}!f \\
& =15^{-i} f(f)=f:
\end{aligned}
$$

as clamed. Finally observe that

$$
\begin{aligned}
& =f-21 f . g_{1}\left(j \| S_{\|} g_{1} \mid f 1-21 f . g_{j}\left(f \| S_{u} g_{j}(f) .\right.\right.
\end{aligned}
$$

and the reperitive use of this property yields $1+6$).
Property (+.3) means that the mapping D does not change information. I.e.. the elements f and $D(f)$ are indistinguishable under N. Property $+t+1$ means that D^{*} is the identity operator. Property (4.5) means that D is orthogonal in the norm $: \cdot$ and Property (4.6) states the factorization of the operator D.

We show that orthogonal invariance of the measure μ implies that the mapping D does not change the measure of a Borel set.

Theorem 4.1. If μ is orthogonally invariant then

$$
\begin{equation*}
\mu(D(B))=\mu(B) \tag{1+.7}
\end{equation*}
$$

for any Borel set B.
Proof. The elements $g_{i}(\cdot)$ which form the adaptive information N^{a} are of the form 12.2), i.e.. $g_{i}: \mathbb{R}^{i-1} \rightarrow F_{1}$. For $y=\left[y_{1}, y_{2}, \ldots, y_{n-1}\right] \in \mathbb{R}^{n-1}$ denote $g_{i}(y)$ $=g_{i}\left(y_{1}, \ldots, y_{i-1}\right)$. Since $g_{\text {a }}$ are measurable. they can be approximated by piecewise constant mappings.

$$
g_{1}(!)=\lim _{k} g_{i, k}(y) . \quad \forall y \in \mathbb{R}^{n-1}
$$

and $g_{1, k}(\cdot)=g_{1, k, j}$ for $y \in A_{k, j}$ where $A_{k, j}$ are disjoint Borel sets of \mathbb{R}^{n-1} whose union is $\mathbb{R}^{n-1} . j=1,2, \ldots . n_{k}$. Since $g_{1}(y)=g_{1}$ and $\left(S_{4} g_{i}(y), g,(y)=\dot{o}_{i, j}\right.$ we may assume the same properties for $g_{i, k}$. i.e..

$$
\begin{gather*}
g_{1, k}(!)=g_{1} \tag{+9}\\
\left(S_{u} g_{1, k}(\cdot) \cdot g_{ر, k}(\cdot)\right)=j_{i, j}
\end{gather*}
$$

for any $y \in \mathbb{R}^{n-1}$ and any $k=1.2, \ldots$.
Deline the mapping

$$
D_{k}\left|f l=2 \sum_{i=1}^{n}\right| f \cdot g_{i, k,}, S_{-} g_{i, k, j}-i
$$

for $N\left(j \in . t_{k, j}\right.$. Due to (4.8) we have

$$
D(f)=\lim _{k} D_{4}(f) . \quad \nabla f=F_{1} .
$$

Observe that D_{k} is piecewise linear. From (4.9) we have

We nou shou that

$$
D(B) \subset E \stackrel{\Delta r}{=} \bigcup_{i=1}^{r} \bigcap_{k=1}^{r} D_{k}^{-1}(B)
$$

for any open set B of F_{1}. Indeed. let $x=D(B)$. Then $x=D\left(j 1\right.$. $j=B$. Since $D^{\prime}=l$. $j=D(x)$. Due to $(+11) . D_{k}(x)$ approaches $D(x)=f \approx B$. Since B is open. $D_{k}(x) \in B$ for $k \geqq k_{n}$. Thus $x \in D_{i}^{-1}(B)$ for all $k \geqq k_{0}$. This proves $1+.13$).

Note that $D_{:}$is measurable. Theretore $D_{k}^{-1}(B)$ and E are Borel sets. From (1+.13) we have

$$
\begin{equation*}
\mu\left(D(B) \leqq \mu(E)=\lim _{-x} \mu\left(\bigcap_{k=i}^{f} D_{k}^{-1}(B)\right) \leqq \lim _{k \rightarrow x} \mu\left(D_{k}^{-1}(B)\right) .\right. \tag{4.14}
\end{equation*}
$$

Let $B_{k, j}=\left(V^{-d}\right)^{-1} . t_{k, j}$. The sets $B_{k, j}$, are disjoint Borel sets and their union is F_{1}. Then

$$
\mu\left(D_{k}^{-1}(B)\right)=\sum_{j=1}^{n_{k}} \mu\left(D_{k}^{-1}\left(B \cap B_{k . j}\right)\right) .
$$

Note that $D_{k}^{-1}\left(B \cap B_{k . j}\right)=D_{k . j}^{-1}\left(B \cap B_{k . j}\right)$ where

$$
D_{k, j}(f)=2 \sum_{i=1}^{n}\left(f . g_{i, k, j}\right) S_{\mu} g_{i, k . j}-f=-\prod_{i=1}^{n}\left(I-2 S_{\mu} g_{i, k . j} \otimes g_{i, k, j}\right) f
$$

for $f \in F_{1}$. The mapping $D_{k . j}$ is linear and (4.9) yields that $D_{k, j}^{2}=I$. Thus $D_{k . j}^{-1}$ $=D_{k . j}$. Orthogonal invariance of μ yields that $\mu(C)=\mu(-C)$ and $\mu(Q C)=\mu(C)$ for any Borel set C and $Q=I-2 S_{u} h \otimes h$ where $\left(S_{u} h, h\right)=1$. Thus we have

$$
\begin{aligned}
\mu\left(D_{k}^{-1}\left(B \cap B_{k, j}\right)\right) & =\mu\left(D_{k . j}\left(B \cap B_{k, j}\right)\right) \\
& =\mu\left(\prod_{i=1}^{n}\left(I-2 S_{\mu} g_{i, k . j} \otimes g_{i, k, j}\right) B \cap B_{k, j}\right) \\
& =\mu\left(\prod_{i=2}^{n}\left(I-2 S_{u} g_{i, k . j} \otimes g_{i, k, j}\right) B \otimes B_{k . j}\right) \\
& =\ldots=\mu\left(B \cap B_{k, j}\right) .
\end{aligned}
$$

Hence

$$
\mu\left(D_{k}^{-i}(B)\right)=\sum_{s=1}^{T_{k}} \mu\left(B \cap B_{k . j}\right)=\mu(B) .
$$

Thus we have

$$
\begin{equation*}
\mu(D(B)) \leqq \mu(B) \tag{+.15}
\end{equation*}
$$

for any upen set B.
Take now a dosed set B. Define $B_{s}=\left\{f \in F_{1}\right.$: dist $\left.(f, B)<1 s\right\}, s=1,2, \ldots$ Then B_{s} is open. $B=B_{s-1}=B_{s}$. and $B=\bigcap_{s=1}^{s} B_{s}$. Due to this and (4.15) we have

$$
\mu(D(B)) \leqq \mu\left(D\left(B_{s}\right) \leqq \mu\left(B_{s}\right) .\right.
$$

Thus $\mu(D(B) \leqq \lim \mu(B)=\mu(B)$. Hence $(+15)$ holds also for closed sets.
Take now an open set B. Then $F_{1}-B$ is closed and

$$
1-\mu(D(B))=\mu\left(D \left(F_{1}-B \| \leqq \mu\left(F_{1}-B\right)=1-\mu(B) .\right.\right.
$$

Thus $\mu(B) \leqq \mu(D(B))$. This and $(+.15)$ give

$$
\begin{equation*}
u(D(B)=\mu(B) \tag{4.16}
\end{equation*}
$$

for any open set B Since the set of B for which $1+!61$ holds is a r-theld and contains all upen sets. it contains all Borel sets. This completes the prooi. -

Theorem +11 will be used in the proof of the main result to change variables. That is (4.7) implies that

$$
\varliminf_{B} H(f) \mu(d f)=\oint_{D(B)} H(D f) \mu(d f)
$$

for any measurable function H and any Borel set B.
In order to prove Theorem 2.1 we need one more result. Let $N=$ be given by $1+11$. Define the probability measure $\mu_{1}\left(\cdot . N^{a}\right)$ as

$$
\begin{equation*}
\mu_{1}\left(A . N^{a}\right)=\mu\left(\left(N^{a}\right)^{-1}(A)\right)=\mu\left(\left\{f \in F_{1}: N^{a}(f) \in . A\right\}\right) \tag{+.17}
\end{equation*}
$$

where A is a Borel set of \mathbb{R}^{n}. The measure μ_{1}, called the probability induced by V^{a}, tells us the probability that $N(f) \in A$.

We prove that the measure μ_{1} is independent of N^{a} and μ_{1} is orthogonally invariant with mean zero and the identity covariance operator.

Theorem 4.2. There exists a probability measure μ_{1} defined on Borel sers of \mathbb{R}^{n} such that

$$
\mu_{1}\left(A, V^{d}\right)=\mu_{1}(A), \quad \forall A \in \mathbb{B}\left(\mathbb{R}^{n}\right)
$$

for any measurable adaptive information N^{a} of the form (4.1).
Proof. We first consider nonadaptive information operators. Let

$$
\begin{aligned}
& V_{1}(f)=\left[\left(f, r_{1}\right),\left(f, r_{2}\right), \ldots\left(f, f_{n}\right)\right], \\
& V_{2}(f)=\left[\left(f, \eta_{1}\right),\left(f, \eta_{2}\right), \ldots\left(f \eta_{n}\right)\right]
\end{aligned}
$$

Lemma 4.1. There exists a linear one-to-one mapping $Q . Q: F_{1} \rightarrow F_{1}$. such that

$$
\begin{gather*}
V_{1}=V_{2} Q \\
\mu\left(Q^{-1} B\right)=\mu|B| . \quad \forall B \in \mathbb{B}\left(F_{1}\right) \quad=
\end{gather*}
$$

Proof. Let $X=\operatorname{iin}\left\{S_{i=1}^{\ddagger}, \ldots . S_{i=n}^{:}, S_{i}^{\ddagger} \eta_{i}, \ldots . S_{4}^{\ddagger} \eta_{n}\right\}$. Let $p=\operatorname{dim} X$. Of course
 and $\left\{S_{i, 1}^{ \pm}\right\}_{=1}$ are orthonormal bases of X. Define the mapping $H: F_{1} \rightarrow F_{1}$.

$$
H f=\sum_{i=1}^{p}\left(f, S_{\mu}\left(\eta_{i}+j_{i}\right)\right)_{i_{i}}-f .
$$

$$
H \eta_{k}=\sum_{i=1}^{p}\left(\eta_{k}, S_{A} \eta_{i}\right)_{i-1}-\sum_{i=1}^{p}\left(\eta_{k}, S_{u}=i\right)_{i i}-\eta_{k}=-i
$$

for $k=1.2, \ldots p$. We define the mapping Q as

$$
Q f=H^{*} f=\sum_{i=1}^{p} 1 f=1 S_{i}\left(\eta_{i}+i, 1-f\right.
$$

To prove $\left|+|9|\right.$ note that $\therefore_{1}=\therefore 2 Q$ is equivalent to $\left(f \cdot x_{k} \mid=\left(Q f\left(\eta_{k}\right)=\left(f \cdot Q^{*} \eta_{k}\right)\right.\right.$ $=1$ f. $H \eta_{k}$). This holds since $H \eta_{k}=$ (see $(+21)$).

To prove $(+20)$ we decompose H as

$$
H=S_{\mu}^{- \pm} H_{i} S_{\mu}^{\ddagger}
$$

where $H_{1} f=\sum_{i=1}^{f}\left(f . S_{u}^{ \pm}\left(\eta_{i}+S_{i 1}\right)\right) S_{u}^{i} r_{i}-f$. Note that $H_{1} S_{u}^{ \pm}\left(F_{1}\right) \in S_{u}^{\ddagger}\left(F_{1}\right)$ and therefore $S_{u}^{-*}\left(H_{1} S_{u}^{ \pm}\right)$is well defined. Let X^{-}be an orthogonal complement of X, F_{1} $=X \oplus X^{\downarrow}$. Then $f \in X^{-}$implies $\left(f . S_{\mu}^{\ddagger} \eta_{i}\right)=\left(f, S_{u}^{\ddagger} \zeta_{i}\right)=0$ and

$$
\begin{equation*}
H_{1} f=-f . \quad \forall f \in X 亡 \tag{4.22}
\end{equation*}
$$

From (4.21) we have

$$
H_{1} S_{u}^{\ddagger} \eta_{k}=S_{u}^{\ddagger}{ }_{j k} . \quad k=1, 工, \ldots, p
$$

Thus H_{1} as well as $-H_{1}$ restricted to X are orthogonal mappings onto X. We decompose $-H_{1}$ in X using a Householder transformation. i.e.. there exist elements $x_{i} \in X$ such that $x_{i}=0$ or $x_{i}^{\prime}=1$ and

$$
\begin{equation*}
-H_{1} f=D_{1} D_{2} \ldots \ldots \cdot D_{p} f . \quad \forall f \in X \tag{+.23}
\end{equation*}
$$

where $D_{1}=I-2 x_{i} \otimes x_{i}$.
For $f=f^{-}$we have $\left(f\left(x_{i}\right)=0\right.$ and we get $D_{1} D_{2} \cdot \ldots \cdot D_{p} f=f$. Thus. (4.23) holds also for $f \in X^{-}$due to (+22). Hence we proved that $H_{1}=-D_{1} D_{2} \cdot \ldots \cdot D_{n}$ and

$$
\begin{aligned}
H & =-S_{u}^{-}: D_{1} D_{2} \cdot \ldots \cdot D_{p} S_{u}^{!} \\
& =-\left(S_{-}^{-}: D_{1} S_{u}^{\vdots}|\cdot \ldots \cdot| S_{:}^{- \pm} D_{p} S_{u}^{:}\right) \\
& =-Q_{i}^{*} Q_{:}^{*} \ldots Q_{p}^{*}
\end{aligned}
$$

 we get

$$
Q=-Q_{p} Q_{p-1} \cdot \ldots \cdot Q_{1} .
$$

Note that $\underline{Q}^{-!}=\underline{Q}_{1}$. Thus \underline{Q} is one-to-one and

$$
Q^{-1}=-Q_{1} Q_{2} \ldots Q_{p}
$$

The orthogonal invariance of μ yields $\mu\left(Q_{i} B\right)=\mu(B)=\mu(-B)$ for any Borel set B of $F_{:}$. We have therefore

$$
\begin{aligned}
\mu\left(\underline{Q}^{-:} B\right) & \left.=\mu\left(\mu-Q_{1} \ldots Q_{p} B\right)=\mu \mid Q_{1} \cdot \ldots Q_{\rho} B\right)=\mu\left|Q_{\because} \ldots Q_{r} B\right| \\
& =\ldots=\mu(B)
\end{aligned}
$$

Which proses $(+20)$ and completes the proof of Lemma $+1 .=$

Define the measure at as

From Lemma +1 we immediately get

$$
\begin{aligned}
\mu_{1}\left(A . \mathcal{C}_{2}\right) & =\mu\left(V_{2}^{-1} f\right)=\mu\left(Q^{-1} \cdot V_{2}^{-1} \cdot A\right) \\
& =\mu\left(V_{1}^{-1} \cdot f\right)=\mu_{1}\left(A, V_{1}\right)=\mu_{1}(A) . \quad \forall A=\mathbb{B}\left(\mathbb{R}^{7}\right) .
\end{aligned}
$$

Thus (+18) holds for any nonadaptive information of the form (+11 .
Take now any measurable adaptive information $N^{\prime 2}$. L"ing (1.8) and $1+.4$) define

$$
V_{k}(f)=\left[\left(f, g_{1, k, j}, 1 /, g_{2, k, j}\right), \ldots .\left(f / g_{n, k, f}\right)\right]
$$

for $V^{a}(f) \in A_{k, j}$. Then

$$
\therefore(f)=\lim _{k} . V_{k}(f) \quad \nabla f \in F_{1}
$$

Let.A be an open set of \mathbb{R}^{n}. Then

$$
\begin{equation*}
\left(N^{-a}\right)^{-1}(f) \in E=\frac{\Delta 1}{=} \bigcup_{i=1}^{x} \bigcap_{k=1}^{x} x_{k}^{-1}(f) . \tag{+.25}
\end{equation*}
$$

Indeed. if $f=\left(V^{u}\right)^{-1}(f)$ then $y=V^{a}(f) \in$. Let $y_{h}=V_{t}(f)$. Then lim $y_{i}=y \in A$ Since A is open, $y_{k} \in A$ for $k \geqq k_{0}$. Thus $f \in V_{1}^{-1}\left(y_{k}\right)=X_{k}^{-1}(A)$ for $\dot{k} \geqq k_{0}$. This means that $l \in E$ as claimed. From (+.25) we have

$$
\begin{aligned}
& =\lim _{:-r} \mu\left(\bigcap_{h}^{\prime} V_{k}^{-1}(A)\right) \leqq \lim _{t \rightarrow r} \mu\left(V_{h}^{-1}(A)\right) .
\end{aligned}
$$

Obserse that

$$
\mu 1 x_{i}^{-i} t \cdot t n=\sum_{i=1}^{n} \mu\left(x_{i}^{-i} i_{1}-t_{4}, \prime \prime\right.
$$

Since $A_{\text {: }}$ on each t_{1}, coincides with nonadaptive information. we have
and

$$
\mu ._{5}^{-i}(f) 1=\sum_{s=1}^{n_{4}} \mu_{1}\left(A \cap A A_{E}, J=\mu,(f) .\right.
$$

Thus

$$
\left.\mu_{1}+\ldots, W\right) \leqq \mu_{1}(+f) \quad 1+261
$$

for any open set t. Take now a closed set t and define $f_{s}=1 \in \mathbb{R}^{n-:}$:
 we have due to (t.26).

Thus

$$
\mu_{1}\left(\ldots, V^{3}\right) \leqq \lim _{s} \mu_{1}\left(A_{5}!=\mu:(A)\right.
$$

Hence (4.26) holds also for closed sets .t. Repeating the last part of the proof of Theorem 4.1 we complete the prool of (4.18).

Theorem +2 will be used to compute $\int_{F_{1}} H(N f) \mu(d f)$ for any measurable H and N of the form (+.1). Due to (4.18) we have

$$
\int_{F_{:}} H(. V f) \mu(d f)=\int_{\mathbb{R}^{n}} H(y) \mu_{1}(d y)
$$

Theorem 4.3. The measure μ_{1} of Theorem 4.2 is orthogonally invariant with mean zero and the identity covariance operator.
Proof. We first show that

$$
\begin{equation*}
\left(m_{u_{1}}, x\right)=\int_{\mathbb{R}^{n}}(y, x) \mu_{1}(d y)=0, \quad \forall x=\left[x_{1}, x_{2}, \ldots, x_{n}\right] \in \mathbb{R}^{n} \tag{4.27}
\end{equation*}
$$

$$
\begin{equation*}
V(f)=\left[\left(f_{1} 亏_{1}\right),\left(f, 5_{2}\right), \ldots\left(f, j_{n}\right)\right] \tag{4.28}
\end{equation*}
$$

Let $g=\sum_{i=1}^{n} x_{i} s_{i}$. Since $m_{u}=0$, we have

$$
0=\int_{\tilde{F}_{:}}(f, g) \mu(d f)=i_{F_{i}} \sum_{i=1}^{n} x_{i}\left(f_{i} ;\right) \mu(d f)
$$

We change variables by setting $y=\left[y_{1}, \ldots, y_{n}\right]=N(f)$. Theorem 4.2 states that $\mu N^{-1}=\mu_{1}$ regardless of N. Thus

$$
0=\sum_{\tilde{F}_{1}} \sum_{i=1}^{\pi} x_{i} y_{1} \mu_{1} \mid d y=\int_{F_{1}}\left(x, H \mu_{1} \mid d y\right)
$$

which prowes 14.27 . This yelds $m_{-}=0$ as claimed.
To show that $S_{-}=I$. We show that

$$
\begin{equation*}
\left.\varliminf_{\mathbb{Q}^{n}}(x, x)!, z\right) \mu,(d y)=(x, z) \quad \forall x, z \in \mathbb{R}^{n} . \tag{4.29}
\end{equation*}
$$

For $g=\sum_{i=1}^{7} n_{i}$ and $h=\sum_{i=1}^{7}, i$ we have

$$
\left(S_{.} g . h\right)=\int_{f:}(f . g)(f . h) \mu(d f)=\int_{\mathbb{R}^{h}}(, f, x)(f, z) \mu_{t}(d,)
$$

Since $\left(S_{u} g . h\right)=\sum_{j=1}^{n} x_{i=1}\left(S_{j ; i} ; j_{i}\right)=(x,=1,1+.29)$ follows.
We now prove that μ_{1} is orthogonally invariant. i.e..

$$
\left.\mu_{1} \mid \underline{Q}(B)\right)=\mu_{1}(B) . \quad \forall B \in \mathbb{B}\left(\mathbb{R}^{n}\right)
$$

$$
D f=21 f g \mid S_{A} g-f . \quad \exists f \equiv F_{1}
$$

where, as beiore, $g=\sum_{i=1}^{\infty} x_{i=i}$. Then $(S, g, g)=\sum_{i=1}^{n} x_{i}^{2}=1$ or $g=0$. Observe that

$$
N^{-1} Q B=D N^{-1} B, \quad \forall B \in \mathbb{B}\left(\mathbb{R}^{n}\right) .
$$

Indeed. $f \in N^{-1} Q B$ iff $N f \in Q B$ iff $Q N f \equiv B$ since $Q^{2}=I$. Similarly $f=D N^{-1} B$ iff $\therefore D J \in B$ since $D^{2}=I$. Note that

$$
\begin{aligned}
& Q . V f=2(N f . x) x-N f=2(f, g) x-N f \\
& V D f=2(f, g) N\left(S_{\mu} g\right)-N f=2(f, g) x-N f
\end{aligned}
$$

which proves (4.30). From Theorem 4.2. (4.30) and orthogonal invariance of μ. we have

$$
\mu_{1}(Q(B))=\mu\left(N^{-1} Q(B)\right)=\mu\left(D N^{-1} B\right)=\mu\left(N^{-1} B\right)=\mu_{1}(B)
$$

as claimed. This completes the proof of Theorem 4.3.

5. Proof of the Main Result

Using properties of orthogonally invariant measures we are ready to prove that adaption does not help on the average.

The proof consists of two steps. The lirst step is to show that the spline algorithm that uses V^{a} has minimal average error among all algorithms that use N^{2}. The second step is to estimate from below the average radius of information tor equivalently the average error of the spline algorithm).

Let

$$
\therefore V_{1} f=\left[\left(f \cdot g_{1}(f)\right) \cdot\left(f \cdot g_{2}(f)\right) \ldots . .\left(f \cdot g_{n}(f)\right]\right.
$$

be a measurable adaptive information operator of the form 12.11 and 2.2). Thus $s_{1} 1 / 1, \ldots . g_{n}(f)$ are measurable. First of all we show that without loss oi generality we can assume that

$$
\left(S_{u} g_{i}(f), g_{,}(f) \mid=i_{i, j}\right.
$$

Indeed, as in [16] let $\eta_{1}(f) \ldots . \eta_{7}(f)$ be an orthonormal basis of the linear space $\operatorname{lin}\left(S_{4} g_{1}(f), \ldots . S_{\ldots} g_{n}(f)\right.$. Then there exists a nonsingular matrix M such that

$$
\left[\left(f \cdot \tilde{g}_{1}(f)\right), \ldots\left(f \cdot \tilde{g}_{n}(f)\right]=N(f) M\right.
$$

 compute $1 f \dot{g}_{i} / f I I$. The mappings \dot{g}_{i} are also measurable. The elements \dot{g}_{1} / f then play the role of $9,1 \%$. This explains 15.11 .

Deline

$$
\sigma=\sigma(\lambda)(f)=\sum_{i=1}^{n}\left(f, g_{i}(f) S_{d} g_{,}(f) .\right.
$$

$$
h_{*}^{2}=\sigma-h \vdots-\sigma \div-2\left(S_{u}^{-1} \sigma . h-\sigma\right)
$$

Since $\left(h-\sigma . g_{1}!\right) 11=0$ we have $\left.\mid S_{-1}^{-1} \sigma . h-\sigma\right)=0$ and $h_{*} \geqq \sigma$. Thus σ has minimal norm - . among elements which interpolate f and lie in $S_{u}\left(F_{1}\right)$. Such an element is called a spline interpolating f. Let

$$
\begin{equation*}
0^{\prime} \mid V^{2}(f)=S \sigma\left(V^{a}(f)=\sum_{i=1}^{n}\left(f \cdot g_{i}(f)\right) S S_{u} g_{i}(f)\right. \tag{5.4}
\end{equation*}
$$

be the spline algorithm.
We say an algorithm φ is an optimal average error algorithm iff

Theorem 5.1. If μ is orthogonally invariant then the spline algorithm φ^{s} is an optimal aterage error algorithm and

$$
\begin{equation*}
e^{\sim s}\left(\varphi^{s} . V^{2}\right)^{2}=\int_{f_{1}} S f^{2} \mu(d f)-{\underset{f}{f}} \varphi^{s}\left(N^{2}(f)\right) i^{2} \mu(d f) \quad \square \tag{5.5}
\end{equation*}
$$

Proof. The proof is essentially the same as the prooi of Theorem 4.3 of [16]. For completeness we provide a sketch of it.

Orthogonal invariance of μ and $(+.3)$ yield

$$
\int_{F_{1}} S f-\varphi(.)^{*} f \|^{2} \mu(d f)=\int_{F_{1}} S D\left(f 1-\varphi\left(. V^{2} \mid f\right):^{2} \mu(d f)\right.
$$

where φ is an algorithm and D is the mapping detined by 14.21; see Theorem +.1. Thus

Since

We get

$$
\left.e^{\sim N} \mid \varphi . . V^{\prime}\right) \geqq e^{+\cdots g}\left(\varphi^{\prime} . . N\right)
$$

This means that , 9 an aptimal average error algorithm. To prove 15.5 note that

$$
\left.\because=51: S D_{1} f\right)^{2}-2(N \omega 1)!
$$

This and 5.6 with $9=0$ seld
 il from below. note that Theorem +2 yieids

$$
\begin{aligned}
& =\sum_{n=1}^{n} \sum_{\mathbb{R}^{n}} y_{1} y_{j}\left(S S _ { - } g _ { i } \left(\cdots \cdot S S g_{j}(!+1) \mu_{1}(d y)\right.\right.
\end{aligned}
$$

where, as in Sect. $+g_{1}(y)=g_{1}\left(y_{1}, y_{2} \ldots y_{1-1}\right)$. Define the mapping

$$
Q_{y}=y-2\left(y e_{1}\right) e_{1}=y-2 y_{1} e_{1} . \quad l: \mathbb{R}^{n} .
$$

where e_{i} is the ith unit vector. Then $Q e_{i}=-e_{i}$ and $Q e_{j}=e_{1}$. This vields $g_{1}(\underline{Q}, 1$ $=g,(\cdots)$ for $j<i$. Since μ_{1} is orthogonally invariant we have

$$
\begin{aligned}
a & =\int_{\mathbb{R}^{n}} y_{i} y_{j}\left(S S_{u} g_{i}(y) S S_{u} g_{j}(y)\right) \mu_{1}(d y) \\
& =\int_{\mathbb{R}^{n}} y_{i} y_{j}\left(Q e_{i} \cdot Q e_{j}\right)\left(S S_{u} g_{1}(Q y) \cdot S S_{u} g_{j}(Q(y)) \mu_{1}(d y)\right. \\
& =-u .
\end{aligned}
$$

Hence $u=0$ and (5.7) becomes

$$
\dot{f}_{f_{1}} \varphi^{s}\left(\cup^{a}(f) 1^{2} \mu(d f)=\sum_{i=1}^{n} \sum_{\mathbb{R}^{n}} y_{i}^{*} S S_{2} g_{1}(\cdot)\right)^{2} \mu_{1}(d y)
$$

For $i<n$ deline the mapping

$$
Q_{y}=y-2\left(h . \underline{y} h . \quad h=\left(\varepsilon_{i}^{\prime}-e_{n}^{\prime}\right) \sqrt{2} \quad l \in \mathbb{R}^{n} .\right.
$$

$$
\frac{1}{\mathbb{Q}^{n}}: S S_{4} g_{1}(y): \mu_{1}\left(d y=\underset{\mathbb{R}^{n}}{i} y_{n} S S_{3} g_{1}(y): \mu_{1}(d y)\right.
$$

From this. 15.81 and 12.111 we have

For the nonadaptive information Ninon $_{\text {non }}$. see (2.12), we have

$$
\begin{align*}
& =\sum_{i=1}^{n} S S_{i t} g_{i}: . \tag{15101}
\end{align*}
$$

From 15 ºt of Theorem 5.1. 591 and 5.101 we have

$$
\begin{aligned}
& =r^{n *}\left(V^{n} \cdot{ }^{n}\right)^{2} \text {. }
\end{aligned}
$$

This completes the proof.

Ackmonkiztments. Our special thanks are to J.F. Traub for his valuaple comments and friendly advice. We are also grateful to the referee for suggestrons on how to simplify the concepts presented in this paper.

References

1. Bakhvalov. N.S.: On the optumality of linear methods for operator approximation in convex dasses of functions lin Russian). Zh. Vycisl. Mat. 2. Mat. Fiz 11, 101 \downarrow-1018 1 19711 (English transl.: U.S.S.R. Computational Math. and Math. Phys. 11. 24-249197111
2. Gal, S.. Micchelli, A.C.: Optimal sequential and nonsequential procedures for evaluating a functional. Appl. Anal. 10. 105-1 20 (1980)
3. Kaceuicz. B.: On the opimal error of algorithms for solving a scaiar autonomous ODE. BIT (in press)
4. Kuo. Hui-Hsuing: Gaussian measures in banach spaces. Lecture Notes in Mathematics 463. Berlin-Heidelberg-New York: Springer 1975
ミ. Ralsion. A.. Rabinowizz. P.: A first course in numerical analysis. New York: McGraw-Hill 1978
5. Skorohod. A.': Integration in Hilbert space. Neu York: Springer 1974
6. Sikorsix. K.. Bisection is optimal. Numer. Math. 40. 111-11711982)
s. Sikorskı. K.. Wozntakowskı. H.: For which error criterıa can we solve nonlinear equations? Dept. of Computer Science Report. Columbia U'niversity. 1983

- Suhharev. AG.: Oplamal itrategles of the search for an extremum in Russiant. Zh. Vycisl. Mat. t. Mat. Fiz. 11. 910-9ㄱ +197111 English transi.: L.S.S.R. Computational Math. and Math. Phys 11.119-15-119-11

10. Traub. JF. Wasthouskı. G.W. Weznakowski. H.: Average case optimality for linear problems. Theor. Comout Sa. II press)
11 Trasb. JF. Wasikouvkt. G.W. W'nimakouski. H. Information. uncertants. somplexity Reading. V小s tddisun-W esle: 19:3
1:. Traub. JF. Wnzathouski. H A Eneral theors oi optimal aleorithms. Vew York: Academic Press (9w
I: Tiaub. JF. Wineniskousil. H Information and computation. In. Advances in computers. Vol. \therefore IM. Yovis. ed. Ven York Academic Press 1984
If Wasikuwiki. G W some nonitnear problems are as easy to approximate as the identity operator. Dept of Computer Science Report. Columbia Lniversity 1983. Compus. Math. Appl. in pressi
11. Wasthoushs. G iV Local acrage error Dept. oi Computer Science Report. Columbia Ciniver:It: 1943
12. Wistikourhi. G W.. Wozntahurik. H.: Average case opilmal algorithms in Hibert spaces. Dept of Computer suence Report. Columba Linversuy 1982
1^{-}Zalizn:sk. VF. Lisun. A.A On optimum strategy in search of global maximum of functions
 futathonal Math and Wath. Phys. 18. 31-ix 19781

[^0]: tidurew eprint requevts to H. Woznakousk:. Department oi Computer Science. Columbia University. Veu York. NY 1002. LSA

 * This tesearch 4 , 3 supported in part by the National Science Foundation under Grant MCS. 783:376

