2009 Articles
Human sex hormone-binding globulin gene expression- multiple promoters and complex alternative splicing
Human sex hormone-binding globulin (SHBG) regulates free sex steroid concentrations in plasma and modulates rapid, membrane based steroid signaling. SHBG is encoded by an eight exon-long transcript whose expression is regulated by a downstream promoter (PL). The SHBG gene was previously shown to express a second major transcript of unknown function, derived from an upstream promoter (PT), and two minor transcripts. We report that transcriptional expression of the human SHBG gene is far more complex than previously described. PL and PT direct the expression of at least six independent transcripts each, resulting from alternative splicing of exons 4, 5, 6, and/or 7. We mapped two transcriptional start sites downstream of PL and PT, and present evidence for a third SHBG gene promoter (PN) within the neighboring FXR2 gene; PN regulates the expression of at least seven independent SHBG gene transcripts, each possessing a novel, 164-nt first exon (1N). Transcriptional expression patterns were generated for human prostate, breast, testis, liver, and brain, and the LNCaP, MCF-7, and HepG2 cell lines. Each expresses the SHBG transcript, albeit in varying abundance. Alternative splicing was more pronounced in the cancer cell lines. PL- PT- and PN-derived transcripts were most abundant in liver, testis, and prostate, respectively. Initial findings reveal the existence of a smaller immunoreactive SHBG species in LNCaP, MCF-7, and HepG2 cells. These results extend our understanding of human SHBG gene transcription, and raise new and important questions regarding the role of novel alternatively spliced transcripts, their function in hormonally responsive tissues including the breast and prostate, and the role that aberrant SHBG gene expression may play in cancer.
Subjects
Files
-
a421fa31ed48e5b2b9c8d37b8264ef13.zip application/zip 772 KB Download File
-
1471-2199-10-37.pdf application/pdf 1.18 MB Download File
-
1471-2199-10-37.xml application/xml 137 KB Download File
-
1471-2199-10-37-S1.DOC application/msword 25.5 KB Download File
Also Published In
- Title
- BMC Molecular Biology
- DOI
- https://doi.org/10.1186/1471-2199-10-37