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Abstract

Estimating the Q-matrix for Cognitive Diagnosis Models in a
Bayesian Framework

Meng-ta Chung

This research aims to develop an MCMC algorithm for estimating the Q-matrix in

a Bayesian framework. A saturated multinomial model was used to estimate correlated

attributes in the DINA model and rRUM. Closed-forms of posteriors for guess and slip

parameters were derived for the DINA model. The random walk Metropolis-Hastings

algorithm was applied to parameter estimation in the rRUM. An algorithm for reducing

potential label switching was incorporated into the estimation procedure. A method for

simulating data with correlated attributes for the DINA model and rRUM was offered.

Three simulation studies were conducted to evaluate the algorithm for Bayesian estima-

tion. Twenty simulated data sets for simulation study 1 were generated from independent

attributes for the DINA model and rRUM. A hundred data sets from correlated attributes

were generated for the DINA and rRUM with guess and slip parameters set to 0.2 in simu-

lation study 2. Simulation study 3 analyzed data sets simulated from the DINA model with

guess and slip parameters generated from Uniform(0.1, 0.4). Results from simulation stud-

ies showed that the Q-matrix recovery rate was satisfactory. Using the fraction-subtraction

data, an empirical study was conducted for the DINA model and rRUM. The estimated

Q-matrices from the two models were compared with the expert-designed Q-matrix.

Keywords: Bayesian, Cognitive Diagnosis models, DINA, MCMC, Q-matrix, rRUM
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CHAPTER 1 INTRODUCTION 1

Chapter 1 Introduction

An important objective of traditional exams is to make inferences about an examinee’s

general ability with reference to others in the normative group (Brown & Hudson, 2002).

An aggregated total score that indicates an examinee’s relative position on an ability con-

tinuum should be adequate for that objective. Item response theory (IRT) models provide a

single, continuous estimate of an examinee’s overall ability and is sufficient for this objec-

tive. IRT models focus on item-level analysis, and they typically possess a simple loading

structure in the sense that each item only loads on one dimension that is usually construed

as the ability of each examinee to each item.

While achieving an ordering of examinees remains an important goal in some settings

of educational measurement, modern measurement methods focus on cognitive skill diag-

noses that can provide feedback on strengths and weaknesses of specific learning objectives

(Henson, Stout, Douglas, He, & Roussos, 2003; Huebner, 2010). Cognitive diagnostic as-

sessment (CDA) is a new framework that aims to evaluate whether an examinee has mas-

tered or possessed a particular cognitive skill called attribute (Leighton & Gierl, 2007). As

a specific example, an examinee has to know how to add and subtract in order to correctly

solve for x in the item x = 1 + 3 − 2. Addition and subtraction are two of the attributes

being measured in this item. CDA provides useful information for examinees to improve

their learning. Examinees’ attribute states are valuable resources for educators to give or

adjust their teaching.

Q-matrix method has been applied to CDA research, (eg., von Davier, 2005; Templin,
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& Henson, 2006; Chiu, Douglas, & Li, 2009; de la Torre, 2011; DeCarlo, 2012; Liu, Xu, &

Ying, 2012; Wang, Chang, & Douglas, 2012; Liu, Xu, & Ying, 2013), and it is the method

of focus in this research.

1.1 Theoretical Background

An attribute is a discrete latent variable. Suppose there are I examinees taking the

exam that measures K attributes. A binary matrix AI×K reveals the connection between

examinees and attributes. The general entry ofA is αik,AI×K = (αik)I×K ,

αik =


0 if examinee i does not master attribute k

1 if examinee i masters attribute k
. (1.1)

For example, in an exam that measures three attributes, if the second examinee possesses

only the first attribute, then α21 = 1 and α22 = α23 = 0. If we define for examinee i

a vector αi = (αi1, αi2, . . . , αiK) that represents the status of mastery on each of the K

attributes, then α2 = (1, 0, 0).

In order to evaluate examinees with respect to their levels of competence in each at-

tribute, CDA partitions items into attributes by using the Q-matrix (Tatsuoka, 1983), a

binary matrix showing the relationship between exam items and attributes. Given an exam

with J items that measure K attributes, the Q-matrix is represented as a J × K matrix,

QJ×K . The general entry in the jth row and kth column of QJ×K is written as qjk,

QJ×K = (qjk)J×K . In a Q-matrix,

qjk =


0 if attribute k is not required by item j

1 if attribute k is required by item j

. (1.2)
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An example of a Q-matrix is given in Table 1.1. Item 1 and item 2 measure addition and

subtraction attributes respectively. Item 3 tests whether an examinee has mastered both of

the attributes. In other words, q11 = q22 = q31 = q32 = 1 and q12 = q21 = 0.

Table 1.1: Example of a Q-matrix
Attribute

Item addition subtraction
1. 1 + 3 1 0

2. 8− 5 0 1

3. 6 + 2− 1 1 1

The Q-matrix reflects the design of a CDA and is the core element that determines the

quality of the diagnostic feedback (Rupp & Templin, 2008). The Q-matrix is usually con-

structed by area experts during exam development. Based on the Q-matrix method, a vari-

ety of cognitive diagnosis models (CDMs) have been developed, including the deterministic-

input, noisy “and” gate (DINA) model (Junker & Sijtsma, 2001), noisy-inputs, determin-

istic “and” gate (NIDA) model (Maris, 1999), and reduced reparameterized unified model

(rRUM) (Hartz, 2002). These CDMs require the Q-matrix that specifies which latent at-

tributes are measured and how they are interrelated. Each of these CDMs has an item

response function (IRF) that predicts the probability of the correct response for each item,

given the attribute status of an examinee on each attribute. The above three models are con-

junctive, in the sense that a correct item response results from possessing all the required

attributes. From the Q-matrix in table 1.1, a conjunctive model assumes that an examinee

has to master both addition and subtraction in order to correctly answer item 3.

1.2 Motivation and Purpose of the Research

While some of the exams are written with the purpose of being CDAs, their Q-matrices

are not specified during exam development and therefore have to be assigned after the
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fact. Even when the Q-matrix is specified during the stage of exam development, there are

concerns that area experts might neglect some attributes, and that different experts might

have different opinions. Therefore, it is of practical importance to develop an automated

method that offers a more objective means of getting the correct attribute-to-item mapping

(Desmarai, 2011). Despite the need of an automated Q-matrix discovery method, related

research is still limited.

Using the reparameterized DINA (RDINA) and higher-order RDINA models, DeCarlo

(2012) acquired the conclusion that posterior distributions from Bayesian estimation could

be used to obtain information about questionable Q-matrix entries and suggested using the

Bayesian method in more extensive simulations. Extending DeCarlo (2012), this research

uses the Bayesian concept in a different procedure that estimates the whole Q-matrix. More

specifically, DeCarlo (2012) treated some Q-matrix entries as Bernoulli variables and as-

sumed the rest of the Q-matrix entries fixed, whereas this research uses a saturated multi-

nomial model to estimate the entire Q-matrix. In addition, this research incorporates an

algorithm, based on Erosheva and Curtis (2012), into the estimation procedure for reduc-

ing potential label switching.

Although in many cases attributes are independent, in other cases attributes might be

correlated. A method for correlated attributes could be helpful, and it would be expected

that a method working for correlated attributes is supposed to work for independent at-

tributes. Some methods have been developed to account for correlated attributes. de la

Torre and Douglas (2004) proposed the higher-order DINA model that includes an IRT

model for the joint distribution of the attributes. The higher-order DINA model assumes

that the cognitive attributes are dependent on one or some general abilities. Hartz (2002) as-

sumed the distribution of attributes is multivariate normal with zero mean and estimated an

unconstrained examinee attribute correlation matrix. Using a saturated multinomial model,
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this research develops an MCMC algorithm for estimating correlated attributes.

For the objective to be achieved, customized sampling algorithms are formulated, and

they are implemented in base R (R development core team, 2013). Offering an R package is

one of the goals in this research. Simulation studies using the DINA model and rRUM are

conducted to evaluate the effectiveness of the algorithms. As preliminary investigations,

simulation studies in this research use a complete Q-matrix that can identify all attribute

patterns. The fraction subtraction data (Tatsuoka, 1990) is used in the empirical study. It

should be noted that this research is not entirely exploratory, as the number of attributes is

assumed to be known in the estimation.

1.3 Outline

The rest of the thesis is structured as follows. Chapter 2 reviews the theoretical foun-

dations for this research. First, the DINA, NIDA models and the RUM are introduced.

Section 2.2 presents existing Q-matrix studies, which are categorized as confirmatory or

exploratory. Section 2.3 describes Bayesian computation using conjugate priors, inverse

transform sampling, and Markov chain Monte Carlo algorithms. Some common issues in

Q-matrix research are also provided in the last section of Chapter 2.

Chapter 3 explains the algorithms for estimating the Q-matrix. Sections 3.1 and 3.2

formulate the algorithms based on the DINA model and the rRUM, respectively. A possible

solution for label switching and a measure of accuracy rate are outlined in section 3.3. A

method for simulating data from correlated attributes is introduced in section 3.3, and the

background of the fraction subtraction data to be used in empirical study is described in

section 3.5. Chapter 4 presents the results of the estimated Q-matrices from the DINA

model and rRUM. The results are evaluated by log-likelihood and the the accuracy rate

defined in section 3.4.
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Chapter 2 Review of Literature

2.1 Cognitive Diagnosis Models

Several extensive reviews of CDMs have appeared in the literature, including Junker

(1999), Hartz (2002), DiBello, Roussos, and Stout (2007), Roussos, Templin, and Henson

(2007), Fu and Li (2007) and Rupp and Templin (2008b). This section focuses on the

DINA, NIDA models and the RUM, as they are the bases of this research. These three

models are conjunctive, for they assume that solving an item requires the conjunction of

each required attribute. A correct item response is produced when all attributes required by

the item are mastered, and the mastery of an attribute cannot make up for the nonmastery

of another attribute.

The DINA Model

In the DINA model, an examinee is viewed as either having or not having a particular

attribute. Whether examinee i possesses attribute k is typically denoted as αik, a dichoto-

mous latent response variable with values of 0 or 1 indicating absence or presence of a

skill, respectively. The DINA model is conjunctive. That is, in order to correctly answer

item j, examinee i must possesses all the required attributes. Whether examinee i is able

to correctly answer item j is defined by another latent response variable ηij ,

ηij =
K∏
k=1

α
qjk
ik . (2.1)

The latent response variable ηij is related to observed item performance Xij according to
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the guess parameter,

gj = P (Xij = 1|ηij = 0), (2.2)

and the slip parameter,

sj = P (Xij = 0|ηij = 1). (2.3)

In other words, gj represents the probability of Xij = 1 when at least one required attribute

is lacking, and sj denotes the probability ofXij = 0 when all required attributes are present.

1 − sj indicates the probability of a correct response for an examinee classified as having

all required skills.The item response function (IRF) for item j is

P (Xij = 1|α, s, g) = (1− sj)ηijg
1−ηij
j , (2.4)

and, assuming local independence and independence among examinees, the joint likelihood

function for all responses is

P (Xij = xij, ∀ i, j|α, s, g) =
I∏
i=1

J∏
j=1

(
(1− sj)xijs

1−xij
j

)ηij(
g
xij
j (1− gj)1−xij

)1−ηij
.

(2.5)

The DINA model is one of the most parsimonious CDMs and is easy to interpret (de

la Torre, 2008). However, one limitation is that the model might be too simple because

it partitions the examinees into only two equivalence classes per item and missing one

attribute is equivalent to missing all required attributes (Henson & Douglas, 2005). It

is reasonable that an examinee lacking only one of the required attributes have a higher

probability of a correct response than those lacking all of the required attributes. It should

be also noted that the monotonicity constraint, 1 − sj > gj , should be placed in order to

enhance the interpretability of the model (Junker & Sijtsma, 2001).
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The NIDA Model

The NIDA model is probably the simplest of the conjunctive models (Roussos, Templin,

& Hensen, 2007). The NIDA model is also defined by slip and guess parameters; however,

the slip and guess occur at the attribute level. The slip and guess parameters of attribute k

are denoted by sk and gk. The slip and guess parameters have no subscript for items. They

are the same for every item for which qjk = 1. Because the NIDA model is conjunctive, all

skills involved in an item must be mastered to succeed. With a latent variable ηijk indicating

whether the performance of examinee i in item j is consistent with possessing attribute k,

gk and sk are defined as

gk = P (ηijk = 1|αik = 0, qjk = 1) (2.6)

and

sk = P (ηijk = 0|αik = 1, qjk = 1). (2.7)

The IRF of the NIDA model is

P (Xij = 1|α, s, g) =
K∏
k=1

(
(1− sk)αikg1−αikk

)qjk
, (2.8)

and the joint likelihood function for all responses is

P (Xij = xij,∀i, j|α, s, g)

=
I∏
i=1

J∏
j=1

(
K∏
k=1

(
(1− sk)αikg1−αikk

)qjk)xij(
1−

K∏
k=1

(
(1− sk)αikg1−αikk

)qjk)1−xij

,

(2.9)

which assumes local independence and independence among examinees.
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The NIDA model assumes that the probability of correct application of an attribute is

the same for all items. This is a severe restriction, especially if the model is to evaluate the

effective of the items (Roussos, Templin, & Hensen, 2007). The monotonicity constraint,

1− sk > gk, should also be placed in order to enhance the the interpretability of the model.

The RUM

Extending the NIDA model, Maris (1999) proposed a model that estimates the slip

and guess parameters for different items. That is, the the slip and guess parameters have

subscripts for both items and attributes. To improve the fit of the model to the data, Dibello,

Stout, and Roussos (1995) suggested the unified model that incorporates a unidimensional

ability parameter. However, these two models are not statistically identifiable. Hartz (2002)

reparameterized the unified model so that the parameters of the model can be identified

while retaining their interpretability. The RUM is one of the more complicated conjunctive

CDM (Roussos, Templin, & Hensen, 2007). The RUM defines the probability of a correct

response to an item as

π∗j =
K∏
k=1

(1− sjk)qjk , (2.10)

and the penalty for each attribute no possessed as

r∗jk = gjk/1− sjk. (2.11)

π∗j is the probability that an examinee, having acquired all the attributes required for

item j, will correctly apply these attributes in solving the item. Under this view, π∗ is inter-

preted as an item difficulty parameter, and r∗jk can be seen as an indicator of the diagnostic

capacity of item j for attribute k. Also from the perspective of monotonicity, 1−sjk should

be greater than gjk. Specifically, r∗jk should be constrained to the interval (0, 1).



CHAPTER 2 REVIEW OF LITERATURE 10

The RUM allows for the possibility that not all required attributes have been explicitly

specified in the Q-matrix by incorporating a general ability measure, Pcj(θi). In the RUM,

the probability of a correct response can be written as

P (Xij = 1|α, r∗, π∗, θ) = π∗j

K∏
k=1

(r∗
(1−αik)

jk )qjkPcj(θi). (2.12)

Pcj(θi) is the item characteristic curve in the Rasch model, where cj is the difficulty pa-

rameter and θi is the general measure of an examinee’s knowledge not specified by the

Q-matrix.

Hartz (2002) further suggested a reduced version of the RUM, which has been used in

the analysis of real data (e.g., Jang, 2005; McGlohen, Chang, & Miller, 2004; Templin,

Henson, Templin, & Roussos, 2004; Templin, 2004; Templin & Douglas, 2004; Henson

& Templin, 2007). The reduced reparameterized unified model (rRUM) sets Pcj(θi) = 1,

assuming that the Q-matrix completely specifies the attributes required by the exam items.

The IRF of the rRUM is

P (Xij = 1|α, r∗, π∗) = π∗j

K∏
k=1

(r∗
(1−αik)

jk )qjk , (2.13)

and, based on the assumptions of local independence and independence among examinees

the joint likelihood function for all responses in the rRUM is

P (Xij = xij,∀i, j|α, r∗, π∗)

=
I∏
i=1

J∏
j=1

(
π∗j

K∏
k=1

r∗
(1−αjk)qjk
jk

)xij(
1− π∗j

K∏
k=1

r∗
(1−αjk)qjk
jk

)1−xij

. (2.14)

The rRUM is a generalization of the NIDA model (Junker & Sijtsma, 2001). Although
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different than the slip and guess parameters of the NIDA model, the parameters of the

rRUM retain the model identifiable and allow the probabilities of slipping and guessing to

vary across items. In practice, the rRUM is used more often then the RUM (Henson et al.,

2007).

Other Models

In addition to the conjunctive models, compensatory models such as the compensatory

RUM (Hartz, 2002) and the NIDO model (Templin, Henson, & Douglas, 2006) have been

developed, where high competence on one attribute can compensate for low competence

on other attributes. A disjunctive model, the DINO model (Templin & Henson, 2006), was

also advanced and mainly applied in psychological assessment. A disjunctive model is an

extreme version of the compensatory model, where high competence on one attribute is

sufficient to correctly answer an item. In addition, more general models have been pro-

posed, for example, the GDM (von Davier, 2005), the LCDM (Henson, Templin, & Willse,

2009) and the G-DINA model (de la Torre, 2011). It should be noted that all the models

mentioned in this review require a Q-matrix.

2.2 Q-matrix

Research on the Q-matrix can be generally categorized as exploratory or confirmatory.

Exploratory approaches intend to discover the Q-matrix from the data when the whole Q-

matrix is unknown. Confirmatory approaches aim to refine a specified Q-matrix in which

some of the Q-matrix elements are assumed to be known. Although an entirely exploratory

approach obtains no information about the number of attributes in advance, an approach

given the number of attributes is still regarded as exploratory here as long as it estimates the

whole Q-matrix. As such, the method developed in this research is regarded as exploratory.
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Confirmatory Approaches

Rupp and Templin (2008) conducted a simulation study using the DINA model with

different misspecifications of the Q-matrix. Their results showed that the slip parame-

ters were overestimated when attributes were incorrectly omitted in the Q-matrix while

guess parameters were overestimated when the attributes were unnecessarily added to the

Q-matrix. The overestimation appeared only in the items for which the Q-matrix was mis-

specified. Practically, large values of the slip and the guess parameters suggest empirical

evidence for Q-matrix misspecification. Henson and Templin (2007) applied the same con-

cept to the RUM. From their results, a high value of r∗ suggests that nonmastery of the

attribute has little influence on the probability of a correct response, and a low value of

π∗ indicates that many examinees classified as mastering all required attributes are still

missing the item.

Using the DINA model, Templin and Henson (2006) adopted a Bayesian estimation

procedure that specifies some, usually less than 20, Q-matrix elements of the Q-matrix as

being random rather than as fixed. Simulations indicated that the procedure could recover

the true structure when some elements of Q-matrix were not known with certainty. Henson

and Templin (2006) also applied the same idea to the RUM and reported that even when

20% of the Q-matrix has been misspecified, nearly complete recovery of the true Q-matrix

occurred.

Using the RDINA model, DeCarlo (2012) demonstrated that posterior distributions are

useful for obtaining information about elements whose inclusion in the Q-matrix is uncer-

tain. However, unlike the result from Templin and Henson (2006), the result from DeCarlo

(2012) showed that the recovery rate was not always 100% and the recovery was poor un-

der the situation of a complete uncertainty about an attribute. A new finding in DeCarlo

(2012) was that recovery rates can be adversely affected for some uncertain elements when
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other elements of the Q-matrix were not correctly specified.

De la Torre (2008) suggested the sequential EM-based δ-method to find a validated Q-

matrix. In conjunction with the DINA model, the method used a particular fit statistic δ that

minimizes the sum of the average slip and guess parameters. While other statistics might be

more useful or appropriate as stated in de la Torre (2008), a simulation study indicated that

an incorrect Q-matrix resulted in more bias in the parameters and shrunken δ, showing the

method is promising. However, DeCarlo (2012) noted that the sequential search algorithm

might not lead to the best solution.

Chiu (2013) developed the Q-matrix refinement method, a nonparametric method for

identifying and correcting the misspecified entries of a Q-matrix. Using the weighted Ham-

ming distance, the Q-matrix refinement method operates by minimizing the residual sum

of squares between the observed responses and the ideal responses to an exam item. Con-

ceptually similar to the hill climbing algorithm promoted by Barnes (2003), the method

does not rely on the estimation of model parameters and makes no assumptions other than

those made by the cognitive diagnosis model supposed to underlie examinees’ observed

item responses.

Exploratory Approaches

The primary goal of the study is to develop an algorithm for Bayesian estimation of the

Q-matrix. Some researchers have been trying to find automated approaches for searching

the Q-matrix that best fits the data. A number of their studies are presented below.

Self-learning Q-matrix Theory. Liu, Xu, and Ying (2012, 2013) proposed the theory

of self-learning Q-matrix that involves the following. Suppose a Q-matrix has J items

and K attributes. Let the attribute vector be A = (A1, A2, . . . , An, . . . , Ak), where An ∈

{0, 1} indicates possessing attribute An or not. T (Q) is a non-linear function of the Q-
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matrix that provides a linear relationship between the attribute distribution and the response

distribution. p̂ij is defined as the proportion of examinees who acquire neither attribute i

nor attribute j.

Table 2.1: Q-matrix
Attribute

Item attribute 1 attribute 2
1 1 0
2 0 1
3 1 1

From the above Q-matrix (Table 2.1), p̂00, p̂01, p̂10, p̂11 can be calculated. With p̂00, p̂01,

p̂10, p̂11, the following relationships can be drawn:

N(p̂10 + p̂11) = NI1 ; N(p̂01 + p̂11) = NI2 ; Np̂11 = NI3 .

With the natural constraint that
∑
ij

p̂ij = 1, p̂ solves the linear equation

T (Q)p̂ = α, (2.15)

where

T (Q) =


1 0 1

0 1 1

0 0 1

 , α =


NI1/N

NI2/N

NI3/N

 , p̂ = (p̂10, p̂01, p̂11). (2.16)

Let S(Q) = inf |T (Q)p− α|, then it can be expected that if the empirical distribution

p̂ minimizes S(Q), the Q is a correctly specified Q-matrix. Based on the self-learning

Q-matrix theory, Xiang (2013) suggested a non-linear penalized method for estimating the

Q-matrix. The concept is to build a non-linear transformation function T to obtain T (Q)

from Q, and then create a penalty function from (2.15). After the function is minimized,
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the optimized Q-matrix is obtained.

Non-negative Matrix Factorization. Winters (2006) used the non-negative matrix

factorization (NMF) to explore the structure of a Q-matrix. Suppose W is a J × K Q-

matrix, H is a K × N matrix that represents the attributes acquired by each of the N

examinees, andV is a J×N matrix that denotes the exam outcome. The NMF decomposes

V as the product ofW andH , that is, V = WH . The constraint thatW andH are non-

negative suggests that the K attributes are additive causes that contribute to the success of

items, and implies that they only increase the probability of success. However, it should be

noted that there could be more than one solution to V = WH . Desmarais (2011) showed

that the NMF method obtained desirable results for a Q-matrix in which each item contains

only one attribute. Nevertheless, more investigation is needed, as it is not uncommon for

an item to measure more than one attribute.

Hill-climbing Algorithm. Barnes (2003) used a hill-climbing algorithm that gener-

ates a matrix representing the relationship between attributes and items directly from ex-

aminees’ responses. The algorithm begins by setting the number of attributes K to one,

and then creates a random Q-matrix with values ranging from zero to one. Examinees’

responses are clustered according to attribute patterns, and the total number of errors as-

sociated with assigning responses to attribute patterns is computed. If the total number of

errors from this Q-matrix is minimized, the change is saved.

This process is repeated for all values in the Q-matrix entries until the number of errors

in the Q-matrix is not reduced. After a Q-matrix is obtained in this fashion, the algorithm

is run again with a new random starting point several times. The Q-matrix with the fewest

number of errors is then saved. This algorithm is repeated for increasing values of K

to determine the best number of attributes to use in the Q-matrix. The final Q-matrix is

selected when adding an additional attribute does not significantly decrease the overall
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errors. The number of attributes should be less than the number of items.

2.3 Bayesian Computation

Bayesian inferences are based on the posterior distribution, which summarizes our

knowledge of the parameter given the data actually observed (Gelman, Carlin, Stern, &

Rubin, 2004). Consider a general problem of inferring a distribution for a parameter θ

given the observed data y. The prior distribution p(θ) is our information about the un-

certain parameter before the data are seen. The information about the parameter in the

observed data is contained in the likelihood function p(y|θ). With the prior p(θ) and the

likelihood p(y|θ), we can obtain the posterior distribution p(θ|y),

p(θ|y) =
p(y|θ)p(θ)´
p(y|θ)p(θ)dθ

. (2.17)

From (2.17), a closed form for the integral in the denominator only exists for some

particular conditions such as conjugate distributions. If the posterior distribution is in the

same family as the prior distribution, the prior and posterior are called conjugate distri-

butions and the prior is called a conjugate prior. The posterior distribution can be found

analytically using simple updating formulas.

For other cases when conjugate priors are not available, one approach to approximate

the integral is the quadrature method. When the prior is specified on a dense grid of points

spanning the range of θ, the posterior can be numerically generated by summing across

the discrete values. Alternatives to approximation methods are sampling methods, such as

inverse transform sampling and Markov chain Monte Carlo (MCMC) algorithms including

the Gibbs sampling and Metropolis-Hastings algorithm. Conjugate priors, inverse trans-

form sampling and MCMC constitute the algorithms employed in this research, and they

are delineated in the following.
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Conjugacy

A conjugate prior typically simplifies computations, in that its posterior gives a closed

form that can be found analytically (Gelman, Carlin, Stern, & Rubin, 2004). The gen-

eralization of the well known fact that the conjugate prior for a binomial distribution is

a Beta distribution is that the conjugate prior for a multinomial distribution is a Dirichlet

distribution.

In a multinomial distribution, each trial from n independent trials results in one of the

k categories. Suppose x = (x1, x2, . . . , xk) represent the frequencies falling into the k

categories with probabilities θ = (θ1, θ2, . . . , θk). The probability mass function (PMF) of

the multinomial distribution is

p(x|θ) =

(
n

x1x2 · · ·xk

) k∏
i=1

θxii , (2.18)

where n =
k∑
i=1

xi and
k∑
i=1

θi = 1. Suppose that θ follows a Dirichlet distribution,

p(θ) =
k∏
i=1

Γ(ai)θ
a1−1
1 . . . θak−1k . (2.19)

We can see that the posterior p(θ|x) is also a Dirichlet distribution, as

p(θ|x) ∝
k∏
i=1

θai−1i

k∏
i=1

θxii =
k∏
i=1

θai+xi−1i . (2.20)

A Dirichlet distribution can be constructed using Gamma distributions. Let wi ∼

Gamma(ai, 1) be independent for i = 1, 2, . . . , k and set θi = wi/τ , where τ = w1 +
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w2 + · · ·+ wk. The probability density function (PDF) for w = (w1, w2, . . . , wk) is

p(w) =
k∏
i=1

1

Γ(ai)
wai−1i e−wi , (2.21)

where Γ(·) is a Gamma function,

Γ(z) =

ˆ ∞
0

tz−1e−tdt. (2.22)

Since
k∑
i=1

θi = 1, θ has only k − 1 dimensions. The PDF of θ can be derived by a multi-

variate change of variable from (w1, w2, . . . , wk) to (θ1, θ2, . . . , θk−1, τ). The Jacobian of

this transformation is derived as J = τ k−1. Thus it can be obtained that

p(θ1, θ2, . . . , θk−1, τ) = τ k−1
k∏
i=1

(θiτ)ai−1

Γ(ai)
e−θiτ = τ (a1+a2+···+ak)−1e−τ

k∏
i=1

θai−1i

Γ(ai)
. (2.23)

Integrating (2.23) with respect to τ gives

p(θ1, θ2, . . . , θk−1) =
k∏
i=1

θi
ai−1

Γ(ai)

ˆ ∞
0

τ (a1+a2+···+ak)−1e−τdτ =
1

B(a)

k∏
i=1

θai−1i , (2.24)

where a = (a1, a2, . . . , ak). As
k∑
i=1

θi = 1, θk is determined by θ1, θ2, . . . , θk−1. Therefore

p(θ1, θ2, . . . , θk−1) = p(θ1, θ2, . . . , θk) = p(θ),

p(θ) =
1

B(a)

k∏
i=1

θai−1i , (2.25)

which isDirichlet(a). This shows that θ follows the Dirichlet distribution with the param-

eter a. When k = 2, a Dirichlet distribution simplifies to a Beta distribution and therefore

the conjugate prior for a binomial distribution is a Beta distribution.
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Inverse Transform Sampling

Under the condition of sampling from a univariate distribution, if the posterior is a dis-

tribution to which conjugacy is applicable, the posterior can be sampled directly. However,

conjugacy is not realistic, but if F−1 of the univariate distribution can be derived analyti-

cally, then the inverse transform sampling is an alternative. To generate random numbers

from a probability distribution, we can sample random numbers from Uniform(0, 1) and

then transform these values by the inverse of its cumulative distribution function (CDF)

(Ross, 2013).

Let F be the CDF of a continuous random variable X , and U be a random variable

distributed as Uniform(0, 1). Since

P (X ≤ x) = P (F−1(U) ≤ x) = P (U ≤ F (x)) = P (U ≤ u), (2.26)

X can be generated from the CDF F by first generating a random number from U and then

setting X = F−1(U).

Inverse transform sampling can also be applied to any discrete variables. Suppose a

discrete random variable X has PMF,

P (X = xj) = pj, j = 1, . . . ,
∑
j

pj = 1, (2.27)

and U is distributed as Uniform(0, 1). As P (a ≤ U < b) = b − a when 0 < a < b < 1,

thus

P (X = xj) = P

(
j−1∑
i=1

pi ≤ U <

j∑
i=1

pi

)
= pj. (2.28)

Therefore, sampling from a discrete distribution can be accomplished by first generating a
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random number U from Uniform(0, 1) and then setting

X =



x1 if U < p1

x2 if p1 ≤ U < p1 + p2
...

xj if
j−1∑
i=1

pi ≤ U <
j∑
i=1

pi

...

. (2.29)

Gibbs Sampling

The inverse transform sampling does not work with multivariate distributions. A rem-

edy for multivariate distributions is made by Gibbs sampling. Gibbs sampling (Geman &

Geman, 1984) is an MCMC algorithm for obtaining a sequence of random samples from

a multivariate probability distribution. Suppose the joint distribution p(θ) is the posterior

distribution we want to sample from, where θ = (θ1, θ2, . . . , θk). Given a starting position

θ0 = (θ01, θ
0
2, . . . , θ

0
k), Gibbs sampling performs the following steps at iteration t:

1. sample θt1 from p(θ1|θt−12 , . . . , θt−1k−1, . . . , θ
t−1
k ,y)

2. sample θt2 from p(θ2|θt1, θt−13 , . . . , θt−1k ,y)

...

3. sample θtk from Gibbs sampling can sample from the joint posterior distribution if

the full conditional distribution p(θj|θ\j,y) of each parameter is known, where θ\j

denotes the vector θ excluding θj . As θj is conditional on all the other parameters

and the data, the full conditional distribution is

p(θj|θ\j,y) = p(θj|θt1, θt2, . . . , θtj−1, θtj+1, . . . , θ
t
k−1, θ

t
k,y), j = 1, 2, . . . , k. (2.30)
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Metropolis-Hastings Algorithm

The Metropolis-Hastings algorithm (Metropolis & Ulam, 1949; Hastings, 1970) works

for both univariate and multivariate distributions. Suppose there are k parameters, θ =

(θ1, . . . , θk). Let q(θ(∗),θ) be the candidate density when the chain is at θ, and let p(θ|y)

be the conditional posterior density. The reversibility condition will be p(θ|y)q(θ,θ(∗)) =

p(θ(∗)|y)q(θ(∗),θ) for all states. There will be some θ and θ(∗) where the reversibility

condition does not hold. The balance can be restored by introducing the probability of

moving which is given by

ϕ = min

(
1,
p(θ(∗)|y)q(θ(∗),θ)

p(θ|y)q(θ,θ(∗))

)
. (2.31)

A special case when q(θ(∗)|θ) = q(|θ(∗) − θ|) is known as a random walk, which

is a local exploration of the neighborhood of the current value of the Markov chain. The

concept is to select candidate point θ(∗) at iteration t according to θ(∗) = θ(t−1)+ε, where ε

is a random perturbation with a distribution independent of θ(t−1), such as Uniform(−δ, δ)

or Normal(0, σ2). That is, θ(∗) can be sampled from Uniform(θ(t−1) − δ,θ(t−1) + δ) or

Normal(θ(t−1), σ2) .

Although not necessarily the most efficient solution, random walk Metropolis-Hastings

is often regarded as a generic algorithm that caters in most cases and a natural approach

for the construction of a Metropolis-Hastings algorithm (Robert & Casella, 2004). For a

random walk, the candidate is drawn from a symmetric distribution centered at the current

value. The candidate density is given by q(θ,θ(∗)) = q(θ
(∗)
1 − θ1, . . . , θ

(∗)
k − θk), where

q(, . . . , ) is symmetric about 0 for each of its arguments. So the candidate density can be
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written as q(θ,θ(∗)) = q(θ(∗) − θ). Therefore, the acceptance probability is

ϕ = min

(
1,
p(θ(∗)|y)q(θ(∗),θ)

p(θ|y)q(θ,θ(∗))

)
= min

(
1,
p(y|θ(∗))p(θ(∗))
p(y|θ)p(θ)

)
. (2.32)

The Metropolis-Hastings within Gibbs sampling algorithm (Tierney, 1994) is a hybrid

algorithm that combines the Metropolis-Hastings algorithm and Gibbs sampling. This al-

gorithm retains the idea of sequential sampling but uses a Metropolis-Hastings step on some

or all variables rather than attempting to sample from the exact conditional distribution.

That is to say, each step in a cycle of the Gibbs sampling is itself a Metropolis-Hastings

step. In each step of the Metropolis within Gibbs algorithm, a candidate value θ(∗)j of the

jth component of θ is proposed by q(θ(∗)j |θ) and updated with probability

ϕ = min

(
1,
p(y|θ(∗)j ,θ\j)p(θ

(∗)
j ,θ\j)q(θj|θ(∗)j ,θ\j)

p(y|θj,θ\j)p(θj,θ\j)q(θ(∗)j |θj,θ\j)

)
. (2.33)

2.4 Discussion and Some Issues

Conjunctive CDMs assume that solving an item requires the possession of each re-

quired attribute. The DINA model and the rRUM are of focus in this study. In the DINA

model, guess and slip happen at the item level. In the NIDA model, guess and slip occur

at the attribute level. The severe restriction that the probability of correct application of an

attribute is the same for all items hinders the practicality of the NIDA model, especially if

the need is to evaluate the effective of items. A generalization of the NIDA model is the

rRUM, a reduced version of the RUM that has parameters at both item and attribute levels.

A number of studies have proposed automated methods to search the Q-matrix. The

hill-climbing algorithm (Barnes, 2003) was shown to perform at least as well as principal

component analysis for skill clustering analysis. However, the algorithm often terminates
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with the estimated Q-matrix entries having values between 0 and 1, limiting the useful-

ness of the estimated Q-matrix (Chiu, 2013). In addition, the algorithm does not scale

well to a Q-matrix that comprises 20 or more items (Desmarais, 2011). Using the weighted

Hamming distance, the Q-matrix refinement method (Chiu, 2013) can be regarded as a con-

firmatory reformation of the hill-climbing algorithm. Although the purpose of the Q-matrix

refinement method is to refine an existing Q-matrix, the method can also be implemented

under an exploratory condition.

The NMF method requires that each item in the Q-matrix has a high level attribute,

and each item only belongs to that attribute. The interpretation of the result from NMF is

different from the standard interpretation of the Q-matrix for the conjunctive models.

The self-learning Q-matrix theory offered a model based method to estimate the Q-

matrix from item responses. It requires a saturated T-matrix or known guessing parameters

in DINA model. The method also needs complicated numerical methods, which makes it

not easy to implement in real data analysis.

Some general issues raised in Q-matrix research are discussed here. First, verifying the

number of attributes is an important issue in the Q-matrix estimation. Although the number

of attributes is assumed to be known in the present research, the number of attributes is not

predetermined for most of the exams. Even when the number of attributes is predetermined,

the concept that represents each of the attribute might be different from different experts.

The second issue is that it is impossible to estimate the entire vector of attribute pat-

tern probabilities under some Q-matrices. For example, some attribute patterns are not

estimable in the DINA model with unconstrained attribute pattern distributions (Johnson,

2009). This can be illustrated by the Q-matrix in table 3.3. With 2 attributes, there are 4

possible attribute patterns, (0, 0), (0, 1), (1, 0) and (1, 1). However, we can only estimate

the probability for three sets of patterns, in that the ideal responses for (0, 0) and (0, 1) are
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the same, i.e., (0, 0, 0, 0). It is impossible to distinguish the attribute patterns (0, 0) and

(0, 1) from one another.

Table 2.2: Example of Estimability
Q-matrix Attribute Patterns Ideal Responses

item attribute 1 attribute 2 attribute 1 attribute 2 item 1 item 2 item 3 item 4
1 1 0 0 0 0 0 0 0
2 1 0 0 1 0 0 0 0
3 1 1 1 0 1 1 0 0
4 1 1 1 1 1 1 1 1

Estimability is equivalence in Q-matrices is the third issue. From the Q-matrix in Table

3.4, if no examinee possesses attribute pattern (1, 0, 0), then changing the attribute state for

attribute 2 in item 2 from 0 to 1 makes no difference in the ideal response pattern (Table

3.5). In other words, the two Q-matrices are equivalent. They are not distinguishable based

on data.

Table 2.3: Example of Q-matrix Equivalence
Attribute

Item attribute 1 attribute 2 attribute 3
1 0 0 1
2 1 0 0
3 0 1 0
4 1 1 1

Table 2.4: Ideal Response Patterns
Attribute Patterns Ideal Responses

attribute 1 attribute 2 attribute 3 item 1 item 2 item 3 item 4
0 0 0 0 0 0 0
0 1 0 0 0 1 0
0 0 1 1 0 0 0
1 1 0 0 1 1 0
1 0 1 1 1 0 0
0 1 1 1 0 1 0
1 1 1 1 1 1 1
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Chapter 3 Methodology

This research aims to develop Q-matrix estimation algorithms for the DINA model and

rRUM in a Bayesian framework. An algorithm for reducing label switching is provided in

section 3.3. A method for simulating data is described in section 3.4. Simulated data are

generated using an artificial Q-matrix shown in table (3.1). The algorithms for the Bayesian

method are used to recover the Q-matrix from simulated data sets. The setting for chapter

3 is comprised of responses from I examinees to J items that measure K attributes.

3.1 Estimating the Q-matrix for the DINA Model

The Bayesian formulation of estimating the Q-matrix for the DINA model is introduced

in this section. The model and the sampling algorithm for the full condition posterior dis-

tributions are introduced here and explained in 3 steps below. The model is the following,

yij ∼ Bernoulli(p(αi)

p(αi) = (1− sj)ηijg
1−ηij
j

αi|θi ∼Multinomial(2K ,θi)

θi ∼ Dirichlet(a1, a2, . . . , a2K )

qj|φj ∼Multinomial(2K − 1,φj)

gj ∼ Beta(a, b)

sj ∼ Beta(c, d)



, (3.1)

for i = 1, . . . , I , and j = 1, . . . , J .
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In model (3.1), αi indicates the 2K possible attribute patterns with underlying proba-

bility vector θi for examinee i, qj represents the 2K − 1 possible Q-matrix patterns having

underlying probability vector φj for item j.

The full conditional posterior distributions of the parameters for the DINA model are

expressed as follows:

p(αi|y,αi, g, s, q) ∝ p(y|αi, g, s, q)p(αi|θi)p(θi) (3.2)

p(g|y,α, s, q) ∝ p(y|α, g, s, q)p(g) (3.3)

p(s|y,α, g, q) ∝ p(y|α, g, s, q)p(s) (3.4)

p(qj|y,α, g, s, qj) ∝ p(y|α, g, s, qj)p(qj|φj) (3.5)

Specifically, with the likelihood from (2.5), the full conditional posterior distributions are

p(αj|y,αi, g, s, q) ∝ p(y|αi, g, s, q)p(αi|θi)p(θi) (3.6)

=

[
I∏
i=1

J∏
j=1

(
(1− sj)yijs

1−yij
j

)ηij(
g
yij
j (1− gj)1−yij

)1−ηij
]

×

[(
n

y1y2 · · · y2K

) 2K∏
i=1

θyii

][
1

B(a)

2K∏
i=1

θai−1i

]
,

p(g|y,α, s, q) ∝ p(y|α, g, s, q)p(g) (3.7)

=

[
I∏
i=1

J∏
j=1

(
(1− sj)yijs

1−yij
j

)ηij(
g
yij
j (1− gj)1−yij

)1−ηij
][
ga−1(1− g)b−1

B(a, b)

]
,

p(s|y,α, g, q) ∝ p(y|α, g, s, q)p(s) (3.8)

=

[
I∏
i=1

J∏
j=1

(
(1− sj)yijs

1−yij
j

)ηij(
g
yij
j (1− gj)1−yij

)1−ηij
][
sc−1(1− s)d−1

B(c, d)

]
,
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p(qj|y,α, g, s, qj) ∝ p(y|g, s,α, qj)p(qj|φj) (3.9)

=

[
I∏
i=1

I∏
i=1

(
(1− sj)yijs

1−yij
j

)ηij(
g
yij
j (1− gj)1−yij

)1−ηij
]
p(qj|φj).

Whether examinee i masters all the required attributes for item j can be determined by ηij ,

ηij =

 0 if α′iqj 6= q′jqj

1 if α′iqj = q′jqj

. (3.10)

The Q-matrix for the DINA model is estimated using the following 3-step algorithm.

The steps are performed sequentially at iteration t, t = 1, . . . , T .

Step 1: Updating Attributes

It is not uncommon for attributes to be correlated with one another (Hartz, 2002; de la

Torre, 2004; Templin et al., 2008; Feng, Harbin, & Huebner, 2014), and the more corre-

lated the attributes are, the more difficult it is to estimate the Q-matrix (Liu, Xu, & Ying,

2012). While attributes could be independent in many cases, we benefit from a method that

assumes correlated attributes because it should work for both conditions.

In updating an examinee’s attribute state, a saturated multinomial model is used that

assumes no restrictions on the probabilities of the attribute patterns (see Maris, 1999).

With K attributes, there are a total of 2K possible attribute patterns for examinee i. An

attribute pattern is a K-bit binary number, which can be converted to a decimal number.

For example, the 5-bit binary number (10010)2 can be converted to the decimal number 9

with the following conversion,

(bnbn−1 · · · b0)2 = bn(2)n + bn−1(2)n−1 + · · ·+ b0(2)0, (3.11)
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where (bnbn−1 · · · b0)2 denotes a binary number.

LetE2K×K = (εnk)2K×K be the matrix of possible attribute patterns for examinee i. E

has 2K rows, and each row ofE represents a possible attribute pattern. If an exam measures

two attributes (K = 2), then the number of possible attribute patterns is 4 (2K = 4). The

matrix of possible attribute patterns E is

E22×2 =



0 0

0 1

1 0

1 1


. (3.12)

From (3.12), each row ofE can be converted to a decimal number. After the conversion,

these 2K possible attribute patterns become a multinomial distribution. That is,



0 0

0 1

1 0

1 1


→



0

1

2

3


. (3.13)

Assuming a Dirichlet prior, the model is

αi|θi ∼Multinomial(2K ,θi), (3.14)

θi ∼ Dirichlet(a1, a2, . . . , a2K ), (3.15)

where θi is the underlying probability vector with 2K elements.

From (3.6), we need to calculate p(αi|θi)p(θi). Because the conjugate prior for a

multinomial distribution is a Dirichlet distribution, p(αi|θi)p(θi) is also a Dirichlet distri-
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bution. If the Dirichlet prior Dirichlet(1, 1, . . . , 1) is used, then the conditional posterior

is distributed as

θi |αi ∼ Dirichlet(1 + y1, 1 + y2, . . . , 1 + y2K ), (3.16)

where yl, l = 1, . . . , 2K , is the number examinees possessing the lth attribute pattern ob-

tained from iteration t− 1. As no function in base R can be used to sample from Dirichlet

distribution, Gamma distributions are used to construct the Dirichlet distribution. Sup-

pose that w1, . . . , w2K are distributed as Gamma(a1, 1), . . . ,Gamma(a2K , 1), and that τ =

w1 + · · ·+w2K , then (w1/τ, w2/τ, . . . , w2K/τ) is distributed as Dirichlet(a1, a2, . . . , a2K ).

For each of the 2K possible attribute patterns, calculate the total number of examinees

(y1, y2, . . . , y2K ) falling into the attribute pattern, and then sample from Gamma(1+y1, 1) =

w′1, Gamma(1+y2, 1) = w′2, . . . , Gamma(1+y2K , 1) = w′2K . Let τ ′ = w′1+w
′
2+· · ·+w′2K ,

then

p(θi|αi) = (w′1/τ
′, w′2/τ

′, . . . , w′2K/τ
′). (3.17)

It can be seen from (3.6) that with (3.17) and the likelihood of each attribute pattern,

attribute patterns for examinee i can be sampled from the full conditional posterior by using

the discrete version of inverse transform sampling.

Let the posterior (p1, p2, . . . , p2K ) be the PMF of the 2K possible attribute patterns. The

CDF is computed by adding up the probabilities for the 2K points of the distribution. To

sample from this discrete distribution, partition (0, 1) into 2K subintervals (0, p1), (p1, p1 +

p2), . . . , (
K∑
k=0

p2k−1,
K∑
k=0

p2k), and then generate a value u from Uniform(0, 1). Updating the

attribute state of examinee i is achieved by first checking which subinterval the value u falls

into and then converting the subinterval number to the binary number using (3.11). After

the algorithm is applied to each examinee, attribute states for all examinees are obtained

for iteration t.
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Step 2: Updating g and s Parameters

With the estimated attribute states from step 1, guess and slip parameters are updated in

step 2. Because the conjugate prior for a binomial distribution is a Beta distribution, the full

conditional posteriors of the guess and slip parameters are also Beta distributions if Beta

priors are assumed for the two parameters. Beta(1, 1), which is equal to Uniform(0, 1), is

chosen as the prior for both guess and slip parameters.

Closed-forms of the full conditional posteriors for guess and slip parameters are derived

as follows. In the DINA model, for examinee i answering item j, guess occurs when

ηij = 0 but yij = 1 and slip happens when ηij = 1 but yij = 0. Consequently, in estimating

gj , the total number of successes is
I∑
i=1

(1 − ηij)yij , and the total number of failures is

I∑
i=1

(1−ηij)(1−yij). As gj ∼ Beta(1, 1) and sj ∼ Beta(1, 1), the full conditional posterior

distribution for gj is

gj|sj,α,y, q ∼ Beta

(
1 +

I∑
i=1

(1− ηij)yij, 1 +
I∑
i=1

(1− ηij)(1− yij)

)
. (3.18)

In estimating sj , the total number of successes is
I∑
i=1

ηij(1 − yij), and the total number of

failures is
I∑
i=1

ηijyij . Therefore, the full conditional posterior distribution for sj is

sj|gj,α,y, q ∼ Beta

(
1 +

I∑
i=1

ηij(1− yij), 1 +
I∑
i=1

ηijyij

)
. (3.19)

The monotonicity constraint indicates that the probability of answering an item cor-

rectly is supposed to be higher for an examinee who possesses all the required attributes

than for one who lacks at least one attribute, that is, 1 − sj > gj . Junker and Sijtsma

(2001) observed that the monotonicity did not always hold for the DINA model if no con-

straint was imposed. To achieve monotonicity, we can use inverse transform sampling to
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sample from a truncated Beta distribution. The gj and sj parameters are sampled from

Uniform(0, 1− sj) and Uniform(0, 1− gj), and then inverted to Beta distributions.

Step 3: Updating the Q-matrix

With the updatedα, g and s from steps 1 and 2, this step updates the Q-matrix. Similar

to step 1, step 3 uses a saturated model for the Q-matrix. There are 2K − 1 possible Q-

matrix patterns for item j. The Q-matrix pattern with all 0’s is excluded because an item

has to measure at least one attribute. After each binary pattern is converted to a decimal

number by (3.11), the 2K − 1 possible Q-matrix patterns are distributed as a multinomial

distribution. In updating the Q-matrix for item j, the model is

qj|φj ∼Multinomial(2K − 1,φj). (3.20)

An entry in the Q-matrix is denoted as qjk. Let p(qjk = 1) = φjk and p(qjk = 0) =

1−φjk. The conjugate prior for a Bernoulli distribution is a Beta distribution. If Beta(1, 1)

is chosen as the prior, φjk ∼ Beta(1, 1), then the conditional posterior for φjk is

φjk |qjk ∼ Beta(1 + qjk, 2− qjk). (3.21)

The posterior mean is 2/3 for qjk = 1 , and 1/3 for qjk = 0.

Similar to step 1, step 3 uses E2K×K = (εnk)2K×K as the matrix of possible Q-matrix

patterns for item j. E has 2K rows, and each row of E represents a possible Q-matrix

pattern. Containing all 0’s, the first row of E is excluded in this step. That is, from (3.12),

there are only 3 possible Q-matrix patterns. Let φj = (φ2, . . . ,φ2K ), then the likelihood

of each possible Q-matrix pattern for item j is

p(qj|φj) =

(
K∏
n=1

φε2n2n (1− φ2k)
1−ε2n , . . . ,

K∏
n=1

φ
ε
2Kn

2Kn
(1− φjn)1−ε2Kn

)
. (3.22)
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Each element in p(qj|φj) is the probability of a possible Q-matrix pattern. Therefore,

from (3.9), with the likelihood for item j from each of the 2K − 1 possible patterns and

p(qj|φj), the Q-matrix for item j can be sampled from the full conditional posterior dis-

tribution. After the procedure is applied to every item, the whole Q-matrix is derived for

iteration t. It should be noted that if a procedure can apply the algorithm to all items at

once, the estimated Q-matrix will be still the same because the items are conditionally

independent to one another.

Initial Values

The initial values for the DINA model are generated as the following:

θi ∼ Uniform(0, 0.1) (3.23)

qjk ∼ Bernoulli(0.5) (3.24)

φjk ∼ Uniform(0, 1) (3.25)

sj ∼ Uniform(0.1, 0.5) (3.26)

gj ∼ Uniform(0.1, 0.5) (3.27)
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3.2 Estimating the Q-matrix for the rRUM

Because the estimating procedures for α and q in the rRUM are similar to those in the

DINA model, they are only briefly presented in this section. The sampling algorithm for the

rRUM differs from that for the DINA model mainly in updating the π∗ and r∗ parameters.

As no conjugate prior could be found for π∗ and r∗, random walk Metropolis-Hastings

algorithm is used to update the two parameters. The Bayesian formulation of estimating

the Q-matrix for the rRUM is represented as the following,

yij ∼ Bernoulli(p(αi))

p(αi) = π∗j
K∏
k=1

(r∗
(1−αik)

jk )qjk

αi|θi ∼Multinomial(2K ,θi)

θi ∼ Dirichlet(a1, a2, . . . , a2K )

qj|φj ∼Multinomial(2K − 1,φj)

π∗j ∼ Beta(a, b)

r∗jk ∼ Beta(c, d)



. (3.28)

The full conditional posterior distributions of the parameters for the rRUM are:

p(αi|y, r∗,π∗, q) ∝ p(y|αi,π∗, r∗, q)p(αi|θi)p(θi) (3.29)

p(π∗|y,α, r∗, q) ∝ p(y|α,π∗, r∗, q)p(π∗) (3.30)

p(r∗|y,α,π∗, q) ∝ p(y|α,π∗, r∗, q)p(r∗) (3.31)

p(qj|y,α,π∗, r∗) ∝ p(y|α,π∗, r∗, qj)p(qj|φj) (3.32)

Explicitly, with the likelihood from (2.14), the full conditional posterior for αi is
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p(αi|yi,θi, g, s, q) ∝ p(yi|αi,θi, g, s, q)p(αi|θi)p(θi) (3.33)

=

[
J∏
j=1

(
π∗j

K∏
k=1

r∗
(1−αjk)qjk
jk

)yij(
1− π∗j

K∏
k=1

r∗
(1−αjk)qjk
jk

)1−yij]

×

[(
n

y1y2 · · · y2K

) 2K∏
i=1

θyii

][
1

B(a)

2K∏
i=1

θai−1i

]
,

and the full conditional posterior for π∗ and r∗ given the rest of the parameters and the data

is

p(π∗, r∗|α, q,y) ∝ p(y|α,π∗, r∗, q)p(π∗)p(r∗) (3.34)

=
I∏
i=1

J∏
j=1

(
π∗j

K∏
k=1

r∗
(1−αjk)qjk
jk

)yij(
1− π∗j

K∏
k=1

r∗
(1−αjk)qjk
jk

)1−yij

p(π∗)p(r∗).

The sampling procedure is discussed as follows. At iteration t, t = 1, . . . , T , run the

following steps:

Step 1: Updating Attributes

The procedure for updating attributes in the rRUM is similar to that in the DINA model.

A saturated model is used to cope with correlated attributes. The model is

αi|θi ∼Multinomial(2K ,θi), (3.35)

θi ∼ Dirichlet(a1, a2, . . . , a2K ). (3.36)

After converted to decimal numbers, binary possible attribute patterns are distributed

as a multinomial distribution. A Dirichlet prior is used because it is a conjugate prior for a

multinomial distribution. Therefore, the posterior is also a Dirichlet distribution. Gamma

distributions are used to construct the posterior Dirichlet distribution.
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Step 2: Updating r∗ and π∗ Parameters

Random walk Metropolis-Hastings algorithm is used to update r∗jk and π∗j . As π∗ and

r∗ are assumed to be independent of each other, p(π∗, r∗) = p(π∗)p(r∗). The algorithm

uses Beta(1, 1) as the prior for π∗j and r∗jk,

π∗j ∼ Beta(1, 1), (3.37)

r∗jk ∼ Beta(1, 1). (3.38)

At iteration t, the algorithm samples candidate values for r∗ from Uniform(r∗
(t−1) −

δ, r∗
(t−1)

+δ), and for π∗ from Uniform(π∗
(t−1)−δ,π∗(t−1)

+δ). Note that candidate values

for both r∗ and π∗ have to be restricted to the interval (0, 1), and δ is adjusted so that the

acceptance rate is between 25% and 40% (see Gilks et al., 1996). After calculating the

acceptance probability ϕ for candidates for r∗ and π∗,

ϕ =
p(y|α(t), r∗

(∗)
,π∗

(∗)
, q(t−1))p(r∗

(∗)
)p(π∗

(∗)
)

p(y|α(t), r∗(t−1) ,π∗(t−1) , q(t−1))p(r∗(t−1))p(r∗(t−1))
, (3.39)

set

r∗
(t)

=


r∗

(∗) with probability min(1, ϕ)

r∗
(t−1) otherwise

, (3.40)

and

π∗
(t)

=


π∗

(∗) with probability min(1, ϕ)

π∗
(t−1) otherwise

. (3.41)
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Step 3: Updating the Q-matrix

The procedure for updating the Q-matrix is also the same in the rRUM. A saturated

model is used in updating the Q-matrix. With the likelihood of each possible Q-matrix

pattern and the probability of each of the 2K − 1 patterns, the normalized probability for

each possible pattern is obtained. The Q-matrix pattern for item j is sampled from this

discrete distribution.

Each entry in the Q-matrix is denoted as qjk. Let p(qjk = 1) = φjk and p(qjk = 0) =

1 − φjk. Beta(1, 1) is used as the prior for φjk. As the conjugate prior for a Bernoulli

distribution, the posterior is Beta(1 + qjk, 2− qjk).

In updating the Q-matrix for item j, a saturated model is used,

qj|φj ∼Multinomial(2K − 1,φj). (3.42)

As in (3.22), the distribution of the 2K − 1 possible Q-matrix patterns is

p(qj|φj) =

(
K∏
n=1

φε2n2n (1− φ2k)
1−ε2n , . . . ,

K∏
n=1

φ
ε
2Kn

2Kn
(1− φjn)1−ε2Kn

)
. (3.43)

For item j, the full conditional posterior distribution is

p(qj|y,α, g, s) ∝ p(y|qj, g, s,α)p(qj|φj) (3.44)

=

[
I∏
i=1

(
π∗j

K∏
k=1

r∗
(1−αjk)qjk
jk

)yij(
1− π∗j

K∏
k=1

r∗
(1−αjk)qjk
jk

)1−yij]
p(qj|φj).

From (3.43) and (3.44), we can sample from the posterior distribution. Convert the decimal

number to binary number, and the Q-matrix pattern for item j is derived. After applying

the procedure to each item, we can obtain the whole Q-matrix for iteration t.
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Initial Values

The initial values for the rRUM are generated as the following:

θi ∼ Uniform(0, 0.1) (3.45)

qjk ∼ Bernoulli(0.5) (3.46)

φjk ∼ Uniform(0, 1) (3.47)

π∗j ∼ Uniform(0, 1) (3.48)

r∗jk ∼ Uniform(0, 1) (3.49)
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3.3 Label Switching

One concern in Bayesian Q-matrix estimation, as in Bayesian factor analysis, is la-

bel switching, which arises when components of the Bayesian model are switched multi-

ple times on different iterations during one run of an MCMC sampler (Jasra, Holmes, &

Stephens, 2005). Since the label sampled is assigned at each step of the sampler, the as-

signment of the particular label is unique only up to the permutation group. For example,

the following two Q-matrices are equivalent although column 1 and column 3 are switched,



0 0 1

0 1 0

0 1 1

1 0 1





1 0 0

0 1 0

1 1 0

1 0 1


. (3.50)

With 3 attributes, there are 3! = 6 equivalent Q-matrices. Therefore, if label switching

happens during a run of MCMC, posterior summaries will be biased and have inflated

variance, although the result may match after attribute names are relabeled.

Erosheva and Curtis (2012) proposed a method to deal with label switching in Bayesian

confirmatory factor analysis. Without posing any constraints in the analysis, the concept of

their method is relabel the factors after the fact. Inspired by Erosheva and Curtis (2012), this

research develops an algorithm to account for label switching by reordering the columns of

attributes in the Q-matrix at each iteration.

The logic of this algorithm is that if the underlying probability of the Q-matrix φ con-

verges, the shortest Euclidean distance to this arbitrary matrix should be from only one

permutation of φ, if each entry of the arbitrary matrix is a random decimal. The algorithm

is outlined as the following steps:
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Step 1

Let P J×K = (φjk)J×K be the underlying probability of the Q-matrixQJ×K , and create

an arbitrary matrixDJ×K = (djk)J×K , with each entry djk generated from Uniform(0, 1).

Step 2

At iteration t, permute the columns of P estimate, P (t)
est, and calculate the Euclidean

distance between every permutation of P (t)
est andD.

Step 3

The permutation of P (t)
est with the shortest Euclidean distance to D is used at iteration

t + 1 to estimate the Q-matrix, q(t+1)
est . The final Q-matrix estimate is the average of these

relabeled Q-matrix estimates from all iterations excluding burn-ins.
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3.4 Simulated Data

Setup

To understand the effectiveness of the algorithm developed in this research, data sets are

simulated for the DINA model and rRUM from an artificial Q-matrix. Simulation studies

are conducted to see if the true Q-matrix could be recovered. The Q-matrix in table (3.1)

is obtained from de la Torre (2008). Thirty items that measure 5 attributes comprise the Q-

matrix, which is constructed in a way that each attribute appears alone, in a pair, or in triple

the same number of times as other attributes. This Q-matrix also appears to have a clear

pattern that implies main effects from items 1 to 10, two-way interactions from items 11 to

20 and three-way interactions from items 21 to 30. This Q-matrix is complete, containing

at least one item devoted solely to each attribute (Zhang, DeCarlo, & Ying, 2014).

A hundred datasets are generated using this Q-matrix and the average Q-matrix esti-

mates are calculated for both models. To measure how well the algorithm recovers the true

Q-matrix, the measure of accuracy defined in section 3.4 is reported.

Computations are conducted on a laptop computer running Ubuntu 12.10 Linux with

2.4 GHz CPU and 6 GB RAM. For each simulation study, corresponding R programs are

run 100,000 iterations after 10,000 burn-ins. Simulated data are generated using the fol-

lowing steps.

Step 1: Decomposing Correlation Matrix Σ

The procedure for generating attributes is applied to both the DINA model and the

rRUM. The setting is similar to that in Chiu, Douglas, and Li (2009) and Liu, Xu, and

Ying (2013). Attributes are assumed to be correlated with one another in the simulation.

Let ϑ = (ϑ1, . . . ,ϑK) be the underlying probability of α. A copula is used to generate

intercorrelated ϑ (see Ross, 2013). The correlation coefficient ρ takes a constant value for
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Table 3.1: Q-matrix for Simulation Studies
Attribute Attribute

Item 1 2 3 4 5 Item 1 2 3 4 5
1 1 0 0 0 0 16 0 1 0 1 0
2 0 1 0 0 0 17 0 1 0 0 1
3 0 0 1 0 0 18 0 0 1 1 0
4 0 0 0 1 0 19 0 0 1 0 1
5 0 0 0 0 1 20 0 0 0 1 1
6 1 0 0 0 0 21 1 1 1 0 0
7 0 1 0 0 0 22 1 1 0 1 0
8 0 0 1 0 0 23 1 1 0 0 1
9 0 0 0 1 0 24 1 0 1 1 0

10 0 0 0 0 1 25 1 0 1 0 1
11 1 1 0 0 0 26 1 0 0 1 1
12 1 0 1 0 0 27 0 1 1 1 0
13 1 0 0 1 0 28 0 1 1 0 1
14 1 0 0 0 1 29 0 1 0 1 1
15 0 1 1 0 0 30 0 0 1 1 1

each pair of columns in θ, and the correlation matrix Σ is

Σ =


1 ρ

. . .

ρ 1

 . (3.51)

Each entry in Σ corresponds to the correlation coefficient between two columns in ϑ.

Symmetric with all the eigenvalues positive, Σ is a real symmetric positive-definite matrix,

which can be decomposed as Σ = CTC using Choleski decomposition, where C is an

upper triangular matrix.

Step 2: Generating Correlated α

After obtaining C, create an I × K matrix U , each entry of which is generated from

N (0, 1). U is further transformed to R by using R = UC, so that R and Σ will have the
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same correlation structure. Set Φ(R) = ϑ, where Φ(·) is the cumulative standard normal

distribution function, and determine αi = (αi1,αi2, . . . ,αiK) by

αik =


1 if ϑik ≥ Φ−1( k

K+1
)

0 otherwise
, (3.52)

where k = 1, 2, . . . , K.

Step 3: Generating Data

For the DINA model, examinees’ η are determined by (3.10). When the data is simu-

lated with slip and guess parameters for all items setting to 0.2, the probability of correctly

answering an item is 0.8 for examinees whose η = 1, and the probability of correctly an-

swering an item is 0.2 for those whose η = 0. An N × J probability matrix is thus formed,

with each of the elements representing the probability of an examinee correctly answering

an item.

The inverse transform sampling for two categories, 0 and 1, is conducted to generate

the data. The concept is create another N × J probability matrix, with each element gen-

erated from Uniform(0, 1), and then compare the two N × J matrices. For η = 1, if the

corresponding value from Uniform(0, 1) is greater then 0.8, then change the η from 1 to

0, meaning slip; if the corresponding value from Uniform(0, 1) is less than 0.8, then η

remains 1. For η = 0, if the corresponding value from Uniform(0, 1) is less then 0.2, then

convert the η from 0 to 1, meaning guess; if the corresponding value from Uniform(0, 1)

is greater than 0.2, the η remains 0.

For the rRUM, α is generated from steps 1 and 2. gjk and sjk are set to 0.2, and π∗j

and r∗jk are obtained from (2.10) and (2.11). The data is then generated using inversion

sampling method from two points, in which the probability is obtained from (2.13)
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Measure of Accuracy ∆

After the Q-matrix is derived, we need to evaluate how well the algorithm recovers the

true Q-matrix. A measure of discrepancy between the estimated Q-matrix and the true Q-

matrix is defined as the following. Suppose we have M datasets, Let Q̂
(m)

= (q̂
(m)
jk )J×K

and Q = (qjk)J×K represents the estimated Q-matrix from mth dataset and true Q-matrix,

respectively. The measure of discrepancy δ is defined as

δ =
1

M

M∑
m=1

|Q̂
(m)
−Q|

JK
, m = 1, 2, . . . ,M (3.53)

where the |·| is the absolute value. A measure of accuracy ∆ is further defined as ∆ = 1−δ,

which is confined between 0 and 1. The higher the ∆ the better the estimate.

3.5 Simulation Design

Scenarios of the three simulation studies are as follows.

Simulation Study 1

Twenty simulated data for simulation study 1 were generated from independent at-

tributes for the DINA model and rRUM. That is, each entry of α was generated from

Bernoulli(0.5). gj and sj were set to 0.2 for each item in the DINA model. gjk and sjk

were set to 0.2 for each item in the rRUM. Sample size for study 1 is 2,000.

Simulation Study 2

In generating α, simulation study 2 set ρ to 0.3. Cutoff point for α were set using

(3.52). gj and sj were set to 0.2 for each item in the DINA model. gjk and sjk were set to

0.2 for each item in the rRUM. A hundred data sets were generated for the DINA model

and rRUM. Sample size for study 2 is 2,000.
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Simulation Study 3

Simulation study 3 used only the DINA model. Twenty data sets were generated using

ρ = 0.15 for α. gj and sj were both generated from Uniform(0.1, 0.4). Using the same

values of gj and sj , another 20 data sets were generated using ρ = 0.3 for α. Cutoff points

for α were set using (3.52). Sample size for simulation study 3 is 1,000.

3.6 Empirical Study

In addition to simulations, this research estimated the Q-matrix from real data. The

fraction-subtraction data (Tatsuoka, 1990) that consists of 536 examinees has been widely

analyzed (e.g., DeCarlo, 2011, 2012; de la Torre, 2008, 2009; de la Torre & Douglas,

2008; Henson, Templin, & Willse, 2009; C. Tatsuoka, 2002; K. K. Tatsuoka, 1990), and

virtually every researcher who has used the data has suggested possible modifications of

the Q-matrix (DeCarlo, 2012).

DeCarlo (2011) analyzed the 20-item version of the fraction-subtraction data using the

RDINA model and showed that there are some issues with respect to the classification

of examinees and the latent class sizes. Specifically, it is shown that if latent class size

estimates for one or more skills are close to unity, then it is likely that the Q-matrix has been

misspecified. The problems are largely associated with the specification of the Q-matrix,

and DeCarlo (2011) suggested further research on effects of the Q-matrix specification on

the classification of examinees and estimation of the latent class sizes.

De la Torre (2008) suggested a 15-item version of the fraction-subtraction data. The Q-

matrix (Table 3.2) suggested by de la Torre (2008) consists of 5 attributes: (1) performing

basic fraction-subtraction operation, (2) simplifying/reducing, (3) separating whole number

from fraction, (4) borrowing one from whole number to fraction, and (5) converting whole

number to fraction. Although the small sample size of 536 is a concern, this research uses
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the 15-item version of the fraction-subtraction data to estimate its Q-matrix. The estimated

Q-matrix is compared with the Q-matrix suggested by de la Torre (2008).

Table 3.2: Q-matrix for the Fraction-Subtraction Data

Attribute

Item 1 2 3 4 5

1 3
4 −

3
8 1 0 0 0 0

2 31
2 − 23

2 1 1 1 1 0

3 6
7 −

4
7 1 0 0 0 0

4 3− 21
5 1 1 1 1 1

5 37
8 − 2 0 0 1 0 0

6 4 4
12 − 2 7

12 1 1 1 1 0

7 41
3 − 24

3 1 1 1 1 0

8 11
8
− 1

8
1 1 0 0 0

9 34
5
− 32

5
1 0 1 0 0

10 2− 1
3

1 0 1 1 1

11 45
7
− 14

7
1 0 1 0 0

12 73
5
− 4

5
1 0 1 1 0

13 4 1
10
− 2 8

10
1 1 1 1 0

14 4− 14
3

1 1 1 1 1

15 41
3
− 15

3
1 1 1 1 0

(1) performing basic fraction-subtraction operation (2) simplifying/reducing (3) separating whole number
from fraction (4) borrowing one from whole number to fraction (5) converting whole number to fraction



CHAPTER 4 RESULTS 46

Chapter 4 Results

4.1 Simulation Studies

Simulation Study 1

Although the purpose of the research is to explore whether the algorithms can recover

the true Q-matrix, parameter recovery for the DINA model and rRUM appeared to be good

when the true Q-matrix is given.

Twenty data sets that assumed independent attributes were generated. Each entry of α

was generated from Bernoulli(0.5). Results from study 1 showed that the true Q-matrix

could be always fully recovered when the cutoff point is set to 0.5.

Simulation Study 2

The DINA model. Table 4.1 shows the mean Q-matrix estimates from 100 simulated

data sets for the DINA model. The right part of table 4.1 is the discrepancy between true

and estimated Q-matrices |q̂jk − qjk|, where | · | denotes an absolute value. After checking

the trace plots for each of the estimated Q-matrix, no label switching was identified and

the chain became stable after about 10,000 iterations. Convergence was also checked using

trace plots, and no bad mixing is observed. The variance of Q-matrix estimates from the

100 data sets is reported in appendix I.

Defined in section 3.4, the measure of accuracy ∆ is 0.966 for the mean estimated Q-

matrix. For individual attribute, ∆’s for attributes 1 to 5 are 0.888, 0.971, 0.993, 0.997 and

0.983, respectively. The optimized true Q-matrix shows a pattern that suggests main effects

from items 1 to 10, two-way interactions from items 11 to 20 and three-way interactions
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from items 21 to 30. ∆’s for these three parts of items are 0.974, 0.967 and 0.958, respec-

tively. Intuitively, we would expect that ∆ for items 21 to 30 be smaller. Although there

seems to be a trend that ∆ is smaller as the number of attributes being measured increases,

there is really no significant difference among them.

If the cutoff point is set to 0.5, the mean estimated Q-matrix is shown to fully recover

the true Q-matrix. As can be seen, the result seems to be promising, demonstrating the algo-

rithm for the DINA model works well. Nevertheless, it should be noted that the algorithm

was not effective enough to accurately estimate attribute 1, due to the more complicated

setting of cutoff point for simulating attributes by (3.52).

The rRUM. Table 4.2 presents the mean Q-matrix estimates from 100 simulated data

sets for the rRUM. The right part of table 4.2 is the discrepancy between true and estimated

Q-matrices. As in the DINA model, convergence was checked using trace plots, and no bad

mixing was observed. The trace plots for each of the 100 estimated Q-matrices suggested

no label switching. The variance of the estimates is included in appendix II.

The measure of accuracy ∆ is 0.876 for the mean estimated Q-matrix. ∆’s for attributes

1 to 5 are 0.815, 0.852, 0.901, 0.904 and 0.907, respectively. As can be seen, ∆ for attribute

1 is relatively low. ∆’s for items 1 to 10, items 11-20, items 21-30 are 0.881, 0.860 and

0.887, respectively. As in the DINA model, the ∆’s for the three parts of items show no

prominent difference.

If the cutoff point is set to 0.5, two entries in attribute 1, q̂20,1 and q̂28,1, are missed.

Considering that rRUM is a more complicated model with more parameters to be estimated,

it is not surprising to see that compared with the DINA model, the rRUM yielded a less

accurate estimate. Nevertheless, the result is satisfactory, showing that the algorithm for

the rRUM is useful. In sum, from simulation studies 1 and 2, algorithms based on the

DINA model and the rRUM performed well, and no label switching was observed.
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Simulation Study 3

gj and sj in simulation study 3 were generated from Uniform(0.1, 0.4), and the same

set values of gj and sj were used in each data set. Table (4.3) shows the result for ρ = 0.15,

and table (4.4) presents the result for ρ = 0.3. It is expected that the recovery rate be lower

in study 3, in that there are more variability in guess and slip parameters and the sample

size is smaller. When ρ is 0.15, ∆ is 0.929. If cutoff is set to 0.5, there are 3 entries missed.

When ρ is 0.3, ∆ is 0.904. If cutoff is set to 0.5, there are 9 entries missed. As can be seen,

when ρ is smaller, the recovery rate is higher.

Summary of Simulation Studies

It should be noted that the columns of estimated Q-matrices above were reordered so

that the permutation with smallest Euclidean distance to the true Q-matrix was saved for

final analysis. From the result of simulation study 1, where attributes are independent, both

the DINA model and the rRUM can fully recover the true Q-matrix when cutoff point is set

to 0.5.

When attributes are correlated as in simulation studies 2 and 3, recovery rate deterio-

rates to some extent. From simulation study 2, the recovery rate is higher for the DINA

model than for the rRUM. From simulation study 3, it can be seen that recovery rates de-

cline for both models, compared to simulation study 2. Sample size, degree of correlation,

and the way to set cutoff point for attributes have different impacts on the recovery rate. It

is worth noting that in simulation study 3, although the higher the attributes correlate, the

lower the recovery rate, the difference is not distinct.
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Table 4.1: Q-matrix from Study 2 for the DINA Model (N = 2000, ρ = 0.3, g = s = 0.2)

Estimated Q-matrix Discrepancy
Attribute Attribute

Item 1 2 3 4 5 Item 1 2 3 4 5
1 0.976 0.030 0.000 0.000 0.001 1 0.024 0.030 0.000 0.000 0.001
2 0.041 0.999 0.003 0.013 0.001 2 0.041 0.001 0.003 0.013 0.001
3 0.029 0.005 0.990 0.000 0.020 3 0.029 0.005 0.010 0.000 0.020
4 0.035 0.021 0.000 1.000 0.031 4 0.035 0.021 0.000 0.000 0.031
5 0.295 0.059 0.016 0.007 0.986 5 0.295 0.059 0.016 0.007 0.014
6 0.977 0.030 0.000 0.001 0.000 6 0.023 0.030 0.000 0.001 0.000
7 0.041 0.999 0.003 0.013 0.010 7 0.041 0.001 0.003 0.013 0.010
8 0.029 0.005 0.990 0.000 0.020 8 0.029 0.005 0.010 0.000 0.020
9 0.036 0.021 0.000 1.000 0.031 9 0.036 0.021 0.000 0.000 0.031

10 0.281 0.059 0.014 0.008 0.988 10 0.281 0.059 0.014 0.008 0.012
11 0.970 0.999 0.003 0.013 0.001 11 0.030 0.001 0.003 0.013 0.001
12 0.987 0.021 0.990 0.000 0.020 12 0.013 0.021 0.010 0.000 0.020
13 0.962 0.021 0.000 1.000 0.030 13 0.038 0.021 0.000 0.000 0.030
14 0.936 0.054 0.011 0.002 0.989 14 0.064 0.054 0.011 0.002 0.011
15 0.057 0.990 0.990 0.012 0.020 15 0.057 0.010 0.010 0.012 0.020
16 0.076 0.989 0.000 1.000 0.029 16 0.076 0.011 0.000 0.000 0.030
17 0.247 0.998 0.011 0.001 0.988 17 0.247 0.002 0.011 0.001 0.012
18 0.034 0.019 0.990 1.000 0.041 18 0.034 0.019 0.010 0.000 0.041
19 0.262 0.051 1.000 0.000 0.997 19 0.262 0.051 0.000 0.000 0.003
20 0.247 0.094 0.011 1.000 0.984 20 0.247 0.094 0.011 0.000 0.016
21 0.980 0.990 0.990 0.012 0.015 21 0.020 0.010 0.010 0.012 0.015
22 0.989 0.985 0.000 1.000 0.028 22 0.011 0.015 0.000 0.000 0.028
23 0.940 0.998 0.011 0.000 0.988 23 0.060 0.002 0.011 0.000 0.012
24 0.948 0.019 0.990 1.000 0.039 24 0.052 0.019 0.010 0.000 0.039
25 0.880 0.056 1.000 0.005 0.995 25 0.120 0.056 0.000 0.005 0.005
26 0.844 0.082 0.011 1.000 0.986 26 0.156 0.082 0.011 0.000 0.014
27 0.090 0.989 0.990 1.000 0.033 27 0.090 0.011 0.010 0.000 0.033
28 0.258 0.987 1.000 0.009 0.994 28 0.258 0.013 0.000 0.009 0.006
29 0.351 0.975 0.023 1.000 0.986 29 0.351 0.025 0.023 0.000 0.014
30 0.354 0.122 0.999 1.000 0.992 30 0.354 0.122 0.001 0.000 0.008
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Table 4.2: Q-matrix from Study 2 for the rRUM (N = 2000, ρ = 0.3, g = s = 0.2)

Estimated Q-matrix Discrepancy
Attribute Attribute

Item 1 2 3 4 5 Item 1 2 3 4 5
1 0.971 0.135 0.074 0.074 0.071 1 0.029 0.135 0.074 0.074 0.071
2 0.123 0.971 0.100 0.082 0.160 2 0.123 0.029 0.100 0.082 0.160
3 0.162 0.132 0.994 0.082 0.104 3 0.162 0.132 0.006 0.082 0.104
4 0.208 0.250 0.157 0.980 0.104 4 0.208 0.250 0.157 0.020 0.104
5 0.260 0.221 0.166 0.156 0.966 5 0.260 0.221 0.166 0.156 0.034
6 0.974 0.111 0.073 0.076 0.083 6 0.026 0.111 0.073 0.076 0.083
7 0.166 0.978 0.071 0.120 0.103 7 0.166 0.022 0.071 0.12 0.103
8 0.189 0.162 0.994 0.133 0.079 8 0.189 0.162 0.006 0.133 0.079
9 0.264 0.130 0.106 0.988 0.110 9 0.264 0.130 0.106 0.012 0.110

10 0.395 0.265 0.134 0.150 0.978 10 0.395 0.265 0.134 0.15 0.022
11 0.975 0.976 0.114 0.132 0.125 11 0.025 0.024 0.114 0.132 0.125
12 0.973 0.137 0.995 0.284 0.122 12 0.027 0.137 0.005 0.284 0.122
13 0.971 0.440 0.118 0.984 0.169 13 0.029 0.44 0.118 0.016 0.169
14 0.972 0.233 0.359 0.152 0.982 14 0.028 0.233 0.359 0.152 0.018
15 0.153 0.978 0.994 0.144 0.108 15 0.153 0.022 0.006 0.144 0.108
16 0.226 0.977 0.125 0.984 0.334 16 0.226 0.023 0.125 0.016 0.334
17 0.310 0.975 0.171 0.147 0.953 17 0.310 0.025 0.171 0.147 0.047
18 0.244 0.142 0.991 0.981 0.156 18 0.244 0.142 0.009 0.019 0.156
19 0.346 0.392 0.994 0.237 0.985 19 0.346 0.392 0.006 0.237 0.015
20 0.506 0.338 0.187 0.986 0.977 20 0.506 0.338 0.187 0.014 0.023
21 0.971 0.975 0.994 0.146 0.128 21 0.029 0.025 0.006 0.146 0.128
22 0.959 0.982 0.187 0.983 0.199 22 0.041 0.018 0.187 0.017 0.199
23 0.971 0.979 0.189 0.177 0.980 23 0.029 0.021 0.189 0.177 0.020
24 0.969 0.208 0.993 0.980 0.179 24 0.031 0.208 0.007 0.02 0.179
25 0.938 0.281 0.964 0.183 0.984 25 0.062 0.281 0.036 0.183 0.016
26 0.942 0.268 0.226 0.984 0.978 26 0.058 0.268 0.226 0.016 0.022
27 0.276 0.974 0.992 0.984 0.188 27 0.276 0.026 0.008 0.016 0.188
28 0.536 0.974 0.955 0.212 0.985 28 0.536 0.026 0.045 0.212 0.015
29 0.384 0.973 0.267 0.986 0.981 29 0.384 0.027 0.267 0.014 0.019
30 0.378 0.301 0.992 0.984 0.981 30 0.378 0.301 0.008 0.016 0.019
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Table 4.3: Q-matrix from Study 3 for the DINA Model (N = 1000, ρ = 0.15)
Estimated Q-matrix Discrepancy

Attribute Attribute
Item g s 1 2 3 4 5 1 2 3 4 5
1 0.337 0.169 0.962 0.049 0.004 0.004 0.002 0.038 0.049 0.004 0.004 0.002
2 0.346 0.265 0.011 1.000 0.000 0.000 0.000 0.011 0.000 0.000 0.000 0.000
3 0.221 0.201 0.053 0.000 1.000 0.000 0.000 0.053 0.000 0.000 0.000 0.000
4 0.188 0.265 0.055 0.000 0.000 1.000 0.000 0.055 0.000 0.000 0.000 0.000
5 0.346 0.186 0.446 0.168 0.068 0.003 1.000 0.446 0.168 0.068 0.003 0.000
6 0.362 0.128 0.963 0.051 0.002 0.001 0.001 0.037 0.051 0.002 0.001 0.001
7 0.227 0.315 0.043 1.000 0.000 0.000 0.000 0.043 0.000 0.000 0.000 0.000
8 0.201 0.322 0.110 0.000 1.000 0.000 0.000 0.110 0.000 0.000 0.000 0.000
9 0.289 0.243 0.116 0.000 0.000 1.000 0.000 0.116 0.000 0.000 0.000 0.000
10 0.338 0.329 0.524 0.246 0.215 0.055 1.000 0.524 0.246 0.215 0.055 0.000
11 0.252 0.316 0.948 1.000 0.000 0.000 0.000 0.052 0.000 0.000 0.000 0.000
12 0.292 0.254 0.929 0.002 1.000 0.000 0.000 0.071 0.002 0.000 0.000 0.000
13 0.363 0.367 0.688 0.106 0.017 1.000 0.001 0.312 0.106 0.017 0.000 0.001
14 0.301 0.337 0.733 0.330 0.099 0.033 1.000 0.267 0.330 0.099 0.033 0.000
15 0.373 0.355 0.186 0.960 1.000 0.000 0.000 0.186 0.040 0.000 0.000 0.000
16 0.264 0.164 0.047 1.000 0.000 1.000 0.000 0.047 0.000 0.000 0.000 0.000
17 0.284 0.367 0.445 0.676 0.054 0.067 1.000 0.445 0.324 0.054 0.067 0.000
18 0.159 0.283 0.114 0.002 1.000 1.000 0.000 0.114 0.002 0.000 0.000 0.000
19 0.202 0.279 0.332 0.187 0.999 0.000 1.000 0.332 0.187 0.001 0.000 0.000
20 0.153 0.244 0.474 0.295 0.027 1.000 1.000 0.474 0.295 0.027 0.000 0.000
21 0.238 0.121 0.929 0.991 1.000 0.000 0.000 0.071 0.009 0.000 0.000 0.000
22 0.113 0.372 0.954 1.000 0.000 1.000 0.000 0.046 0.000 0.000 0.000 0.000
23 0.186 0.124 0.943 0.931 0.000 0.000 1.000 0.057 0.069 0.000 0.000 0.000
24 0.332 0.277 0.829 0.127 0.910 0.999 0.000 0.171 0.127 0.090 0.001 0.000
25 0.146 0.172 0.842 0.108 0.999 0.000 1.000 0.158 0.108 0.001 0.000 0.000
26 0.125 0.352 0.691 0.161 0.047 1.000 1.000 0.309 0.161 0.047 0.000 0.000
27 0.336 0.181 0.480 0.971 0.999 1.000 0.000 0.480 0.029 0.001 0.000 0.000
28 0.225 0.222 0.463 0.849 0.997 0.001 1.000 0.463 0.151 0.003 0.001 0.000
29 0.302 0.299 0.634 0.715 0.253 0.928 0.999 0.634 0.285 0.253 0.072 0.001
30 0.148 0.257 0.503 0.217 0.995 0.996 1.000 0.503 0.217 0.005 0.004 0.000
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Table 4.4: Q-matrix from Study 3 for the DINA Model (N = 1000, ρ = 0.3)
Estimated Q-matrix Discrepancy

Attribute Attribute
Item g s 1 2 3 4 5 1 2 3 4 5
1 0.337 0.169 0.985 0.031 0.021 0.027 0.021 0.015 0.031 0.021 0.027 0.021
2 0.346 0.265 0.017 1.000 0.000 0.000 0.000 0.017 0.000 0.000 0.000 0.000
3 0.221 0.201 0.030 0.000 1.000 0.000 0.000 0.030 0.000 0.000 0.000 0.000
4 0.188 0.265 0.118 0.146 0.000 1.000 0.000 0.118 0.146 0.000 0.000 0.000
5 0.346 0.186 0.645 0.507 0.116 0.014 1.000 0.645 0.507 0.116 0.014 0.000
6 0.362 0.128 0.998 0.008 0.002 0.001 0.001 0.002 0.008 0.002 0.001 0.001
7 0.227 0.315 0.008 1.000 0.000 0.000 0.000 0.008 0.000 0.000 0.000 0.000
8 0.201 0.322 0.061 0.000 1.000 0.000 0.000 0.061 0.000 0.000 0.000 0.000
9 0.289 0.243 0.164 0.178 0.000 1.000 0.000 0.164 0.178 0.000 0.000 0.000
10 0.338 0.329 0.642 0.409 0.302 0.193 1.000 0.642 0.409 0.302 0.193 0.000
11 0.252 0.316 0.780 1.000 0.000 0.000 0.000 0.220 0.000 0.000 0.000 0.000
12 0.292 0.254 0.896 0.017 1.000 0.000 0.000 0.104 0.017 0.000 0.000 0.000
13 0.363 0.367 0.540 0.159 0.044 1.000 0.001 0.460 0.159 0.044 0.000 0.001
14 0.301 0.337 0.795 0.375 0.231 0.102 1.000 0.205 0.375 0.231 0.102 0.000
15 0.373 0.355 0.367 0.921 0.993 0.003 0.001 0.367 0.079 0.007 0.003 0.001
16 0.264 0.164 0.293 0.997 0.000 1.000 0.000 0.293 0.003 0.000 0.000 0.000
17 0.284 0.367 0.532 0.821 0.101 0.053 1.000 0.532 0.179 0.101 0.053 0.000
18 0.159 0.283 0.168 0.159 1.000 1.000 0.000 0.168 0.159 0.000 0.000 0.000
19 0.202 0.279 0.552 0.219 0.997 0.001 1.000 0.552 0.219 0.003 0.001 0.000
20 0.153 0.244 0.521 0.349 0.010 1.000 1.000 0.521 0.349 0.010 0.000 0.000
21 0.238 0.121 0.919 0.900 0.900 0.000 0.000 0.081 0.100 0.100 0.000 0.000
22 0.113 0.372 0.937 0.965 0.000 1.000 0.000 0.063 0.035 0.000 0.000 0.000
23 0.186 0.124 0.807 0.942 0.001 0.000 1.000 0.193 0.058 0.001 0.000 0.000
24 0.332 0.277 0.741 0.067 0.997 1.000 0.001 0.259 0.067 0.003 0.000 0.001
25 0.146 0.172 0.818 0.125 1.000 0.000 1.000 0.182 0.125 0.000 0.000 0.000
26 0.125 0.352 0.782 0.494 0.077 1.000 1.000 0.218 0.494 0.077 0.000 0.000
27 0.336 0.181 0.315 0.950 1.000 1.000 0.000 0.315 0.050 0.000 0.000 0.000
28 0.225 0.222 0.665 0.904 0.985 0.000 1.000 0.665 0.096 0.015 0.000 0.000
29 0.302 0.299 0.561 0.690 0.283 0.953 1.000 0.561 0.310 0.283 0.047 0.000
30 0.148 0.257 0.540 0.179 0.996 1.000 1.000 0.540 0.179 0.004 0.000 0.000
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4.2 Empirical Study

Tables (4.5) and (4.6) report the Q-matrix estimates for the fraction subtraction data

from the DINA model and rRUM, respectively. Columns of the estimated Q-matrices were

reordered to match the expert designed Q-matrix. 76% of the estimated Q-matrix entries

from the DINA model are consistent with the the expert designed Q-matrix, and 72% from

the rRUM. The two estimated Q-matrices seem to be somewhat close to the expert designed

Q-matrix. Although most of the items have at least one attribute inconsistent with expert

designed Q-matrix, if the cutoff is set to 0.5, items 3, 6 and 12 from the DINA model and

items 4, 5, 6, 8 and 14 from the rRUM are consistent with the expert designed Q-matrix.

Items 8, 11, 14, 15 from the DINA model, and items 3, 7, 13 from the rRUM have one

attribute missed. In brief, 7 items from the DINA model and 8 items from the rRUM miss

one or no attribute, when compared with the expert designed Q-matrix.

Examining the attribute level, we can see that attribute 1 has only one miss and attributes

2 and 5 has 2 misses from the rRUM. From the DINA model, attribute 5 has just one miss.

Although the two estimated Q-matrices do not agree with each other for most of the items,

they both indicated that attributes 3 and 4 are doubtful. It is worth noting that if we took

out attributes 3 and 4, then 10 out of the 15 items from the rRUM were consistent with the

expert designed Q-matrix.

Convergence was assessed using the Raftery and Lewis diagnostic (Raftery & Lewis,

1992) from the CODA R package (Plummer et al., 2006). The general advice is to pay

attention to dependence factors exceeding 5, as it might be due to influential starting values,

high correlations, or poor mixing (Gill, 2007). The convergence diagnostic for each entry

φjk, the underlying probability of qjk, is shown in Appendix III for the DINA model and in

Appendix IV for the rRUM. Overall, convergence was achieved for most of the Q-matrix

entries; however 5 entries in the DINA model and 3 entries in the rRUM have dependence
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factors exceeding 5.

Obtained from the NPCD R package (Zhang & Chiu, 2014), the log-likelihood of the

estimated Q-matrix and expert designed Q-matrix for the DINA model are -2280 and -2673;

for the rRUM, the log-likelihood of the estimated Q-matrix and expert designed Q-matrix

are -2386 and -2748. The estimated Q-matrix from the DINA model appears to fit the

fraction-subtraction data better.

All in all, from the simulation studies, both the DINA model and rRUM performed

well. In the empirical study using the fraction-subtraction data, the two models suggested

two different Q-matrices. Although the Q-matrix estimate from the DINA model is closer

to the expert designed Q-matrix, the rRUM yields more accurate items if we take the expert

designed Q-matrix as the true Q-matrix.
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Table 4.5: Q-matrix for the Fraction-Subtraction Data from the DINA Model

Expert Designed Q-matrix Estimated Q-matrix

Attribute Attribute

Item 1 2 3 4 5 1 2 3 4 5

1 3
4
− 3

8
1 0 0 0 0 0.438 1.000 0.000 0.000 0.444

2 31
2 − 23

2 1 1 1 1 0 0.102 0.912 1.000 0.166 0.000

3 6
7 −

4
7 1 0 0 0 0 1.000 0.000 0.000 0.000 0.000

4 3− 21
5 1 1 1 1 1 0.415 0.999 0.000 0.054 1.000

5 37
8 − 2 0 0 1 0 0 0.540 0.001 0.044 0.001 0.989

6 4 4
12 − 2 7

12 1 1 1 1 0 0.679 0.936 1.000 0.884 0.000

7 41
3 − 24

3 1 1 1 1 0 0.989 0.355 1.000 0.998 0.000

8 11
8
− 1

8
1 1 0 0 0 1.000 0.000 0.000 0.000 0.000

9 34
5
− 32

5
1 0 1 0 0 0.839 0.886 0.942 0.915 0.471

10 2− 1
3

1 0 1 1 1 1.000 0.000 0.000 0.000 0.000

11 45
7
− 14

7
1 0 1 0 0 1.000 0.000 0.000 0.000 0.000

12 73
5
− 4

5
1 0 1 1 0 0.997 0.008 1.000 1.000 0.000

13 4 1
10
− 2 8

10
1 1 1 1 0 1.000 0.001 0.000 1.000 0.000

14 4− 14
3

1 1 1 1 1 0.875 0.948 1.000 0.138 1.000

15 41
3
− 15

3
1 1 1 1 0 0.996 0.015 1.000 1.000 0.000

(1) performing basic fraction-subtraction operation (2) simplifying/reducing (3) separating whole number
from fraction (4) borrowing one from whole number to fraction (5) converting whole number to fraction
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Table 4.6: Q-matrix for the Fraction-Subtraction Data from the rRUM

Expert Designed Q-matrix Estimated Q-matrix

Attribute Attribute

Item 1 2 3 4 5 1 2 3 4 5

1 3
4
− 3

8
1 0 0 0 0 0.835 0.099 0.987 1.000 0.078

2 31
2 − 23

2 1 1 1 1 0 0.167 1.000 0.242 0.999 0.391

3 6
7 −

4
7 1 0 0 0 0 1.000 0.044 0.339 0.962 0.091

4 3− 21
5 1 1 1 1 1 0.700 0.563 0.829 1.000 1.000

5 37
8 − 2 0 0 1 0 0 0.299 0.146 1.000 0.109 0.135

6 4 4
12 − 2 7

12 1 1 1 1 0 0.747 1.000 0.841 1.000 0.212

7 41
3 − 24

3 1 1 1 1 0 0.996 1.000 0.118 0.982 0.484

8 11
8
− 1

8
1 1 0 0 0 1.000 0.881 0.224 0.324 0.085

9 34
5
− 32

5
1 0 1 0 0 0.840 1.000 1.000 1.000 0.235

10 2− 1
3

1 0 1 1 1 1.000 0.122 0.155 0.980 0.117

11 45
7
− 14

7
1 0 1 0 0 1.000 0.529 0.913 0.724 0.067

12 73
5
− 4

5
1 0 1 1 0 1.000 1.000 0.770 0.646 0.948

13 4 1
10
− 2 8

10
1 1 1 1 0 1.000 1.000 0.424 1.000 0.088

14 4− 14
3

1 1 1 1 1 0.871 0.984 0.918 0.998 1.000

15 41
3
− 15

3
1 1 1 1 0 0.999 1.000 0.376 0.622 0.991

(1) performing basic fraction-subtraction operation (2) simplifying/reducing (3) separating whole number
from fraction (4) borrowing one from whole number to fraction (5) converting whole number to fraction
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Chapter 5 Discussion

5.1 Summary

Estimating the Q-matrix for cognitive diagnosis models has drawn attention in recent

years, and various methods have been proposed (e.g., Barnes, 2003; Chiu, 2013; DeCarlo,

2012; de la Torre, 2008; Henson & Templin, 2006; Liu, Xu, & Ying, 2012; Templin &

Henson, 2006; Winters, 2006). DeCarlo (2012) has laid the foundations for Bayesian Q-

matrix research. This research applied the Bayesian method in a more exploratory manner.

An MCMC algorithm for Bayesian estimation was proposed based on the DINA model and

rRUM, and was implemented in base R.

It is not uncommon to have correlated attributes in an exam. Liu, Xu, and Ying (2012)

noticed that the more correlated attributes are, the more difficult it is to estimate attributes.

The sampling algorithm in this research used a saturated multinomial model to account for

correlated attributes in the estimation. In estimating the parameters for the DINA model,

closed-form posteriors for the guess and slip parameters were derived. In the rRUM, the

random walk Metropolis-Hastings algorithm was applied to parameter estimation. Based

on Erosheva and Curtis (2012), an algorithm for dealing with potential label switching was

also advanced. The basic concept of this relabeling algorithm is to reorder columns of the

estimated Q-matrix at each iteration during a run of MCMC.

The algorithm developed in this research appeared to be feasible in Q-matrix estimation

and was accurate in parameter estimation for the DINA model and rRUM. Three simulation

studies were conducted to evaluate the algorithm for Bayesian estimation. Results from
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simulation studies showed that the Q-matrix recovery rate was satisfactory. Sample size,

degree of correlation and variability in guess and slip parameters all affected the recovery

rate. Recovery rate was higher from a data set with a larger sample size and less correlated

attributes.

5.2 Implications for Practice

Although the results of the simulation studies seemed to be promising, the empiri-

cal study using the fraction-subtraction data clearly showed that the estimated Q-matrix

deviates from the expert designed Q-matrix. Although more than 70% of the estimated

Q-matrix entries for the DINA model and rRUM correspond to the expert designed Q-

matrix after the estimated Q-matrices are reordered, the meaning of estimated Q-matrices

is unclear. We need to exercise caution in their interpretations.

It is always helpful to bring in experts in related fields to better understand the estimated

Q-matrix. Nevertheless, area experts might neglect some attributes, and different experts

might have different opinions. Therefore, although the estimated Q-matrix may not be ap-

propriate to entirely replace the expert designed Q-matrix, the method can serve to validate

existing knowledge about the Q-matrix and provides unnoticed information about the data.

5.3 Limitations and Suggestions

Unlike Liu, Xu, and Ying (2012) , Chen et al. (2013) reported that the recovery rate is

higher when attributes are more correlated. In simulation study 3 of this research, although

the Q-matrix recovery rate when ρ = 0.15 is better than that when ρ = 0.3, the difference

is not apparent. The magnitude of correlation does not seem to significantly affect the

recovery rate. Further research using higher correlated attributes is needed to investigate

the issue.

There are some limitations in this research. First, correlation for each pair was fixed
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for each of the simulations. More complicated correlation structure is needed to examine

how the correlation structure affects the Q-matrix recovery. Applying Dirichlet prior to es-

timating the Q-matrix might be a possible way to better understand the correlation structure

among attributes, and this might also make the algorithm more efficient.

Second, only a complete Q-matrix was used in the simulation studies. While it has been

established that a complete Q-matrix is sufficient and necessary to consistently identify all

attribute patterns (Chen et al., 2013), an exam will not guarantee having a complete Q-

matrix; the Q-matrix is usually more complicated in real life. More complicated Q-matrices

should be used in simulations in order to examine how the algorithm performs.

Third, this research is based on the DINA model and rRUM. However, how well the two

models fit the fraction-subtraction data is questionable, especially when they are compared

with IRT models. Moreover, because of the conjunctive nature of the two models that

divides examinees only into either mastery or non-mastery category, further research might

apply the estimation procedure to more general models, such as the G-DINA model, that

can identify the probability of different attribute patterns.

Furthermore, the estimation procedure was not entirely exploratory because the number

of attributes in the Q-matrix was assumed to be known in this research. The empirical study

assumed the fraction subtraction data has 5 attributes; however, the number of attributes is

usually not known in real situations. Using log-likelihood might be able to reveal how the

estimated Q-matrix with certain number of attributes fits the data.

In addition, there is a fundamental identifiability problem because we do not know how

the attributes in the estimated Q-matrix correspond to true Q-matrix in real data. Even so,

relabeling the attributes does not change the model. In estimating the Q-matrix, the data

does not contain information about the specific meaning of each attribute; therefore, we are

not able to differentiate estimated Q-matrix from true Q-matrix solely based on data if they
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are identical up to a column permutation (Chen et al., 2013).

A relatively small sample size of the fraction-subtraction data is a also a concern, be-

cause some attribute patterns might be too sparse to estimate accurately. Also, the fraction-

subtraction data from 536 middle school students might not be very appropriate, as the

data is clearly bimodal. It might be worth noting that one data set was generated using

the fraction-subtraction Q-matrix from table 3.2. Guess and slip parameters were obtained

from de la Torre (2008), correlation between each pair of attributes was set to 0.3, the cut-

off point for generating attributes was determined by (3.52), and the sample size was 1000.

The algorithm for the DINA model was used to extract the Q-matrix. When the cutoff point

was set to 0.5, the estimated Q-matrix had only one miss. However, this was just the result

from one data set, more data sets and thorough investigations are needed to make further

inferences.

A remark on computation is that although taking logarithm will generally make nu-

merical computations more stable (Patz & Junker, 1999), an error of numerical overflow

might still happen. One approach to avoid the issue is rescale the values by subtracting

the maximum value before taking exponential (see Gelman, Carlin, Stern, & Rubin, 2004).

Estimating the Q-matrix is usually computationally intensive. As Chiu (2013) mentioned,

estimating the Q-matrix is complicated and high-quality software is necessary; however

such software tends to be proprietary and expensive to obtain. This research used base R

to implement the algorithm. It is one of the goals of this research to offer a free R package

for estimating CDMs. Along with this research, R programs for the DINA, NIDA models

and rRUM have been developed. As the algorithm worked well in R programming environ-

ment, it is worth the effort to convert it to other lower-level programming language, such

as C or Java, to facilitate its efficiency.
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Appendix I

Attribute Attribute
Item 1 2 3 4 5 Item 1 2 3 4 5

1 0.009 0.017 0.000 0.000 0.000 16 0.054 0.010 0.000 0.000 0.027
2 0.039 0.000 0.001 0.011 0.000 17 0.122 0.000 0.010 0.000 0.010
3 0.022 0.001 0.010 0.000 0.020 18 0.014 0.019 0.010 0.000 0.039
4 0.023 0.02 0.000 0.000 0.029 19 0.105 0.040 0.000 0.000 0.001
5 0.152 0.052 0.013 0.004 0.011 20 0.092 0.063 0.010 0.000 0.013
6 0.008 0.017 0.000 0.000 0.000 21 0.008 0.010 0.010 0.011 0.011
7 0.039 0.000 0.001 0.011 0.010 22 0.003 0.012 0.000 0.000 0.025
8 0.022 0.001 0.010 0.000 0.020 23 0.015 0.000 0.010 0.000 0.010
9 0.023 0.020 0.000 0.000 0.029 24 0.036 0.018 0.010 0.000 0.035

10 0.141 0.050 0.011 0.005 0.010 25 0.050 0.046 0.000 0.003 0.002
11 0.017 0.000 0.001 0.011 0.000 26 0.061 0.059 0.010 0.000 0.011
12 0.004 0.012 0.01 0.000 0.019 27 0.049 0.010 0.010 0.000 0.030
13 0.031 0.020 0.000 0.000 0.027 28 0.086 0.003 0.000 0.009 0.003
14 0.047 0.048 0.01 0.000 0.010 29 0.102 0.011 0.017 0.000 0.011
15 0.049 0.010 0.01 0.011 0.019 30 0.085 0.066 0.000 0.000 0.003
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Appendix II

Attribute Attribute
Item 1 2 3 4 5 Item 1 2 3 4 5

1 0.004 0.031 0.003 0.002 0.001 16 0.020 0.002 0.013 0.002 0.104
2 0.005 0.004 0.011 0.004 0.018 17 0.039 0.003 0.037 0.015 0.014
3 0.020 0.006 0.001 0.001 0.005 18 0.024 0.011 0.001 0.003 0.026
4 0.038 0.039 0.052 0.003 0.010 19 0.037 0.079 0.001 0.038 0.002
5 0.016 0.033 0.039 0.032 0.006 20 0.083 0.054 0.030 0.002 0.003
6 0.004 0.008 0.004 0.005 0.005 21 0.003 0.003 0.001 0.017 0.007
7 0.010 0.003 0.004 0.020 0.004 22 0.004 0.001 0.045 0.003 0.019
8 0.016 0.039 0.001 0.014 0.004 23 0.003 0.002 0.051 0.019 0.003
9 0.062 0.015 0.013 0.001 0.036 24 0.004 0.014 0.001 0.003 0.024

10 0.073 0.065 0.011 0.019 0.003 25 0.012 0.034 0.034 0.017 0.002
11 0.003 0.003 0.032 0.027 0.013 26 0.007 0.028 0.034 0.002 0.003
12 0.003 0.007 0.001 0.084 0.010 27 0.027 0.003 0.001 0.002 0.017
13 0.004 0.121 0.016 0.002 0.038 28 0.092 0.002 0.035 0.026 0.002
14 0.003 0.049 0.090 0.025 0.002 29 0.041 0.004 0.064 0.002 0.002
15 0.007 0.002 0.001 0.010 0.004 30 0.031 0.049 0.001 0.002 0.002



71

Appendix III

Dependence Factors for the DINA model
Attribute

Item 1 2 3 4 5
1 1.010 0.999 1.010 0.993 1.010
2 1.010 0.987 1.010 0.994 1.010
3 1.030 2.100 2.150 0.988 1.000
4 1.000 0.995 1.010 0.995 0.995
5 1.000 3.130 1.010 1.000 0.998
6 0.991 11.40 0.999 1.010 2.160
7 1.000 0.993 1.010 0.996 1.000
8 1.000 1.010 3.360 1.000 1.070
9 1.010 1.000 0.996 1.010 1.010

10 0.994 1.010 3.170 0.998 1.000
11 3.030 1.010 5.680 0.998 1.010
12 10.50 0.996 1.000 1.010 1.000
13 2.090 0.988 6.440 1.010 1.990
14 4.500 1.010 8.840 1.010 0.990
15 3.120 0.997 0.996 0.989 1.020
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Appendix IV

Dependence Factors for the rRUM
Attribute

Item 1 2 3 4 5
1 1.010 1.010 1.010 0.991 1.010
2 1.000 1.000 2.160 0.993 1.000
3 0.999 1.010 5.290 1.000 0.993
4 1.010 1.020 1.010 1.000 0.999
5 0.996 1.010 1.000 1.000 0.992
6 0.999 1.010 1.000 0.996 1.010
7 1.010 2.060 1.010 0.996 1.020
8 1.010 0.998 0.994 1.000 0.996
9 4.090 0.999 1.010 1.000 2.160

10 1.010 10.20 1.020 1.020 1.080
11 0.997 0.992 0.998 1.010 0.993
12 1.000 2.200 2.050 1.010 1.050
13 0.999 7.710 3.410 1.020 1.010
14 1.010 2.140 1.030 0.998 1.010
15 0.999 3.180 1.060 1.010 1.000


