Marine thorium and protactinium distributions: Tools for past and present chemical flux

Christopher Tyler Hayes

Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Graduate School of Arts and Sciences

COLUMBIA UNIVERSITY

2013
ABSTRACT

Marine thorium and protactinium distributions: Tools for past and present chemical flux

Christopher Tyler Hayes

Adsorption to sinking particulate matter, known as scavenging, is an important yet elusive term in the budgets of many bioactive and contaminant trace metals in the ocean. Scavenging is also involved in the cycling of other trace metals used in ocean sediments to learn about ocean processes, such as circulation rates or biological productivity, of the geologic past. This dissertation is an oceanographic exploration of the naturally-occurring radionuclides 230Th, 232Th and 231Pa aimed to better understand how their scavenging behavior can be utilized to trace chemical flux in the modern and the past ocean.

Measurements 230Th and 231Pa in the water column of the North Pacific (Chapter 1), and in surface sediments throughout the Pacific (Chapter 3) demonstrate gyre-scale contrasts in scavenging intensity for both elements, linked to the chemical composition of particles produced by distinct biogeographic communities. Pacific surface sediment 231Pa/230Th distributions are largely consistent with biogeographic variations and may offer a way to reconstruct gyre boundaries through time which is of interest in terms of both biogeochemistry and physical circulation.

While 230Th and 231Pa are produced by the radioactive decay of uranium dissolved in seawater, 232Th is added to the ocean via the input of continental material. Removal of Th by scavenging should be equivalent for both Th isotopes based on chemical principles. I use measured 232Th inventories from the North Pacific water column and apply a removal rate based on 234U:230Th disequilibria to estimate the flux of dissolved trace elements, such as the micronutrient Fe, to the ocean through the deposition of mineral dust (Chapter 2). Results from this
study also raise the possibility of differing chemical behavior of the two Th isotopes in shallow water (<500 m depth) related to size-partitioning between truly dissolved and colloidal phases.

Finally, results from the U.S. GEOTRACES North Atlantic Transect are used to investigate the relationship between 231Pa and 230Th in the water column and several of their proposed paleoceanographic purposes. The accuracy of 230Th as a proxy for constant sediment flux can be directly quantified to 40±10% with observations of boundary scavenging near the coast of Northwest Africa (Chapter 4). The 231Pa/230Th ratio in the water column is not clearly controlled by either ocean ventilation (Chapter 4) or particle composition (Chapter 5) alone. Near-bottom enhanced scavenging of both isotopes is also occurring over large regions, in benthic layers of resuspended sediments and in a hydrothermal plume emanating from the mid-Atlantic ridge. These novel observations must be reconciled in a new conceptual model, likely requiring future numerical modeling work, in order to clarify the use of the 231Pa/230Th ratio as a proxy for the Atlantic meridional overturning circulation.
Table of Contents

List of Figures .. iii

List of Tables ... v

Acknowledgements ... vi

Preface ... vii

Chapter 1. A new perspective on boundary scavenging in the North Pacific Ocean.............. 1
 1. Introduction ... 3
 2. Materials and Methods .. 6
 2.1 Dissolved Th (Pa) sampling and analysis ... 6
 2.2 Use of total 230Th and 231Pa ... 8
 2.3 Hydrographic considerations ... 9
 2.4 Indicators of expected scavenging intensity .. 10
 3. Results and Discussion ... 11
 3.1 Distribution of 230Th in the subarctic Pacific ... 11
 3.1.1 Uniformity of INOPEX and Line P 230Th profiles ... 11
 3.1.2 Subarctic North Pacific 230Th anomalies ... 13
 3.2 Response of 230Th throughout the North Pacific and the nature of scavenging
 regimes ... 15
 3.3 Scavenging regimes for 231Pa .. 18
 3.3.1 INOPEX and (sub)tropical 231Pa profiles ... 18
 3.3.2 The upper water column (sub)tropical to subarctic contrast in 231Pa 19
 3.3.3 Deepwater 231Pa and a proposed deep sink ... 20
 4. Conclusions ... 23

References.. 25

Chapter 2. Quantifying lithogenic inputs to the North Pacific Ocean using the long-lived thorian
isotopes ... 42
 1. Introduction ... 44
 2. Materials and Methods .. 46
 3. Results and Discussion ... 47
 3.1 Shallow dissolved 230Th-232Th profiles ... 47
 3.1.1 Hydrographic influences ... 47
 3.1.2 Seasonality .. 50
 3.1.3 Thorium cycling ... 52
 3.2 Full water column 232Th profiles ... 55
 3.3 Dust fluxes based on dissolved 232Th fluxes ... 57
 3.4 Dissolved metal fluxes based on dissolved 232Th fluxes ... 60
 3.5 Bottom water 232Th fluxes as a constraint on boundary exchange 61
 4. Conclusions and Further Work .. 62

References .. 64
Chapter 3. Chemical fractionation of 231Pa/230Th in the Pacific Ocean: paleoceanographic implications.. 79
 1. Introduction.. 81
 2. Background and approach: potential controlling processes.. 81
 2.1 Biological productivity, total particle flux and boundary scavenging.......................... 82
 2.2 Overturning circulation.. 84
 2.3 Particle composition... 86
 2.4 Materials and Methods.. 88
 3. Results and Discussion.. 89
 3.1 INOPEX surface sediment (Pa/Th)$_{xs}$ survey... 89
 3.2 Pacific (Pa/Th)$_{xs}$ and statistical analysis of basin-wide influences......................... 92
 3.2.1 Geographic variation in seawater 231Pa/230Th and fractionation factors........ 96
 3.3 (Pa/Th)$_{xs}$ across biogeochemical provinces and hydrothermal scavenging of Pa.97
 3.4 Paleo-mapping of biogeochemical province contrast... 100
 4. Conclusions.. 103

References... 103

Chapter 4. 230Th and 231Pa on the US GEOTRACES North Atlantic section and implications for modern and paleoceanographic chemical fluxes.......................... 128
 1. Introduction.. 130
 1.1 Boundary scavenging of 230Th and 231Pa... 131
 1.2 The impact of Atlantic circulation.. 133
 1.3 Bottom scavenging... 135
 2. Methods.. 136
 3. Results and Discussion.. 138
 3.1 Sections of dissolved 230Th and 231Pa... 138
 3.2 Quantification of boundary scavenging .. 140
 3.3 Bottom scavenging and ventilation: convoluted influences across the North Atlantic... 144
 3.4 Apparent controls on the 231Pa/230Th ratio.. 147
 4. Summary.. 150

References... 152

Chapter 5. Scavenging intensity and fractionation of 230Th and 231Pa in the North Atlantic Ocean: results from the GEOTRACES transect................................. 166
 1. Introduction.. 168
 2. Approach... 169
 3. Results.. 173
 3.1 Distribution coefficient estimates.. 173
 3.2 Fractionation factor F(Th/Pa) estimates... 174
 4. Discussion.. 176
 4.1 End-member distribution coefficient regressions... 176
 4.2 The colloid conspiracy ... 180
 5. Summary.. 183

References... 185
List of Figures

Chapter 1

1. Map of North Pacific station locations discussed in terms of 230Th and 231Pa..................32
2. Depth profiles of dissolved 230Th from the INOPEX locations..33
3. Depth profiles of dissolved 230Th from Line P...34
4. North Pacific section of dissolved 230Th..35
5. Comparison of dissolved 230Th, 231Pa, and 231Pa/230Th from the subarctic and subtropical North Pacific..36
6. Inventories of dissolved 230Th from the North Pacific versus productivity indicators.....37
7. Depth profiles of dissolved 231Pa from the INOPEX locations...38
8. Inventories of dissolved 231Pa from the North Pacific versus productivity indicators.....39
S1. Map of North Pacific net primary productivity and its relation to the station locations...40

Chapter 2

1. Map of North Pacific dust deposition and its relation to the station locations discussed in terms of dissolved 230Th and 232Th...71
2. Shallow depth profiles of dissolved 230Th and 232Th from the INOPEX locations....72
3. Shallow depth profiles of hydrographic parameters from the INOPEX locations........73
4. Full depth profiles of dissolved 230Th and 232Th from the INOPEX locations........74
5. Depth-integrated residence times and fluxes of dissolved 232Th.................................75
6. Comparison of dissolved 232Th fluxes for two integration depths against dust deposition for the same locations from an atmospheric model...76

Chapter 3

1. Map of North Pacific coring sites with new (Pa/Th)$_{xs}$ and/or opal data.........................114
2. Surface sediment (Pa/Th)$_{xs}$ results from the subarctic Pacific compared with productivity indicators, opal concentration and the mass accumulation rates of the sediments......115
3. Map of Pacific (Pa/Th)$_{xs}$ activity ratios presented here and compiled from the literature..116
4. Maps of Pacific productivity indicators, opal concentration, and bottom water age......117
5. Cross plots of Pacific-wide (Pa/Th)$_{xs}$ activity ratios against productivity indicators, opal concentrations and bottom water age..118
6. Maps of Pacific bottom water 231Pa/230Th activity ratios and fractionation factors presented here and compiled from the literature...119
7. Map of Pacific (Pa/Th)$_{xs}$ activity ratios interpolated using the biogeographic provinces..120
8. Map of Pacific (Pa/Th)$_{xs}$ activity ratios in sediments from the last glacial maximum....121
S1. The database of Pacific surface sediment (Pa/Th)$_{xs}$ activity ratios in relation to their water depth...122
S2. Pacific surface sediment (Pa/Th)$_{xs}$ activity ratios versus total burial flux and preserved opal flux..123
S3. Maps of Pacific 230Th-normalized total burial flux and 230Th-normalized 231Pa flux.....124
Chapter 4

1. Map of the US GEOTRACES North Atlantic transect and its hydrography.................160
2. Property sections of the US GEOTRACES North Atlantic transect: dissolved ^{230}Th, ^{231}Pa, and $^{231}\text{Pa}/^{230}\text{Th}$ activity ratio with estimates of particle concentration and mean ventilation age...161
3. Depth profiles of particulate and total ^{230}Th and ^{231}Pa and the dissolved and particulate $^{231}\text{Pa}/^{230}\text{Th}$ ratio from stations along the Cape Verde transect..163
4. Depth profiles of total ^{230}Th used to quantify boundary scavenging.......................164
5. Dissolved $^{231}\text{Pa}/^{230}\text{Th}$ ratios compared with silicic acid in the North Atlantic transect..165

Chapter 5

1. Map of relevant US GEOTRACES North Atlantic sites in relation to sites referred to by previous studies..189
2. $K_d(\text{Th})$ and $K_d(\text{Pa})$ from the US GEOTRACES locations.................................190
3. K_d results visualized in relation to the mass concentration and chemical composition of suspended particulate matter...191
4. Depth profiles of the fractionation factor $F(\text{Th}/\text{Pa})$ from the US GEOTRACES locations..192
5. Fractionation factors from the US GEOTRACES transect in comparison to other published estimates in the Atlantic as a function of latitude...193
6. Cross plots $K_d(\text{Th})$ versus each of the major components of marine particulate matter..194
7. Cross plots of $K_d(\text{Pa})$ versus each of the major components of marine particulate matter..195
8. Particulate $(\text{Pa/Th})_{xs}$ ratios versus the opal/CaCO$_3$ ratio of particles for the US GEOTRACES locations and a global sediment trap compilation...196
9. The fractions of scavenged Th and Pa attributable to each of the major particle components..197
10. $K_d(\text{Th})$ and $K_d(\text{Pa})$ versus suspended particulate matter concentration for the US GEOTRACES locations..198
List of Tables

Chapter 1

1. North Pacific inventories of 230Th and 231Pa compared with productivity indicators........41

Chapter 2

2. Shallow dissolved Th residence times and fluxes in the North Pacific.........................77
3. Estimates of dust deposition and fractional Th solubility in the North Pacific..............78

Chapter 3

1. Correlation coefficients between Pacific surface sediment $(\text{Pa/Th})_{xs}$ and productivity indicators, sediment opal concentration or water mass age..125
2. Pacific-wide budget of 231Pa removal..126
S1. References cited for the Pacific surface sediment $(\text{Pa/Th})_{xs}$ survey......................127

Chapter 5

1. Results of a statistical regression to determine the end-member values for pure marine particulate phases of $K_d(\text{Th})$, $K_d(\text{Pa})$, and $F(\text{Th/Pa})$..199
Acknowledgements

My residence at Lamont has been one of the most intellectually stimulating periods of my life. At the same time, with experiences working at sea, taking on ambitious laboratory projects, and preparing manuscripts, I have also learned the discipline required of a scientist. I owe to my community the inspiration for pursuing fruitful scientific goals while developing the logistical prowess to make things happen.

I want to thank my advisor Bob Anderson especially for encouraging my own self-promotion and relating the benefits of scientific collaboration. Martin Fleisher has been a stalwart role model of a careful and productive analyst. Jerry McManus, Samar Khatiwala, Tim Kenna, Leo Pena and Wally Broecker, have all mentored me in some way, if they knew it or not, providing encouragement and advice for pursuing a career in science. It was really a pleasure to come to work because of many of my peers, not exclusively including Kat Allen, Rafael Almeida, Jason Jweda, Alex Lloyd, Jordan Landers and all the Lamont soccer players. Finally I want to thank my family and my fiancé Kirsten for their unconditional moral support that I am lucky to have.
Preface

An over-arching motivation of this dissertation is to learn where and how fast marine trace metals, of biogeochemical and paleoclimatological interest, are being added to or removed from the ocean. To do this, I have joined an endeavor to map the marine distributions of the naturally-occurring radioactive elements thorium and protactinium. Three isotopes in particular, 230Th, 232Th, and 231Pa, have seen more than 50 years of application in quantifying the rates of a variety of processes, from biological productivity to ocean circulation, largely on the basis of their distribution in ocean sediments. Recent advances in mass spectrometry and clean sampling techniques have allowed us to observe these three isotopes in modern seawater itself, at much higher spatial resolution than was previously possible. Therefore, a new set of scientific questions has become amenable to data-based hypothesis testing. Here I give a brief and selective historical account to set the stage for the questions addressed in this thesis about marine thorium and protactinium and their implications for improved understanding of chemical fluxes in the ocean.

The isotopes 232Th (half-life 14.1 x 10^9 yrs; Holden, 1990), 230Th (75.58 x 10^3 yrs; Cheng et al., 2013) and 231Pa (32.76 x 10^3 yrs; Robert et al., 1969), first found favor in marine science as tools for dating deep-sea sediment records (Ku, 1976; and references therein) because of their long half-lives and certain aspects of their chemical behavior in seawater. Th-230 and 231Pa are produced in seawater by the uniformly distributed decay of dissolved 234U and 235U, respectively. Th and Pa, unlike their parent U, are highly insoluble in seawater. Th and Pa are thus rapidly (<40 and <200 yrs, respectively) removed from solution and transported to the seafloor by adsorption to sinking particles (Anderson et al., 1983b), a process called scavenging (Goldberg, ...
The major isotope of Th, 232Th, is not produced by radioactive decay but is added to the ocean via the addition of continental material, such as desert dust or riverine clays.

By assuming that 232Th is removed by scavenging in a similar way as 230Th and given a known initial input of 230Th (since its production by U is well-known), the ratio of 230Th/232Th in sediments was proposed as a way to date age horizons in ocean sediments up to $\sim 10^5$ yrs in the past based on the amount of 230Th decay having occurred (Picciotto and Wilgain, 1954). Subsequent work proposed, instead, using the ratio 230Th/231Pa for dating sediment records. Once buried, this ratio also evolves with age following known half-lives. In contrast to 230Th and 232Th, however, 230Th and 231Pa have the same uniform source (U decay) in addition to being removed by the same scavenging process (Rosholt et al., 1961; Sackett, 1960).

The application of either the 230Th/232Th ratio or the 230Th/231Pa ratio as methods of dating sediments was eventually abandoned because it became clear in the following decades that both ratios had substantial geographic variation in surface sediments (reviewed by Ku, 1976). Thus, assumptions about the initially buried ratios could not be made a priori. Nonetheless, marine chemists took this finding in stride and realized that in observing geographic variations in these radionuclide ratios, one could learn about the ocean processes responsible for them.

Early research was able to infer many aspects of the water column behavior of Th and 231Pa. For instance, from simple laboratory adsorption experiments, Holland and Kulp (1954) concluded that 230-Th was removed from seawater by an equilibrium adsorption reaction with sinking particles. The first direct measurements of 230Th (Koczy et al., 1957; Sackett et al., 1958) and 231Pa (Sackett, 1960) in seawater were able to establish upper limits on their concentration. These measurements had large uncertainties, owing to the difficulties of handling insoluble elements and their low concentrations in seawater ($\sim 10^{-15}$ g per kg seawater). Nonetheless, early
seawater analyses supported the claims of the sediment-dating techniques, that nearly all (99.95% for 230Th, 99.8% for 231Pa) of the production of these isotopes due to U decay in seawater is removed to the seafloor on timescales less than 50-100 yrs (Moore and Sackett, 1964).

Although 50-100 yrs is instantaneous in comparison to many geologic phenomena, this is ample time for seawater 230Th and 231Pa to be redistributed by ocean circulation. Additionally, the scavenging process is not necessarily spatially uniform. It is precisely the interplay between circulation and variations in scavenging intensity that leads to the major questions explored in this thesis.

A concept termed boundary scavenging was developed (Bacon, 1988; Spencer et al., 1981) to explain observations (Anderson et al., 1983a; Anderson et al., 1983b; Yang et al., 1986) that 231Pa/230Th ratios in sediments increased from ocean interior to continental margins. It was hypothesized that since 231Pa is removed to the seafloor by scavenging more slowly than 230Th, it can be transported to a greater extent by ocean currents and mixing to be preferentially buried at sites of high scavenging intensity. One expects high scavenging intensity in places like continental margins where there are elevated fluxes of lithogenic and biogenic particulate matter. In addition to total particle flux, a change in particle chemistry associated with certain ocean regions could also enhance the removal of 231Pa (Anderson et al., 1983a; DeMaster, 1979; Taguchi et al., 1989). Boundary scavenging has important implications for understanding the removal of many insoluble elements with sufficiently long ocean residence times (>100 yrs) such as the micro-nutrient Fe, and contaminant elements, such as Pb and Pu. Documenting boundary scavenging in seawater itself, however, was difficult prior to the high-throughput, high-precision methods now available.
In the Pacific, I attempt to map where and how the enhanced removal of ^{231}Pa is occurring in the water column (Chapter 1) and use a new perspective on boundary scavenging to outline a basin-scale redistribution of ^{231}Pa (Chapter 3). In the Atlantic, the actual amount of ^{230}Th and ^{231}Pa which are boundary scavenged off the coast of West Africa can be quantified (Chapter 4) and found to be much less significant for the basin-wide budget.

Boundary scavenging is thus not well-expressed in the Atlantic, confirming previous work (Walter et al., 1999; Yu et al., 1996). Variations in the sediment $^{231}\text{Pa}/^{230}\text{Th}$ ratios in this basin have been hypothesized to reflect the large-scale southward flux of deep water which forms part of the climatically-important Atlantic meridional overturning circulation (McManus et al., 2004; Yu et al., 1996). The $^{231}\text{Pa}/^{230}\text{Th}$ ratio is also potentially sensitive to variations in particle composition (Chase et al., 2002; Keigwin and Boyle, 2008; Walter et al., 1999), insofar as different particle types scavenge the two elements with differing efficiencies. As was the case for boundary scavenging, the influences of both overturning circulation and particle composition are largely inferred from radionuclide distributions in sediments and have not been adequately ground-truthed in the water column.

In a transect across the North Atlantic, I document the relationships between seawater $^{231}\text{Pa}/^{230}\text{Th}$ distributions, ocean ventilation (Chapter 4), particle concentration (Chapter 4) and particle composition (Chapter 5). Unable to demonstrate simple relationships between these parameters, the results presented here, instead, provide an excellent basis for ocean modeling efforts to refine the proxy interpretation of Atlantic $^{231}\text{Pa}/^{230}\text{Th}$ ratios.

Finally, it has long been recognized that variations in sediment $^{232}\text{Th}/^{230}\text{Th}$ ratios reflect geographic variation in the input of continental material (Goldberg and Koide, 1962; Ku, 1966). Indeed, sediment records of $^{232}\text{Th}/^{230}\text{Th}$ have been used to reconstruct the flux of mineral dust to
the open ocean over the late Pleistocene (e.g., Adkins et al., 2006; Anderson et al., 2006; Marcantonio et al., 2001). Based on similar principles, the 232Th/230Th ratio in seawater (rather than in sediments) had been proposed decades previously as a proxy for the flux of dust or other lithogenic inputs into the modern ocean (Hirose and Sugimura, 1987; Huh et al., 1989). Dust dissolution as a source of elements to the ocean is of particular relevance to the cycle of Fe, a micronutrient whose abundance can limit marine biological productivity. In vast regions of the remote ocean, the only significant source of Fe is eolian dust (Jickells et al., 2005; Mahowald et al., 2009).

Despite this method’s potential, seawater data on 232Th/230Th of sufficient quality has only recently become available. Hsieh et al. (2011) have reported dust deposition fluxes using seawater 232Th/230Th in the Atlantic. In Chapter 2, I demonstrate in the North Pacific an estimation of dust deposition and the associated supply of trace elements due to dust dissolution using dissolved 232Th/230Th.

Each chapter in this dissertation is designed to stand alone. Therefore each is given an abstract and introduction of its own in greater detail than presented here. Specific acknowledgements and references are also given as an unnumbered section at the end of each chapter. I list my intended co-authors for peer-reviewed publications at the beginning of each chapter. While their intellectual and logistical contributions have been invaluable, I take full responsibility (for better or for worse) for the writing of this thesis.

References

DeMaster, D.J., 1979. The marine budgets of silica and 32Si, PhD Dissert. Yale University, New Haven, CT.

Chapter 1. A new perspective on boundary scavenging in the North Pacific Ocean

Christopher T. Hayesa,b, Robert F. Andersona,b, Samuel L. Jaccardc, Roger Françoisd, Martin Q. Fleishera, Maureen Soond, Rainer Gersondee

aLamont-Doherty Earth Observatory of Columbia University, Palisades, NY, USA
bDepartment of Earth and Environmental Sciences, Columbia University, New York, NY, USA
cGeological Institute, Department of Earth Sciences, ETH Zürich, Switzerland
dDepartment of Earth and Ocean Sciences, University of British Columbia, Vancouver, BC, Canada
eAlfred Wegener Institute for Polar and Marine Research, Bremerhaven, Germany

Abstract
Boundary scavenging, or the enhanced removal of adsorption-prone elements from the ocean in areas of high particle flux, is an often cited, though not well-quantified, concept used to understand the oceanic distribution of many trace metals. Because ^{230}Th and ^{231}Pa are produced uniformly from uranium decay and removed differentially by scavenging, the process of boundary scavenging can be elucidated by a more detailed knowledge of their water column distributions. To this end, filtered seawater was collected across the gradients in particle flux which span the subarctic Pacific: in the west during the Innovative North Pacific Experiment (INOPEX) and in the east along Line P. Lateral concentration gradients of dissolved ^{230}Th are small throughout the subarctic Pacific at 12 sites of variable particle flux. This contradicts the prediction of the traditional boundary scavenging model. A compilation of water column data from throughout the North Pacific reveals much larger lateral concentration gradients for ^{230}Th between the subarctic North Pacific and subtropical gyre, over lateral gradients in scavenging intensity similar to those found within the subarctic. This reflects a biogeochemical-province aspect to scavenging. Upper water column distributions of ^{231}Pa and $^{231}\text{Pa}/^{230}\text{Th}$ ratio are consistent with the influence of scavenging by biogenic opal, while deep waters (> 2.5 km) reveal an additional ^{231}Pa sink possibly related to manganese oxides produced at continental margins or ridge crests.
1. Introduction

Boundary scavenging (Bacon et al., 1976; Spencer et al., 1981) is a classic mechanism used to understand the cycling of chemical elements having the tendency to adsorb onto sinking particles, or to be scavenged. Scavenging (Goldberg, 1954) affects the cycling of many trace elements from micronutrients, such as Fe (Boyd and Ellwood, 2010) or Co (Bown et al., 2011), to tracers of dust deposition, such as Al (Measures and Vink, 2000) or Th (Hsieh et al., 2011). It is therefore valuable to better understand the nature of the boundary scavenging process.

The boundary scavenging mechanism predicts that those elements whose residence times are long enough to allow basin-wide isopycnal diffusion (>100 yrs), such as Pa, will be transported away from areas of low scavenging intensity to be removed in areas of high scavenging intensity (often associated with ocean boundaries) (Bacon, 1988). This lateral transfer reduces the concentration difference between ocean margin and ocean interior imposed by differential scavenging intensities. An element like Th, on the other hand, whose residence time (<50 yrs) is short enough to limit isopycnal transport, should therefore display concentrations which scale inversely with scavenging intensity. More detailed accounts of the development of boundary scavenging are given elsewhere (Anderson et al., 1990; François, 2007; Roy-Barman, 2009; Rutgers v. d. Loeff and Geibert, 2008), but few historical data exist to elucidate it in the dissolved phase of the water column. The prime objectives of this study are to relay new measurements of dissolved 230Th and 231Pa throughout the North Pacific and offer a new perspective on the traditional boundary scavenging concept.

The North Pacific Ocean lacks active deep water formation, which is known to influence 231Pa/230Th distributions in the Atlantic where surface waters of low radionuclide concentration
are injected to depth (Luo et al., 2010; Moran et al., 2002). We cannot, however, discount quantitatively the influence of the Pacific Meridional Overturning Circulation (PMOC) on dissolved 231Pa/230Th in the North Pacific, namely the northward inflow of Lower Circumpolar Deep Water (LCDW) and upwelling to form southward flowing North Pacific Deep Water (NPDW). We defer to modeling studies for a more complete treatment of PMOC (Luo et al., 2012) but signify in our work where the influence of overturning may be important. Aside from overturning, we expect 231Pa and 230Th distributions to be determined by the balance between production due to U decay, removal by scavenging, and redistribution by mixing. Below we elaborate on how we approach each of these terms.

The uniform distribution of 235U and 234U (Andersen et al., 2010; Delanghe et al., 2002; Robinson et al., 2004; Weyer et al., 2008) amounts to a constant and uniform production for 231Pa and 230Th, respectively, throughout the ocean. The production term, P, depends on the seawater concentration of U, which as a conservative element, varies with salinity (Chen et al., 1986).

Our basis for understanding scavenging is the one-dimensional reversible-scavenging model (Bacon and Anderson, 1982). Neglecting lateral inputs, this model predicts a linear increase with depth (z) for the concentration of dissolved (C_d) and particulate (C_p) phases for in-situ-produced scavenged elements. Given a group of small particles, which assumedly carry most of the scavenged element and sink at a constant speed, S, the concentrations are:

$$C_d \equiv \frac{Pz}{Sk};$$
$$C_p = \frac{Pz}{S};$$

Equations (1); (2)

C_d and C_p are expressed in units per volume of seawater. K is the distribution coefficient between particulate and dissolved phases ($\frac{C_p}{C_d}$), which may vary as a function of particle
concentration or particle composition. If lateral effects can be neglected, distributions of C_d, the primary subject of study here, are expected to respond inversely to scavenging intensity, parameterized by SK.

When spatial concentration gradients exist, mixing by eddy diffusion will transport radionuclides from areas of high concentration to areas of low concentration. However, for the case of scavenged elements, one must consider the timescale (Δt) required for mixing to take place over a certain length scale (Δx) against the residence time (τ) of the element or isotope in question. Spatial concentration gradients will be undisturbed if $\Delta t \gg \tau$. On the other hand, imposed gradients could be mixed away if $\Delta t \ll \tau$. In one-dimension, as presented by Roy-Barman (2009), the root-mean-square displacement ($\sqrt{\langle \Delta x \rangle^2}$, given here for simplicity as Δx) of a randomly walking water parcel is:

$$\Delta x = \sqrt{2K_{mix}\Delta t} \quad \text{Equation (3)}$$

where K_{mix} is the coefficient of eddy diffusion. Following Okubo et al. (2012), when substituting Δt by τ, Δx then represents the maximum length scale over which mixing influences spatial concentration gradients. Typical values in the North Pacific of isopycnal (lateral), K_H, and diapycnal (vertical), K_p, eddy diffusivity are 10^3 m2 s$^{-1}$ and 10^{-4} m2 s$^{-1}$, respectively (Kawabe, 2008).

The mixing length-scale argument calls for an appropriate definition of τ. Assuming steady-state, neglecting advective or diffusive inputs, the residence time of dissolved 230Th (231Pa) at any point is given by its concentration divided by the sum of its in situ sources: production via uranium decay and desorption, the latter of which unfortunately cannot be characterized with measurements of only C_d. Alternatively, the inventory of C_d from the surface
to some depth divided by the depth-integrated P results in the average time a dissolved nuclide resides in the integrated water column before being removed to deeper water by scavenging, irrespective of desorption within that depth zone. We find this integrated residence time to be most appropriate when considering the influence of mixing on dissolved nuclide distributions in the absence of constraints on desorption. Nonetheless, this residence time is not independent of advective or diffusive inputs where they exist. The integrated residence time will be an overestimate at locations which receive 230Th (231Pa) by circulation and an underestimate at locations where 230Th (231Pa) is removed by circulation.

2. Materials and Methods

2.1 Dissolved Th (Pa) sampling and analysis

The new data presented here were produced by groups at the Lamont-Doherty Earth Observatory (L-DEO) and the University of British Columbia (UBC). Seven profiles of dissolved 230Th, 231Pa, and 232Th from the SO202-INPEX cruise of July-August 2009 (Gersonde, 2012) (SO202- stations in Fig. 1) were produced at L-DEO. Five profiles of dissolved 230Th from the eastern subarctic Pacific collected in summer 2006 (P and Z stations in Fig. 1, referred to collectively as Line P in the text) were produced at UBC. Additionally we draw from reported profiles of dissolved 230Th and 231Pa from the Hawaii Ocean Time-series collected in 2002 (ALOHA station in Fig. 1) produced by the UBC group (François, 2007) and the 2009 “baseline” profile of dissolved 230Th, 231Pa, and 232Th from the U. S. GEOTRACES Intercalibration (SAFe station in Fig. 1) produced at L-DEO (Anderson et al., 2012). Hydrographic data for the newly reported sample locations are included in the Supplementary
Material. INOPEX data are available through PANGAEA (pangaea.de) and the BCO-DMO data repository (bcodmo.org). SAFe data are available at BCO-DMO.

Both the INOPEX and Line P cruises used similar methods for sampling for dissolved (<0.45 µm) radionuclides. The INOPEX cruise is considered GEOTRACES compliant (see geotraces.org). Detailed sampling procedures are described by Anderson et al. (2012). Logistics for both cruises did not permit the collection of sufficient particulate material for radionuclide analysis.

Radionuclide concentrations were determined by isotope dilution Inductively Coupled Plasma Mass Spectrometry at L-DEO (230Th, 232Th, and 231Pa) and UBC (230Th). Th and Pa were pre-concentrated along with 229Th and 233Pa by co-precipitation with 15-50 mg of added Fe. After HNO3-HClO4-HF digestion of the precipitate, Th and Pa were isolated and purified using anion exchange chromatography (Bio-rad resin AG1-X8). Full details on L-DEO procedures are reported by Anderson et al. (2012) and UBC procedures are reported by Choi et al. (2001).

For samples stored for more than a few months prior to Th/Pa purification, a small correction must be made for the ingrowth of 230Th or 231Pa by uranium decay during the time period between sample collection and U-Th/Pa separation (~0.03 dpm m^-3 230Th and 0.002 dpm m^-3 231Pa are ingrown annually). U concentrations in the samples were estimated using the bottle salinity measured from the CTD. For a full description of this correction, see the metadata associated with the INOPEX data at BCO-DMO.

A correction was also made for the 230Th and 231Pa added to the dissolved pool through the partial dissolution of lithogenic minerals, assuming an average lithogenic U/Th ratio, secular equilibrium within the lithogenic material and congruent dissolution, based on measured
dissolved 232Th. We used 230Th/232Th = 4.0 x 10^{-6} \text{ mol/mol}$ (Roy-Barman et al., 2009) and 231Pa/232Th = 8.8 x 10^{-8} \text{ mol/mol}$ (Taylor and McLennan, 1985) as representative of detrital Th and Pa, respectively. This correction was possible for the INOPEX and SAFe data but not for the Line P or ALOHA data, where 232Th was not measured. Detrital 230Th was found to be a significant fraction (>10 \%) of the dissolved 230Th only in surface waters (< 200 m) proximal to mineral dust sources. Detrital 231Pa was 1\% of the dissolved 231Pa in the INOPEX samples at its highest and <0.5\% below 200 m. Dissolved 230Th from ALOHA is likely less than 1\% detrital below surface waters based on historical 232Th measurements there (Roy-Barman et al., 1996) and detrital 231Pa even less. The Line P stations are outside of the influence of Asian dust deposition, but detrital 230Th advected from margin sediments is possible.

2.2 Use of total 230Th and 231Pa data

We draw upon previously reported profiles of total (dissolved + particulate) 230Th (Nozaki et al., 1981; Nozaki and Nakanishi, 1985; Nozaki et al., 1987; Okubo et al., 2012) and of total 231Pa (Nozaki and Nakanishi, 1985; Nozaki et al., 1998) (see Fig. 1). We converted total 230Th (231Pa) to dissolved 230Th (231Pa), as an attempt to remove the influence of particulate 230Th (231Pa), using the equation: dissolved = total*(1−K). We used average values from the most geographically relevant measurements of K, from ALOHA, K = 0.18±0.09 for 230Th (Roy-Barman et al., 1996), and from AN-1, K = 0.04±0.01 for 231Pa (Nozaki et al., 1998). The uncertainty in K was propagated in our dissolved estimates, but K at a specific location may be outside the cited ranges. Total radionuclides are not corrected for detrital contributions. All radionuclide concentrations have been converted into volumetric radioactivity units (dpm m^{-3}), assuming constant seawater density (1026 kg m^{-3}).
2.3 Hydrographic considerations

We use the term subarctic somewhat loosely to distinguish the INOPEX and Line P stations from the (sub)tropical sites in Figure 1. While stations SO202-36, -39, -41, and -44 are a few degrees south of the Subarctic Front defined by the 4°C isotherm at 100 m depth, they are nearly on the Subarctic Boundary defined by the surface salinity front of S = 34 (Yasuda, 2003). The Subarctic Boundary roughly corresponds to the southern and northern limits, respectively, of the cyclonic subarctic gyre and the anticyclonic subtropical gyre which are the major expressions of surface circulation in the North Pacific. There is also a relatively weak shallow overturning cell with a net northward transport of subtropical water balanced by a southward interior flow, in the form of North Pacific Intermediate Water (NPIW) (Macdonald et al., 2009).

In terms of deep circulation, Kawabe and Fujio (2010) have mapped observed flows of LCDW entering the western North Pacific at approximately 4.5 km depth, which travel north and east throughout the basin. LCDW along with the overlaying Upper Circumpolar Deep Water (UCDW) eventually upwell at various locations to become southerly flowing NPDW across the basin between ~1.5-3 km depth (Macdonald et al., 2009). This represents the schematic pattern of deep overturning in the North Pacific, but advective features may not be the dominant circulation of the basin. Circuitous, random-walk circulation generated by eddies in the deep North Pacific apparently dominate inter-basin water flux pathways (Holzer and Primeau, 2006, 2008). In the ensuing analysis, we refrain from adhering to an “advective-ocean” circulation framework and consider the influence of eddy diffusion more generally.
2.4 Indicators of expected scavenging intensity

Satellite-derived estimates of net primary productivity (NPP) are not directly related to scavenging intensity, but more biological productivity at the surface likely results in a greater sinking flux of scavenging particles. In lieu of detailed observations of the particulate matter and its scavenging characteristics at our study sites (surface area, chemical composition, aggregation tendency, etc.) and due to the long-term nature and excellent geographical coverage of satellite records, we appeal to NPP as a qualitative indicator for spatial variability in scavenging intensity. Monthly SeaWiFS-NPP data (1997-2009, 1/6°-resolution) were time-weighted averaged, ignoring missing values (Fig. S1) (http://www.science.oregonstate.edu/ocean.productivity) (Behrenfeld and Falkowski, 1997).

Export production (EP), an alternative qualitative indicator of scavenging intensity (Coale and Bruland, 1987), is defined as the sinking flux of particulate organic carbon from the euphotic zone to the ocean interior (Eppley and Peterson, 1979). The ratio of EP to NPP is termed the ef-ratio and can be estimated as a function of sea surface temperature (SST) and NPP itself (Laws et al., 2000). Export production estimates were derived by calculating the ef-ratio (Laws et al., 2000) and multiplying by the aforementioned long-term average NPP. SSTs for the ef-ratio algorithm were from the World Ocean Atlas 2009 (Locarnini et al., 2010). One reason that EP may more accurately reflect variations in scavenging intensity than does NPP is that higher EP can be associated with a greater flux of ballasting minerals (biogenic opal, CaCO₃, and aluminosilicates) (Boyd and Trull, 2007; Bradtmiller et al., 2010; Honda and Watanabe, 2010) which also contribute to scavenging.
3. Results and Discussion

3.1. Distribution of 230Th in the subarctic Pacific

3.1.1. Uniformity of INOPEX and Line P 230Th profiles

The depth profiles of dissolved 230Th from the INOPEX (Fig. 2) and Line P (Fig. 3) locations are all nearly linear and quite similar to each other. Linear profiles are consistent with reversible scavenging (which neglects lateral transport) (Bacon and Anderson, 1982). We note, however, that relatively linear 230Th profiles are not inconsistent with some lateral 230Th transport (discussed further below) (Roy-Barman, 2009; Venchiarutti et al., 2008).

The 230Th data fall within the linear depth profiles described by: $[^{230}$Th] = (0.05 ± 0.05) dpm m$^{-3}$ + (0.2 ± 0.05) dpm m$^{-3}$ km$^{-1}$ * z, except at SO202-32 below 4.4 km. In other words, 230Th concentrations at a given depth vary spatially by no more than about 25%. Our indicators for scavenging intensity, on the other hand, range from 156-436 g C m$^{-2}$ yr$^{-1}$ (a factor of 2.8) in NPP and 84-268 g C m$^{-2}$ yr$^{-1}$ (a factor of 3.2) in EP among the stations (see Table 1). A section across the North Pacific (Fig. 4) displays the uniformity of $[^{230}$Th] on a given isopycnal throughout the bulk of the water column. Positive (SO202-32) and negative (SO202-39, SO202-41) concentration anomalies near the seafloor are exceptions to this uniformity (section 3.1.2).

The spatial homogeneity of 230Th is surprising in light of the strong gradients in expected scavenging intensity in this region, especially near the continental margins. The INOPEX stations near 40°N (SO202-36, -39, -41, and -44) are situated on an east-west NPP and EP gradient of 23 and 13 mg C m$^{-2}$ yr$^{-1}$ km$^{-1}$, respectively. Gradients are calculated by the difference in NPP (EP) over the distance between stations (SO202-36 to SO202-44 in this case). The 230Th profiles from these 4 stations are consistent within error with the margin profile of dissolved
230Th (converted from total) at station AN-4 (Nozaki et al., 1998), revealing little lateral gradients over even a larger transect and gradient in scavenging intensity (lateral NPP and EP gradients of 38 and 25 mg C m$^{-2}$ yr$^{-1}$ km$^{-1}$, respectively). The true gradient in scavenging intensity is most likely greater than based solely on NPP or EP because we also expect a positive east-west gradient in the flux of aerosol dust (Mahowald et al., 2005) and biogenic opal (Honjo et al., 2008; Shibamoto and Harada, 2010) on the western margin. On the eastern margin (Line P), we estimate even larger lateral gradients in scavenging intensity (NPP and EP gradients of 203 and 118 mg C m$^{-2}$ yr$^{-1}$ km$^{-1}$, respectively).

Lateral concentration gradients imposed by variable scavenging intensity could be overcome by horizontal homogenization by mixing along isopycnals, and this must be addressed in light of the observed lack of lateral gradient in [230Th] in the subarctic. Using station SO202-44 as representative of the region, the integrated residence time of dissolved 230Th is 11 yrs in the upper 2.5 km and is 22 yrs in the full water column (5.5 km). Using Eq. 3 ($K_H = 10^3$ m2 s$^{-1}$), a timescale of 11 and 22 yrs allows diffusion to propagate to a radius of about 830 km and 1200 km, respectively. The east-west transects IN36-44 and Line P are 2100 km and 1300 km in distance, respectively. Therefore, lateral mixing does not influence 230Th distributions in the upper 2.5 km of the water column. However, we cannot rule out some 230Th redistribution back across lateral gradients in scavenging intensity in the deepest depths of the subarctic Pacific, as the deep mixing lengths are comparable to the section distances. If, however, SO202-44 were receiving a small input of 230Th by lateral mixing, as might be expected at the “high-scavenging”-end of the 40°N transect, the cited residence times would be an overestimate and the corresponding mixing lengths would be smaller. Advection across concentration gradients
will also contribute to a redistribution of 230Th (Roy-Barman, 2009), and strong deep boundary currents have been observed in the Northwest Pacific (Owens and Warren, 2001). However, given that these currents are generally non-continuous and often change direction we cannot quantify the advective contribution. Nonetheless, lateral mixing cannot explain the “missing” depletion of 230Th at high scavenging intensity sites. Either our indicators of scavenging intensity or mixing rate are inadequate or 230Th is displaying an unexpected insensitivity to variable scavenging intensities in the subarctic Pacific.

3.1.2. Subarctic North Pacific 230Th anomalies

Station SO202-32 revealed much larger 230Th concentrations (1.26-1.37 dpm m$^{-3}$) between 4484 m depth and the bottom (5301 m) than would be expected by extrapolating to greater depth the linear part of the profile (between 0-3.5 km depth). The neutral density horizon of this concentration anomaly ($\gamma^n = 28.10$) also shows a positive concentration anomaly in dissolved Si in the area encompassing SO202-32 (~45-50°N and 150-170°W). Talley and Joyce (1992) linked this deep Si maximum to extreme age of the bottom water which allows a greater accumulation of dissolved Si from opal dissolution at the seafloor. Perhaps this water mass accumulates dissolved 230Th due to its long isolation in a low-particle flux environment. Deep waters further south also have much higher 230Th concentrations (Roy-Barman et al., 1996), but we consider the possibility of advective inflow of 230Th unlikely as only weak, if any, northward currents propagate towards SO202-32 (Kawabe and Fujio, 2010).

The profiles from stations SO202-5, -24, -39, and -41 have negative deviations from linearity for the bottommost sample, taken within the benthic mixed layer, as defined by the well-mixed layer of potential temperature at the bottom of the CTD profile (Richards, 1990).
Although we lack additional information about scavenging intensity in these benthic mixed layers, such as particle concentration, we suggest that the negative deviations in the 230Th profiles are the result of enhanced scavenging near the seafloor. Bottom scavenging of 230Th has been found to influence many sites in the central North Pacific (Okubo et al., 2012). Sediments resuspended by deep currents, or more generally, by eddies and tidal mixing, could cause a scavenging environment with a larger K than the overlaying water column. We observe, however, that bottom scavenging does not always occur. At stations SO202-32, SO202-36, and the SAFe site (see below), 6-7 samples were taken equally spaced within 200 m of the seafloor and no significant vertical concentration gradients were observed. We infer from the spatial heterogeneity of bottom scavenging that local conditions, involving the interaction of eddies and tides with seafloor topography, influence the intensity of scavenging near the seabed.

The 230Th depth profiles from Line P, SO202-5 and SO202-24 display some curvature (concave down) in the upper km. We interpret this not as reduced scavenging in upper waters but due to shoaling of the shallower isopycnals, associated with NPIW, from 45°N to 50°N (Macdonald et al., 2009). Isopycnal mixing probably supports some transfer of 230Th from the south, where the isopycnal is deeper and 230Th higher, to shallower depths in the north, of course at a spatial scale concordant with the Th residence time. This situation is analogous to the 230Th distributions in the Southern Ocean, where upward sloping isopycnals result in shoaling isolines of 230Th south of the polar front (Chase et al., 2003; Rutgers v. d. Loeff and Berger, 1993; Venchiarutti et al., 2011).
3.2. Response of ^{230}Th throughout the North Pacific and the nature of scavenging regimes

In contrast to the relatively homogeneous ^{230}Th profiles across the subarctic North Pacific, significant concentration gradients exist between our subarctic profiles and those reported for the subtropical gyre (Fig. 5a) (Anderson et al., 2012; François, 2007; Nozaki and Nakanishi, 1985; Nozaki and Yang, 1987; Okubo et al., 2012). Abyssal (>4 km depth), waters reach $[^{230}\text{Th}]$ of 2 dpm m$^{-3}$ at SAFe and at several (sub)tropical sites reported by Okubo et al. (2012). While only considering the dissolved phase in our analysis, the observed subtropical-subarctic $[^{230}\text{Th}]$ difference is larger (\geq1 dpm m$^{-3}$) than can be accounted for by variable contributions of particulate matter (i.e. we expect a similar concentration difference in total ^{230}Th). Additionally, while the GEOTRACES intercalibration of seawater Th analyses revealed potential for inaccuracy between labs (Anderson et al., 2012), the subarctic-subtropical ^{230}Th contrast from INOPEX to SAFe (Fig. 5a) was produced by a single lab. The similar $[^{230}\text{Th}]$ contrast between Line P and ALOHA is corroborative evidence against laboratory offsets here.

The contrast in abyssal ^{230}Th concentrations is relatively acute along the north-south transect between SO202-36 and BO-6, spanning the subtropics, nearly to the subarctic boundary (see Fig. 1). The lateral NPP and EP gradients between these stations are 66 and 34 mg C m$^{-2}$ yr$^{-1}$ km$^{-1}$, respectively, which are similar to or smaller than those found within the subarctic (section 3.1.1). However, while the lateral $[^{230}\text{Th}]$ gradient in the subarctic was small ($d[^{230}\text{Th}]/dx < 1\times 10^{-4}$ dpm m$^{-3}$ km$^{-1}$), between SO202-36 and BO-6, at 2.5 km, the lateral gradient is 2.3×10^{-4} dpm m$^{-3}$ km$^{-1}$. The true lateral gradient may be larger than this, but it cannot be constrained without greater station density. There is no reason to expect smaller rates of lateral mixing in the north-south direction. Consequently, there must be a larger lateral gradient in scavenging
intensity across the gyres than within the subarctic to explain the larger lateral concentration gradient in 230Th.

To understand why 230Th appears to respond to a scavenging gradient in one area (across gyres) and not another (within a gyre) we compare water column 230Th inventories to a depth of 2.5 km for all locations in Fig. 1, except P4 where water depth is only 1323 m. At each included site, the seafloor is >800 m below 2.5 km, to avoid the influence of bottom scavenging. As well, at 2.5 km depth, neutral density does not vary greatly over the North Pacific ($\gamma_n = 27.98-28.01$). This inventory reflects a bulk average of scavenging intensity within the depth zone integrated.

Thorium-230 inventories from INOPEX, Line P, and AN-4 are within 25% of each other (Fig. 6a, Table 1). Yet NPP and EP range between 156-300 and 84-155 g C m$^{-2}$ yr$^{-1}$, respectively (factors of 1.9 and 1.8). Two of the sites for which the dissolved inventory is estimated from total 230Th in this NPP/EP range show relatively high inventories compared with the INOPEX and Line P locations. These sites (BO-1 and CY-5) are proximal to the INOPEX stations near 40° N, so it is unlikely that an advective influence is responsible for the discrepancy. The true value of K at BO-1 and CY-5 may be larger than 0.18±0.09, the value assumed when converting total 230Th to dissolved 230Th (see section 2.2). These sites would need, however, $K=0.5$ to bring the inventories into better agreement. A value that high has typically only been found at very productive near-margin sites, for instance $K=0.46$ in the Guatamala Basin (Bacon and Anderson, 1982) and $K=0.52$ in the Japan Sea (Nozaki et al., 1987). Thus we cannot fully explain the high 230Th inventories at BO-1 and CY-5.

Thorium-230 inventories rise substantially as NPP and EP decline below 125 and 50 g C m$^{-2}$ yr$^{-1}$, respectively (Fig. 6). Inventories at the two subtropical sites (ALOHA and SAFe) from
which dissolved data are available rise to nearly twice the average of the subarctic sites. Dissolved inventories based on total 230Th in the lower NPP/EP range are more variable but all are >1000 dpm m$^{-2}$. Variable contributions of detrital 230Th or unaccounted variations in K across the (sub)tropical sites are unlikely to be large enough to explain this variability.

The observation that 230Th inventories become much larger only below a certain NPP/EP level signifies an apparent threshold behavior for Th removal. Okubo et al. (2012) noted that $[^{230}\text{Th}]$ roughly scaled inversely with bio-productivity among sites BO-4, HY-3, HY-2, and HY-1, as expected for a simple relationship between bioproductivity and scavenging intensity. Inclusion of sites from all across the North Pacific here, however, questions the robustness of such a simple relation. A step function of 230Th inventory between high and low scavenging regimes may be more reflective of the data.

This step in Th inventories occurs across a specific threshold of NPP/EP, but the sites on either side of that threshold are geographically distinct. Sites with high and low 230Th inventories largely coincide, respectively, with the subarctic and subtropical gyres, representing very different biomes (Longhurst, 1998). Large phytoplankton and diatoms are more prevalent in the subarctic while picoplankton dominate the subtropics (Alvain et al., 2008; Hashioka and Yamanaka, 2007). We hypothesize that disparate biogeographic communities produce particulate material with sufficiently contrasting physicochemical characteristics (such as surface area, chemical affinity of sorption sties, density, aggregation efficiency, etc.) to produce the threshold between scavenging regimes. This is not inconsistent with our present understanding of boundary scavenging but adds to our knowledge of its geographic scale. “Boundaries” may be more akin to particular biogeographic provinces rather than simply areas of enhanced particle
flux. Future studies of marine particulate matter should seek to constrain which of the relevant particle characteristics vary most strongly across the Th scavenging regimes.

3.3 Scavenging regimes for 231Pa

3.3.1 INOPEX and (sub)tropical 231Pa profiles

The dissolved 231Pa data from the INOPEX sites (Fig. 7), like those of 230Th, are similar to each other when compared in depth profile. The upper (<2.5 km) and full water column residence times of dissolved 231Pa at SO202-44 are 49 and 103 yrs (vs. 11 and 22 yrs for 230Th), respectively. Isopycnal mixing for these timescales would cover a radius of ~1800 km in the upper water column, comparable to the IN36-44 transect, and 2550 km in the full water column, nearly encompassing the entire subarctic. Therefore within the subarctic, the concentration gradients imposed by variable scavenging intensity could be masked by the redistribution of 231Pa by isopycnal mixing.

At station SO202-36, a sample at 996 m depth is outlying as anomalously high compared to the rest of the relatively smooth profile. The 230Th and 232Th analyses of this sample had no profile anomaly and the Pa mass spectrometry was repeated with the same result. We therefore attribute the anomalous 231Pa data point to some other analytical error, perhaps sample-to-sample contamination after Pa had been separated from Th, and do not include it in our analysis.

Unlike the 230Th results, the INOPEX 231Pa profiles are in general non-linear, manifested primarily by a decrease or uniformity with depth of [231Pa] at depths >3500 m (Fig. 7). Stations SO202-5 and SO202-36 do not fully resolve this feature, which the deeper INOPEX stations show consistently. Whatever factor is responsible for the anomalously high [230Th] in the deepest samples of SO202-32 does not affect [231Pa].
Concentrations of ^{231}Pa from the ALOHA and SAFe stations are generally larger than at the subarctic sites, at least between 1 and 3 km (Fig. 5b). Both subtropical profiles are non-linear, with $[^{231}\text{Pa}]$ slightly decreasing at depths >2 km (compared with 3.5 km in the subarctic). Non-linear depth profiles of total ^{231}Pa have been reported (Nozaki and Nakanishi, 1985; Nozaki et al., 1998) for the (sub)tropical Pacific (CE-8, CE-13, and AN-1 in Fig. 1) which are generally in agreement with both ALOHA and SAFe.

3.3.2 The upper water column (sub)tropical to subarctic contrast in ^{231}Pa

Inventories down to 2.5 km (Fig. 8, Table 1) show a greater disparity between subarctic and subtropical sites (factor of 3) for ^{231}Pa than for ^{230}Th (factor of 2). In light of the five-fold greater residence time of dissolved Pa, which allows for more lateral homogenization by lateral mixing than for Th, this larger fractional difference in the upper water column inventory informs us that the difference in scavenging intensity between subarctic and subtropical regimes is far greater for Pa than for Th. This is actually captured in the modeling of dissolved ^{231}Pa in the North Pacific by Roy-Barman (2009), imposed by a larger relative difference in K from ocean margin to ocean interior for ^{231}Pa than for ^{230}Th. What is surprising from the INOPEX observations is that “the margin” appears not to be the thin zone of high productivity near the continents but the entire subarctic gyre. The (sub)tropical-subarctic contrast in the upper water column ^{231}Pa distribution also suggests a threshold type behavior related to the biological community contrast between the gyres.

The tendency of Pa to adsorb onto biogenic opal with greater affinity than other prevalent marine particulate phases (Chase et al., 2002; Geibert and Usbeck, 2004; Guo et al., 2002; Kretschmer et al., 2011; Scholten et al., 2005; Yu et al., 2001) is a natural way to link the
chemical property of scavenging intensity to the biogeographic property of community structure. Opal concentration and flux is much larger in the subarctic than in the subtropical North Pacific (Bishop et al., 1999; Bishop and Wood, 2008; Karl et al., 2012; Lam et al., 2011; Scharek et al., 1999; Shibamoto and Harada, 2010). Greater fluxes of opal with high K values likely draw down 231Pa in the upper waters of the subarctic (Taguchi et al., 1989), so much so that a large lateral subtropical-subarctic concentration gradient is supported despite the influence of lateral mixing. Future paired measurements of particulate 231Pa and opal in North Pacific GEOTRACES sections will test this hypothesis.

3.3.3 Deepwater 231Pa distributions and a proposed deep sink

Negative deviations in 231Pa from linear profiles are observed in both the subarctic and subtropical regimes (Fig. 5b). The relative depletion of 231Pa, as estimated by extending the linear profile in the upper 2 km downwards and subtracting the observed profile, is larger for the subtropical sites than for that of the INOPEX sites. Whatever process is responsible for these depletions, the result is a relatively uniform distribution of 231Pa at great depth (3500-5500 m) across the North Pacific (231Pa = 0.35-0.5 dpm m$^{-3}$).

Four possible explanations for deepwater depletions in North Pacific 231Pa can be suggested: (1) advective inflow of water with lower 231Pa from the south; (2) upwelling of LCDW into NPDW; (3) intense local scavenging by sediments at the seafloor and/or by resuspended sediments in nepheloid layers (McCave, 1986) (bottom scavenging); or (4) removal by lateral mixing to sites of higher scavenging intensity. We consider each explanation below.

The inflow of LCDW from the Southern Ocean to the subarctic along the western edge of the North Pacific could influence the INOPEX, ALOHA and SAFe profiles. Profiles of total
231Pa from CE-8, CE-13 and AN-1 which are “upstream” of the INOPEX stations, however, show that [231Pa] in LCDW is roughly 0.4-0.5 dpm m$^{-3}$, higher than or similar to that observed at the INOPEX stations. This is inconsistent with an advective input lowering deepwater [231Pa] at the INOPEX sites. For the subtropical sites, advection is more difficult to discount because “upstream” 231Pa data in the South Pacific are extremely limited. The one site with upstream water column 231Pa data, M1 of the JGOFS-AESOPS program (53$^\circ$S, 174.7$^\circ$W), is situated at the beginning of the northward path of LCDW into the Pacific, and has [231Pa] at this density horizon of similar magnitude to that seen in the (sub)tropics (~0.4 dpm m$^{-3}$) (Chase et al., 2003). However, given that the ageing of deep water between M1 and ALOHA is roughly 500 yrs (Khatiwala et al., 2012; Matsumoto, 2007), one expects in-growth toward a linear profile to increase [231Pa] along this route, as in North Atlantic Deep Water (Moran et al., 2002). Some other process, aside from lateral advection, must be removing 231Pa from the deep North Pacific.

In terms of upwelling, explanation (2), and PMOC in general, the existing distribution of dissolved 231Pa data is too sparse to evaluate the importance of this process. Another scavenged element with an ocean residence time on the order of or longer than that of Pa is Nd (Goldstein and Hemming, 2003). The isotopic composition of Nd (ϵ_{Nd}) does not show the non-radiogenic signature expected from southern-sourced water at BO-1, in the subarctic (Amakawa et al., 2009). Seawater profiles of ϵ_{Nd} from sites across the subtropical North Pacific (Amakawa et al., 2004; Amakawa et al., 2009; Piepgras and Jacobsen, 1988), including SAFe (Pahnke et al., 2012), indicate a characteristic presence of southern-sourced bottom water in the western but not the central or eastern subtropical Pacific. These observations argue against a basin-wide influence of bottom water inflow and subsequent upwelling on scavenged elements; however,
because data on ϵ_{Nd} in the Pacific is also sparse, uncertainties exist as to whether it can be used to trace water masses as it is in the Atlantic (Jones et al., 2008).

Bottom scavenging, explanation (3), as the sole deep Pa-removal process, would require an unreasonably large vertical extension in the subtropics but it may be a factor for subarctic Pa. The full water column residence time of ^{231}Pa at SO202-44 and ALOHA is 103 and 173 yrs, respectively. The resulting extent of vertical mixing influence in the subarctic is therefore 0.8-1.6 km, using Eq. 3 and $K_\rho=1-4\times10^{-4}\text{ m}^2\text{ s}^{-1}$, which is comparable to the depth zone of subarctic ^{231}Pa depletion. The respective mixing scale at ALOHA is 1-2 km which is smaller than the subtropical depletion zone, 2.5-3 km above the bottom. Additionally, there is no measurable bottom depletion of ^{230}Th at the SAFe station, which would be expected if bottom scavenging of ^{231}Pa were occurring in the subtropics.

Removal by lateral mixing, explanation (4), is therefore the lead hypothesis for deep Pa depletions in the North Pacific, while bottom scavenging may be equally likely in the subarctic. Removal by lateral mixing implies some deep (>2.5 km) ^{231}Pa sink somewhere in the Pacific, but our results do not reveal its location(s). Future studies, such as the GEOTRACES program, should seek to identify these deep Pa sinks as well as the processes involved. High scavenging intensity at the site of Pa removal could be manifested by a high vertical flux of particles in addition to a change in the chemical composition of particles. In particular, MnO$_2$, like biogenic opal, is known to have a strong affinity for Pa (Anderson et al., 1983). We hypothesize that authigenic Mn (oxy)hydroxide particles or coatings associated with reducing sediment conditions (Spencer et al., 1981) or hydrothermal vents and plumes (Anderson et al., 1990; Shimmield and
Price, 1988) act as a predominant ^{231}Pa sink near continental margins and ridge crests, respectively.

In summary, Fig. 5c highlights the differences between subarctic and subtropical profiles of the dissolved $^{231}\text{Pa}/^{230}\text{Th}$ ratio. Uncertainties in the ratio are too large above 500 m to differentiate between the subarctic and subtropics. Within 0.5-2.5 km depth, however, the INOPEX profiles clearly have a lower $^{231}\text{Pa}/^{230}\text{Th}$ ratio, consistent with ^{231}Pa being more intensely scavenged in the subarctic because of greater opal abundance and with the conclusion that lateral mixing is not fast enough to overcome this imposed gradient. Below 2.5 km, the situation reverses, with lower $^{231}\text{Pa}/^{230}\text{Th}$ ratio in the subtropical profiles. This would be consistent with the classical concept of boundary scavenging, where a larger depletion of ^{230}Th (compared to that for ^{231}Pa) in the subarctic drives the increase in the $^{231}\text{Pa}/^{230}\text{Th}$ ratio. However, it appears the deep water $^{231}\text{Pa}/^{230}\text{Th}$ distribution is not strictly related to contrasting vertical particle flux but involves proximity to a deep ^{231}Pa sink to which ^{231}Pa is removed by lateral mixing to a greater extent in the subtropics.

4. Conclusions

Based on the available data, dissolved ^{230}Th and ^{231}Pa are uniformly distributed throughout the subarctic Pacific despite large spatial gradients in particle flux. Enhanced removal and corresponding depletion from the water column of ^{230}Th toward the margin, expected because of its short residence time, was absent in both the eastern and western subarctic regions. Large lateral $[^{230}\text{Th}]$ gradients do exist between the subarctic and subtropical Pacific gyres and the relative contrast is even larger for $[^{231}\text{Pa}]$ in the upper 2.5 km, despite its greater residence time. This indicates a much larger relative difference in scavenging intensity between the two
regimes than within either regime, and the effect is greater for Pa than for Th. We suggest a
threshold-like behavior between gyres in scavenging removal, tied to the distinct ecosystems that
inhabit each gyre, with the larger response of 231Pa linked to scavenging by opal in the subarctic.
We conclude that the boundary scavenging concept applies to different spatial scales than
originally proposed: gyre to gyre contrast rather than margin (or small zone of high scavenging
intensity) to open ocean contrast, at least in the North Pacific.

In deepwater, the contrast in concentration between the subtropics and subarctic is
smaller for 231Pa than 230Th, as expected from their respective residence times and the timescale
for isopycnal mixing. We hypothesize that 231Pa is strongly scavenged by a putative sedimentary
Mn oxide sink primarily at depths >2.5 km throughout the North Pacific. The influence of
PMOC on 231Pa/230Th distributions (Luo et al., 2012) cannot be ruled out quantitatively based on
our data, although we have focused our interpretations primarily on the biogeographic nature of
scavenging regimes.

Acknowledgements

We acknowledge the German Ministry of Education and Research (BmBF) for
financially supporting the SO202-INOPEX cruise, the U.S. National Science Foundation for
funding the work at L-DEO (award 1029211), and the Swiss National Science Foundation for the
postdoctoral fellowship (request no. PBEZ2-111588) that funded the work of SLJ at UBC. The
R/V Sonne crew, all INOPEX participants, especially Jian Ren and Oliver Esper, are greatly
acknowledged for help sampling on SO202. Discussions with Jerry McManus, Samar Khatiwala
and Yiming Luo were helpful. We thank Gideon Henderson, Walter Geibert, Mathieu Roy-
Barman, and an anonymous reviewer for constructive reviews. Figures 1 and 4 were produced with Ocean Data View (R. Schlitzer, http://odv.awi.de, 2011). This is L-DEO Contribution 7678.

References

Figure 1. Map of station locations for dissolved radionuclide data presented in the paper (black circles) and those for which total radionuclide data has been reported: gray triangles (Nozaki et al., 1981), gray diamonds (Nozaki and Nakanishi, 1985), gray inverted triangles (Nozaki et al., 1998), and gray squares (Okubo et al., 2012). Dotted lines approximate the subarctic front (SAF) and subarctic boundary (SAB), as drawn by Harrison et al. (2004). SO202- refers to the INOPEX cruise; P and Z stations refer to the Line P cruise (see section 2.1).
Figure 3. Depth profiles of dissolved ^{230}Th from the INOPEX locations (SO202- in Fig.1). These data have been corrected for the detrital ^{230}Th based on measured dissolved ^{232}Th (see section 2.2). The deepest sample in each profile is 5-15 m above the seafloor. Where error bars are not visible they are smaller than the symbol size.
Figure 3. Depth profiles of dissolved 230Th from Line P (P and Z stations in Fig. 1). These data have not been corrected for detrital 230Th (see section 2.2). The deepest sample in each profile is between 38 and 537 m above the seafloor (see Table 1). Where error bars are not visible they are smaller than the symbol size.
Figure 4. North Pacific section of dissolved 230Th (colormapping). White contours are isopycnals (neutral density). For comparison, none of the data in this figure have been corrected for detrital sources of 230Th. Note that the high concentrations below 4500 m depth around 4000 km section distance are largely unconstrained by the data (shown as black dots).
Figure 5. Depth profiles of dissolved 230Th (a.), 231Pa (b.) and the 231Pa/230Th activity ratio (c.) from SO202-39, -41, -44 in black compared with those from SAFe (gray circles) and ALOHA (gray triangles). Where error bars are not visible they are smaller than the symbol size. In (c.), for clarity, ratios whose uncertainty is greater than ± 0.5 activity ratio units are not plotted.
Figure 6. Inventory of dissolved 230Th from 0-2.5 km depth versus (a.) Net Primary Productivity (NPP) and (b.) Export Productivity (EP) for the INOPEX (triangles), Line P (squares), ALOHA (circles), and SAFE (diamond) stations and the sites for which total 230Th data is available in the literature (x’s). Error bars on the points estimated from total 230Th include the uncertainty in the distribution coefficient. Error bars based on dissolved data are roughly the size of the symbols and are omitted for clarity.
Figure 7. Depth profiles of dissolved 231Pa from the INOPEX locations (Fig.1). These data have been corrected for the detrital 231Pa based on measured dissolved 232Th (see section 2.2). The deepest sample in each profile is 5-15 m above the seafloor. Where error bars are not visible they are smaller than the symbol size.
Figure 8. Inventory of dissolved 231Pa from 0-2.5 km depth versus (a.) NPP and (b.) EP for the INOPEX (triangles), Line P (squares), ALOHA (circles), and SAFE (diamond) stations and the sites for which total 231Pa data is available in the literature (x’s). Error bars on the points estimated from total 231Pa include the uncertainty in the distribution coefficient used in calculating the inventory. Error bars based on dissolved data are roughly the size of the symbols and are omitted for clarity.
Figure S1. Annually averaged Net Primary Productivity (1997-2009) based on monthly SeaWifs-NPP data (http://www.science.oregonstate.edu/ocean.productivity) (Behrenfeld and Falkowski, 1997). See section 2.4 for more information. Station location symbols are equivalent to those found in Figures 6 and 8. Bold indicates 231Pa data are available in addition to 230Th data.
Table 1

Sea surface temperature (SST), Net Primary Productivity (NPP), ef-ratio, Export Productivity (EP) and dissolved inventories of 230Th and 231Pa in the upper 2.5 km of the water column for station locations used in this study. See Fig. S1 for a high resolution map of NPP in relation to station locations.

<table>
<thead>
<tr>
<th>Station</th>
<th>Latitude (°N)</th>
<th>Longitude (°E)</th>
<th>Water Depth (m)</th>
<th>SST (°C)</th>
<th>NPP (g C m$^{-2}$ yr$^{-1}$)</th>
<th>ef-ratio</th>
<th>EP (dpm m$^{-2}$)</th>
<th>Diss. 230Th inventory (2.5km) ±</th>
<th>Diss. 231Pa inventory (2.5km) ±</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>BO-1</td>
<td>40</td>
<td>160</td>
<td>5588</td>
<td>12.9</td>
<td>212</td>
<td>0.55</td>
<td>116</td>
<td>1218 ± 60</td>
<td></td>
<td>a</td>
</tr>
<tr>
<td>BO-3</td>
<td>30</td>
<td>-160</td>
<td>5774</td>
<td>21.6</td>
<td>108</td>
<td>0.27</td>
<td>30</td>
<td>1888 ± 87</td>
<td></td>
<td>a</td>
</tr>
<tr>
<td>BO-4</td>
<td>17</td>
<td>-160</td>
<td>5591</td>
<td>25.8</td>
<td>80</td>
<td>0.20</td>
<td>16</td>
<td>1598 ± 72</td>
<td></td>
<td>a</td>
</tr>
<tr>
<td>BO-5</td>
<td>20</td>
<td>-175</td>
<td>5307</td>
<td>26.2</td>
<td>63</td>
<td>0.20</td>
<td>13</td>
<td>1769 ± 82</td>
<td></td>
<td>a</td>
</tr>
<tr>
<td>BO-6</td>
<td>20</td>
<td>169</td>
<td>5372</td>
<td>26.9</td>
<td>53</td>
<td>0.20</td>
<td>10</td>
<td>1658 ± 76</td>
<td></td>
<td>a</td>
</tr>
<tr>
<td>BO-7</td>
<td>22</td>
<td>151</td>
<td>5623</td>
<td>26.9</td>
<td>56</td>
<td>0.20</td>
<td>11</td>
<td>1632 ± 74</td>
<td></td>
<td>a</td>
</tr>
<tr>
<td>HY-1</td>
<td>20</td>
<td>-140</td>
<td>5287</td>
<td>23.4</td>
<td>96</td>
<td>0.24</td>
<td>23</td>
<td>1071 ± 46</td>
<td></td>
<td>a</td>
</tr>
<tr>
<td>HY-2</td>
<td>16</td>
<td>-123</td>
<td>4229</td>
<td>25.1</td>
<td>115</td>
<td>0.21</td>
<td>24</td>
<td>1077 ± 45</td>
<td></td>
<td>a</td>
</tr>
<tr>
<td>HY-3</td>
<td>8</td>
<td>-95</td>
<td>3656</td>
<td>27.6</td>
<td>201</td>
<td>0.18</td>
<td>35</td>
<td>607 ± 27</td>
<td></td>
<td>a</td>
</tr>
<tr>
<td>CY-5</td>
<td>40.017</td>
<td>156.033</td>
<td>5523</td>
<td>13.3</td>
<td>220</td>
<td>0.53</td>
<td>117</td>
<td>1123 ± 78</td>
<td></td>
<td>b</td>
</tr>
<tr>
<td>CY-6</td>
<td>39.017</td>
<td>166</td>
<td>5576</td>
<td>14.7</td>
<td>205</td>
<td>0.47</td>
<td>97</td>
<td>668 ± 50</td>
<td></td>
<td>b</td>
</tr>
<tr>
<td>CY-8</td>
<td>38.05</td>
<td>180.267</td>
<td>5553</td>
<td>15.7</td>
<td>190</td>
<td>0.44</td>
<td>83</td>
<td>975 ± 58</td>
<td></td>
<td>b</td>
</tr>
<tr>
<td>CY-11</td>
<td>30.533</td>
<td>170.65</td>
<td>5523</td>
<td>22.2</td>
<td>147</td>
<td>0.26</td>
<td>39</td>
<td>933 ± 55</td>
<td></td>
<td>b</td>
</tr>
<tr>
<td>CE-5</td>
<td>25</td>
<td>169.983</td>
<td>5960</td>
<td>25.4</td>
<td>67</td>
<td>0.21</td>
<td>14</td>
<td>1030 ± 84</td>
<td></td>
<td>c</td>
</tr>
<tr>
<td>CE-8</td>
<td>12.75</td>
<td>173.233</td>
<td>5686</td>
<td>27.7</td>
<td>47</td>
<td>0.19</td>
<td>9</td>
<td>1242 ± 70</td>
<td></td>
<td>c</td>
</tr>
<tr>
<td>CE-13</td>
<td>12</td>
<td>152.5</td>
<td>5883</td>
<td>28.3</td>
<td>40</td>
<td>0.19</td>
<td>8</td>
<td>1331 ± 89</td>
<td></td>
<td>c</td>
</tr>
<tr>
<td>AN-1</td>
<td>29.7</td>
<td>143.8</td>
<td>9750</td>
<td>23.2</td>
<td>145</td>
<td>0.24</td>
<td>35</td>
<td>872 ± 63</td>
<td></td>
<td>d</td>
</tr>
<tr>
<td>AN-4</td>
<td>39.6</td>
<td>144.4</td>
<td>7585</td>
<td>13.7</td>
<td>300</td>
<td>0.52</td>
<td>155</td>
<td>644 ± 51</td>
<td></td>
<td>d</td>
</tr>
<tr>
<td>SO202-5</td>
<td>52.696</td>
<td>164.919</td>
<td>3364</td>
<td>5.0</td>
<td>167</td>
<td>0.68</td>
<td>113</td>
<td>795 ± 72</td>
<td></td>
<td>e</td>
</tr>
<tr>
<td>SO202-24</td>
<td>53.002</td>
<td>-157.193</td>
<td>4567</td>
<td>6.8</td>
<td>216</td>
<td>0.68</td>
<td>146</td>
<td>865 ± 24</td>
<td></td>
<td>e</td>
</tr>
<tr>
<td>SO202-32</td>
<td>45.5</td>
<td>-158.5</td>
<td>5301</td>
<td>9.5</td>
<td>162</td>
<td>0.67</td>
<td>108</td>
<td>794 ± 9</td>
<td></td>
<td>e</td>
</tr>
<tr>
<td>SO202-36</td>
<td>38.19</td>
<td>176.696</td>
<td>4524</td>
<td>15.9</td>
<td>194</td>
<td>0.43</td>
<td>84</td>
<td>662 ± 8</td>
<td></td>
<td>e</td>
</tr>
<tr>
<td>SO202-39</td>
<td>38.011</td>
<td>164.445</td>
<td>5098</td>
<td>15.9</td>
<td>217</td>
<td>0.43</td>
<td>94</td>
<td>745 ± 10</td>
<td></td>
<td>e</td>
</tr>
<tr>
<td>SO202-41</td>
<td>38.413</td>
<td>160.335</td>
<td>5392</td>
<td>15.9</td>
<td>216</td>
<td>0.43</td>
<td>93</td>
<td>728 ± 13</td>
<td></td>
<td>e</td>
</tr>
<tr>
<td>SO202-44</td>
<td>39.801</td>
<td>152.351</td>
<td>5505</td>
<td>14.9</td>
<td>242</td>
<td>0.46</td>
<td>112</td>
<td>725 ± 11</td>
<td></td>
<td>e</td>
</tr>
<tr>
<td>ALOHA</td>
<td>22.75</td>
<td>-158</td>
<td>4800</td>
<td>24.8</td>
<td>101</td>
<td>0.21</td>
<td>21</td>
<td>1313 ± 6</td>
<td></td>
<td>f</td>
</tr>
<tr>
<td>SAFE</td>
<td>30</td>
<td>-140</td>
<td>4750</td>
<td>20.2</td>
<td>111</td>
<td>0.30</td>
<td>34</td>
<td>1494 ± 20</td>
<td></td>
<td>g</td>
</tr>
<tr>
<td>P16</td>
<td>49.283</td>
<td>-134.667</td>
<td>3550</td>
<td>10.4</td>
<td>167</td>
<td>0.65</td>
<td>108</td>
<td>739 ± 12</td>
<td></td>
<td>e</td>
</tr>
<tr>
<td>P20</td>
<td>49.567</td>
<td>-138.667</td>
<td>4020</td>
<td>9.7</td>
<td>156</td>
<td>0.66</td>
<td>103</td>
<td>701 ± 9</td>
<td></td>
<td>e</td>
</tr>
<tr>
<td>P26</td>
<td>50</td>
<td>-145</td>
<td>4320</td>
<td>8.3</td>
<td>165</td>
<td>0.67</td>
<td>111</td>
<td>737 ± 8</td>
<td></td>
<td>e</td>
</tr>
<tr>
<td>Z9</td>
<td>55</td>
<td>-145</td>
<td>4025</td>
<td>7.6</td>
<td>183</td>
<td>0.67</td>
<td>123</td>
<td>680 ± 7</td>
<td></td>
<td>e</td>
</tr>
<tr>
<td>P4</td>
<td>48.633</td>
<td>-126.65</td>
<td>1323</td>
<td>11.3</td>
<td>436</td>
<td>0.62</td>
<td>268</td>
<td>628 ± 268</td>
<td></td>
<td>e</td>
</tr>
</tbody>
</table>

References:
- a Okubo et al. 2012 (Based on total 230Th)
- b Nozaki et al. 1981 (Based on total 230Th)
- c Nozaki and Nakanishi 1985 (Based on total 230Th and 231Pa)
- d Nozaki et al. 1998 (Based on total 230Th and 231Pa)
- e Present Work
- f François 2007
- g Anderson et al. 2012
Chapter 2. Quantifying lithogenic inputs to the North Pacific Ocean using the long-lived thorium isotopes

Christopher T. Hayesa,b, Robert F. Andersona,b, Martin Q. Fleishera, Sascha Sernoa,c, Gisela Wincklera,b, Rainer Gersonded

aLamont-Doherty Earth Observatory of Columbia University, Palisades, NY, USA
bDepartment of Earth and Environmental Sciences, Columbia University, New York, NY, USA
cDFG-Leibniz Center for Surface Process and Climate Studies, Institute of Earth and Environmental Science, University of Potsdam, Potsdam-Golm, Germany
dAlfred Wegener Institute for Polar and Marine Research, Bremerhaven, Germany

Abstract

Dissolved 232Th is added to the ocean though the partial dissolution of lithogenic materials such as aerosol dust in the same way as other lithogenically sourced and more biologically important trace metals such as Fe. Oceanic 230Th, on the other hand, is sourced primarily from the highly predictable decay of dissolved 234U. The rate at which dissolved 232Th is released by mineral dissolution can be constrained by a Th removal rate derived from 230Th:234U disequilibria, assuming steady-state. Calculated fluxes of dissolved 232Th can in turn be used to estimate fluxes of other lithogenically sourced dissolved metals as well as the original lithogenic supplies, such as aerosol dust deposition, given the concentration and fractional solubility of Th (or other metals) in the lithogenic material. This method is applied to 7 water column profiles from the Innovative North Pacific Experiment (INOPEX) cruise of 2009 and 2 sites from the subtropical North Pacific. The structure of shallow depth profiles suggests rapid scavenging at the surface and at least partial regeneration of dissolved 232Th at 100-200 m depth. This rapid cycling could involve colloidal Th generated during mineral dissolution, which may not be subject to the same removal rates as the more truly dissolved 230Th. An additional deep source of 232Th was revealed in deep waters, most likely dissolution of seafloor sediments, and offers a constraint on dissolved trace element supply due to boundary exchange.
1. Introduction

The ocean is the ultimate receptor of eroded material from the continents. In the remote surface ocean, this process occurs only through deposition of eolian mineral dust (referred to also as aerosol dust or simply as dust) (Rea, 1994) and in some cases dust is a dominant source of soluble micronutrients necessary for biological productivity (Martin and Gordon, 1988). Quantification of aerosol dust input to the surface ocean has progressed in recent years using a combination of remote sensing and modeling techniques (Mahowald et al., 2005), but these models nonetheless are better constrained with observational tracer-based approaches using, for instance, dissolved Al (Measures and Brown, 1996) and more recently dissolved Th (Hsieh et al., 2011). The partial dissolution of hemipelagic sediments, or more generally, margin sediment exchange processes, may also contribute to the ocean budget of dissolved trace metals of paleoceanographic interest such as Nd (Lacan and Jeandel, 2005), Hf (van de Flierdt et al., 2004), as well as 232Th (Roy-Barman, 2009). The importance of boundary exchange processes has been difficult to assess because knowledge of the rates involved in the biogeochemical cycle of these elements is lacking.

The long-lived thorium isotopes (232Th and 230Th: half-lives, 14.01 Ga (Holden, 1990) and 75.69 ka (Cheng et al., 2000), respectively) offer a way to determine rates of lithogenic element cycling in seawater. The shorter-lived, 230Th, is radiogenic, with a well-quantified source from 234U dissolved in seawater. To determine 230Th production, 234U concentrations are estimated using measured salinity and published estimates of the salinity-U relationship in North Pacific seawater (Chen et al., 1986) and the seawater 234U/238U ratio (Andersen et al., 2010). More than 99.8% of Th in seawater, however, is 232Th, a primordial isotope added to seawater in the dissolved pool through the partial dissolution of lithogenic materials (Santschi et al., 2006).
Thorium (and therefore all Th isotopes) is highly insoluble in seawater and is rapidly removed from solution by scavenging onto particulate matter (Moore and Sackett, 1964).

The rate of Th removal by scavenging, equivalent to the inverse of the Th residence time, τ_{Th}, can be quantified using measurements of dissolved ^{230}Th, assuming steady-state against production by uranium decay. Production of ^{230}Th is given by the activity of ^{234}U (in units concordant with the ^{230}Th units) multiplied by the radioactive decay rate of ^{230}Th, λ_{230}. We take inventories of both ^{230}Th and its production due to ^{234}U decay to calculate residence time as a function of integrated depth (Eq. 1a). This residence time is applied to the integrated inventory of dissolved ^{232}Th to estimate the cumulative flux of ^{232}Th due to mineral dissolution (Hirose and Sugimura, 1987), from the surface to depth, z. A concentration, $[^{232}\text{Th}]_{\text{litho}}$, and fractional solubility, S_{Th}, of Th in the lithogenic material can then be used to estimate the flux of lithogenic material which produced the observed dissolved inventory (Eq. 1b), as described by Hsieh et al. (2011). In the surface of the open ocean, this lithogenic flux is generally assumed to be dissolution of aerosol dust, but near ocean margins, including the seafloor, an apparent lithogenic flux could arise from the partial dissolution of hemipelagic or resuspended pelagic sediments.

$$
\tau_{\text{Th}}(z) = \frac{\int_0^z \text{dissolved}^{230}\text{Th} \, dz}{\int_0^z \text{activity}^{234}\text{U} \, \lambda_{230} \, dz} \quad \text{Eq. 1a}
$$

$$
\text{Lithogenic flux}(z) = \frac{\int_0^z \text{dissolved}^{232}\text{Th} \, dz}{\tau_{\text{Th}}(z) \times [^{232}\text{Th}]_{\text{litho}} \times S_{\text{Th}}} = \frac{\text{Dissolved}^{232}\text{Th flux}(z)}{[^{232}\text{Th}]_{\text{litho}} \times S_{\text{Th}}} \quad \text{Eq. 1b}
$$

Using depth profiles of dissolved ^{230}Th and ^{232}Th from the North Pacific, this study aims to: (1) quantify dust deposition at sites under the influence of the Asian dust plume, (2) critically evaluate the paired-Th isotope method for lithogenic fluxes in seawater, and (3) use deepwater ^{232}Th fluxes to demonstrate a deep source of dissolved ^{232}Th, with implications for boundary exchange.
2. Materials and Methods

Sampling for dissolved (<0.45 μm) 232Th and 230Th took place at seven locations (Fig. 1) during the SO202-INOPEX cruise of July-August 2009 (Gersonde, 2012). In this manuscript, Th, 232Th and 230Th refer to the dissolved phase unless otherwise noted. Sampling and analysis of thorium isotopes were carried out by GEOTRACES-compliant (intercalibrated) methods (www.geotraces.org), described fully by Anderson et al. (2012).

Four-to-five liter water samples were analyzed in batches of 10-12. Procedural blanks were determined by processing 4-5 L of Milli-Q water in an acid-cleaned cubitainer acidified to pH ~2 with 6 M HCl as a sample in each batch. For a measure of reproducibility, an aliquot of an intercalibrated working standard solution of dissolved 232Th and 230Th, SW-STD 2010-1 referred to by Anderson et al. (2012), was added to a separate cubitainer with 5 L of Milli-Q water (acidified to pH 2) and also processed like a sample in each batch. Total procedural blanks were 7.1-24.3 pg 232Th and 0.8-1.6 fg 230Th. These blanks are equivalent to 3-30% and 1-20% of the measured seawater 232Th and 230Th signals. Reproducibility of the 232Th (~990 pg/g) and 230Th (~250 fg/g) concentrations in SW-STD 2010-1 over several years has been 4.7% and 1.3%, respectively.

Concentrations of 230Th were corrected for in-growth due to uranium decay during sample storage (1-2 years). In order to use 230Th: 234U disequilibrium to derive a Th residence time, 230Th concentrations must also be corrected for a proportion of 230Th released by the dissolution of lithogenic materials. This is based on concurrent measurements of 232Th, assuming a lithogenic ratio 230Th/232Th = 4.0x10^-6 mol/mol (Roy-Barman et al., 2009). INOPEX results and complete method descriptions are available at PANGAEA and BCO-DMO.
3. Results and Discussion

3.1 Shallow dissolved ^{230}Th-^{232}Th profiles

The INOPEX depth profiles of ^{230}Th are discussed in detail elsewhere (Hayes et al., 2013). The observed near-linear increases in concentration with depth (Fig. 2) reflect the effects of reversible scavenging (Bacon and Anderson, 1982) whereby ^{230}Th, produced uniformly in the water column, is concentrated at depth through cycles of adsorption and desorption with sinking particles. This behavior, especially in the upper 1000 m, has been observed in almost all other ^{230}Th profiles from the region (Nozaki et al., 1981; Nozaki and Nakanishi, 1985; Nozaki et al., 1987; Roy-Barman et al., 1996).

Our results for ^{232}Th are more novel. At each of the seven INOPEX sites, most noticeably at the 4 stations near 40°N, where we expect the highest dust input (Fig. 1) (Mahowald et al., 2005), ^{232}Th increases in concentration with depth from 10 m (within the mixed layer) to a local subsurface maximum between 100-200 m depth (Fig. 2). These well-defined subsurface maxima in ^{232}Th lead us to discuss three possible explanations which are important in evaluating the paired-Th isotope method for lithogenic supplies: (1) lateral advection or eddy-diffusion of ^{232}Th at the subsurface maxima, (2) seasonality of eolian ^{232}Th deposition, and (3) non-steady-state Th scavenging and regeneration dynamics.

3.1.1 Hydrographic Influences

The subsurface ^{232}Th maxima could in principle reflect an advective/diffusive input, for instance, of water recently in contact with detrital sediment. This influence is addressed in two ways: hydrographic context (Fig. 3) and advective-diffusive scaling arguments in comparison to Th residence times. Each station was observed with a warm, fresh and shallow (17-35 m, Table 1) mixed layer, typical of summertime in the subarctic Pacific (Ohno et al., 2009). The mixed
layer depth criterion is a 0.125 kg m$^{-3}$ change in potential density with respect to the surface (Levitus, 1982; Suga et al., 2004). The North Pacific mixed layer has great seasonal variability, however, with much deeper mixed layers in winter. In particular, in the western North Pacific between 30-45°N, mixed layer depths can often exceed 200 m (Ohno et al., 2009; Oka et al., 2007).

These deep mixed layers lead to the formation of various mode waters. North Pacific Subtropical Mode Water (STMW, $\sigma_0 = 25.0$-25.7 kg m$^{-3}$) (Bingham, 1992; Hanawa and Suga, 1995), known to be enriched in Al (Measures et al., 2005), outcrops or forms south of the Kuroshio Extension (generally south of 36°N, Fig. 1) (Chen, 2008; Oka et al., 2007). STMW is therefore not likely to influence the INOPEX sites (north of 38°N), although there is the possibility for cross frontal mixing in this region of high eddy kinetic energy (Ducet et al., 2000).

North Pacific Central Mode Water (CMW, $\sigma_0 = 25.9$-26.5 kg m$^{-3}$) and Transition Region Mode Water (TRMW, $\sigma_0 = 26.4$-26.6 kg m$^{-3}$) form from the deep winter mixed layers north of the Kuroshio Extension and south of the Subarctic Front (Hanawa and Talley, 2001; Oka et al., 2011), encompassing the region of stations SO202-36 through -44 (Fig. 1). The subsurface 232Th maxima (at SO202-36 through -44) occur in the potential density layers, $\sigma_0 = 25.7$-26.5 kg m$^{-3}$ (Fig. 2), overlapping with CMW and TRMW. These mode waters could receive detrital trace metal inputs from the Kuril-Kamchatka margin and/or the Okhotsk Sea via the Oyashio Current (Morton, 2010).

In the case of SO202-44, the subsurface 232Th maximum coincides with a slight intrusion of higher O$_2$ waters (Fig. 3), indicative of a recently ventilated mode water (Measures et al., 2006) and suggestive that this station may be partially influenced by detritally enriched CMW. North Pacific Intermediate Water (NPIW), which also forms near the subarctic boundary is
notable in our profiles as a salinity minimum at 250-500 m depth, $\sigma_0 = 26.8$ kg m$^{-3}$ (Talley, 1993). NPIW, however, is below the subsurface peaks in 232Th. While we cannot rule out lateral transport processes based on hydrography alone, we now consider the timescales necessary for lateral transport.

Ocean dispersion transports non-conservative elements if the transport processes occur on a timescale shorter than the residence time of the element. The Th residence time in the upper 500 m (Table 1) at the INOPEX sites is 3-5 years. We expect horizontal eddy diffusivity, K_H, at a typical rate of 10^3 m2 s$^{-1}$ (Kawabe, 2008), to reach roughly 500 km lateral extent within that timescale ($\Delta x = \sqrt{2K_H \tau_{Th}}$, parameterizing eddy diffusivity as a random-walk process). Station SO202-5 is 312 km from the Kamchatka margin and SO202-24 is 310 km from the nearest Aleutian coast, and therefore these stations will be influenced by any strong Th sources at those coasts by eddy-diffusion alone. Station SO202-44 is 850 km from the Japanese margin. This is longer than our estimated diffusion length but does not necessarily imply the station is isolated from coastal input. Rather the diffusion length is an e-folding length, meaning any coastal to open concentration difference in 232Th will be reduced by 2.71 over that distance. Additionally, advective processes will occur on even faster timescales and over longer distances.

Drifter floats suggest eastward ocean velocities at ~500 m depth in the region of SO202-44 on the order of 1 cm/s (Iwao et al., 2003). Thus advection could carry a Th signal from the Japanese margin to SO202-44 in as little as 2.7 yrs, less than the 500-m Th residence time. Nonetheless, the similarity of the 232Th profiles at SO202-36 through -44 argues against this possibility as one would expect attenuation of an advective signal with distance from the source. Stations SO202-32, -36, -39 and -41 are >1100 km (>3.5 yrs travel time for a 1 cm/s current) from any coast and are much less likely to be influenced by coastal sources of Th.
We cannot rule out the influence of coastal input, or lateral sources in general, from observations of 232Th/230Th alone. In future studies we suggest combined measurements of Th isotopes and 228Ra. This isotope builds up in coastal water in contact with sediments, which contain its parent, 232Th (Moore, 2000). The half-life of 228Ra (5.75 yr) is similar to the residence time of Th in surface waters. Thus it is well suited to trace offshore transport on relevant timescales. The rapid attenuation of the ratio of 228Ra to the long-lived 226Ra (half-life of 1600 yrs) within ~300 km of the coast of Fukushima, Japan (Charette et al., 2013) suggests, therefore, that a significant fraction of coastal Th will not be transported offshore much further than this. Nevertheless, paired measurement of offshore gradients in 228Ra and 232Th are recommended for future studies to better constrain potential sedimentary sources of 232Th.

3.1.2 Seasonality

The deposition of Asian dust over the North Pacific occurs seasonally, the strongest events happening in spring (Duce et al., 1980). This phenomenon has been documented through decadal time-series measurements of aerosol-Al (Parrington et al., 1983) and Fe (Johnson et al., 2003) in Hawaii, and aerosol-232Th in Japan (Hirose et al., 2012). Variability in dissolved Fe in surface waters at ALOHA station (Fig. 1) has also been attributed to spring dust events (Boyle et al., 2005). Since the INOPEX samples were collected in July-August 2009, a time of low aerosol index (http://toms.gsfc.nasa.gov/) in the North Pacific, typical of the summer season, we need to account for how the seasonality of aerosol-232Th input affects our observations. This is done in light of our 230Th-based Th residence times.

The Th residence times calculated for the mixed layer at the INOPEX stations are all roughly 1 yr (Table 1). This reflects an apparent uniformity in scavenging removal of Th in the subarctic Pacific (Hayes et al., 2013). To contrast the subarctic Pacific with an environment of
much lower scavenging intensity, we calculate Th residence times in surface waters using the ^{230}Th-^{232}Th data available from the subtropical North Pacific (Anderson et al., 2012; Roy-Barman et al., 1996). The SAFe station was occupied in May 2009 and ALOHA was occupied in September 1994 for the data used here (see Fig. 1 for locations) which have been corrected for storage in-growth and lithogenic inputs. CTD data was not available from the Sept. 1994-ALOHA cruise, so we have assumed a 50 m mixed layer based on climatology (Church et al., 2013). The subtropical sites have a mixed layer Th residence time of ~2 yrs (Table 1).

In both the subarctic and subtropical North Pacific regions, where mixed layer Th residence times are 1-2 years, seasonal ^{232}Th inputs can be expected to result in muted seasonal changes in ^{232}Th concentrations. Additionally, we would also expect changes in surface ^{230}Th concentration due to short-term (weeks-months) scavenging events to be muted by the filter of a 1-2 year running average. However, Th residence times based on mixed layer ^{230}Th can be overestimated because of upwelling and vertical mixing of higher ^{230}Th-water from below (Luo et al., 1995). Strong seasonal variations in the surface water ^{234}Th from time-series studies in the northwestern North Pacific (Kawakami and Honda, 2007) and at ALOHA (Benitez-Nelson et al., 2001) also argue that a year-long mixed layer Th residence time is an overestimate. In fact, a disconcerting result of applying ^{230}Th-based residence times to ^{232}Th inventories in the mixed layer is an anomalously low ^{232}Th flux at SO202-39 because of an anomalously low ^{232}Th concentration in the mixed layer there (Table 1, Fig. 2), while one would expect consistent flux results for the proximal INOPEX stations in an annually-smoothed average. Based on the available data, it is not clear whether mixed layer ^{230}Th-^{232}Th will be sensitive to seasonality or if this is a limitation of using the longer-lived ^{230}Th to document intra-annual changes. Future time-series measurements should seek to elucidate this point.
3.1.3 Thorium cycling

Given the uncertainties in interpreting the mixed layer 230Th-232Th results, we investigate how 232Th fluxes change as one integrates deeper into the water column, and therefore over a longer timescale. As described in Sec. 1, 230Th production due to 234U decay, 230Th and 232Th inventories are all integrated with depth to produce a residence time and flux that is representative of the water column between the surface and the chosen depth of integration. To fully capture the subsurface 232Th maxima, we choose to integrate to 500 m depth. While by integrating deeper into the water column we lose information about shorter timescales which may be of interest, it reduces the potential uncertainty in Th residence times due to vertical redistribution of 230Th, accounts for seasonal variations in mixed layer depth and particle cycling, and produces more geographically-consistent 232Th fluxes (Table 1). Compared to the mixed layer calculations, Th residence times over 500 m depth increase by a factor of 2-7 (implying slower Th removal), while 232Th fluxes increase by a factor of 3-20. In other words, 232Th inventories increase with depth by more than is expected by the decrease in removal rate associated with a larger integrated water column.

Increased flux with integration depth could be an artifact of vertical mixing, which by causing an overestimation of the mixed layer 230Th residence time could cause the mixed layer 232Th flux to be underestimated (Eq. 1b). To estimate upward flux of 230Th by mixing, we calculate the vertical 230Th concentration gradient across the mixed layer (between 10 and 100 m) and multiply by a vertical mixing coefficient (K_v). For surface waters in this region, we use $K_v = 10^{-5}$ m2s$^{-1}$, as determined by Charette et al. (2013). The resultant upward flux of 230Th by vertical mixing ($K_v \cdot \frac{d^{230}\text{Th}}{dz}$) for the INOPEX stations is 5-60% of in-situ production of 230Th in the mixed layer. Thus, our Th residence times may be overestimated by a factor of 1.05-2.5,
and consequently the mixed layer 232Th fluxes may be underestimated by the same factor. While the true K_v at these sites may have been $>10^{-5} \text{ m}^2\text{s}^{-1}$, this effect is most likely not a large enough to explain the relative increase in observed 232Th fluxes when integrating to 500 m.

Similarly, vertical mixing can represent a supply or removal term for 232Th in the mixed layer. Following an approach like that described above for 230Th, for each station we calculate a flux of 232Th due to vertical mixing and compare it to the magnitude of our original estimate of mixed layer dissolved 232Th flux (Table 1). Results suggest that vertical mixing can range from a net source of 232Th to the mixed layer, contributing a maximum of 50% to the calculated 232Th flux at SO202-39, to a small net loss (only at SO202-32, where the concentration of 232Th decreases below the mixed layer and the loss by vertical mixing represents 5% of the mixed layer 232Th flux). When 232Th is added to the mixed layer by vertical mixing, the calculated flux of dissolved 232Th will overestimate the supply due to dust dissolution. This counteracts to some degree the underestimation of dust supply introduced by vertical mixing of 230Th (see above). Therefore, we do not consider vertical mixing a significant factor in our observation of increased 232Th flux with integration depth.

Lastly, we explore the possibility that the increase with integration depth of the calculated dissolved 232Th flux results from the generation of operationally defined dissolved 232Th ($<0.45 \mu\text{m}$) from particulate 232Th by a process that does not significantly affect the dissolved 230Th distribution involving colloidal particles (0.02–0.45 μm). Truly dissolved, or soluble, species are also operationally defined (<0.02 μm). It has been shown in seawater leaching experiments that Fe dissolved from aerosols is dominated by the colloidal fraction (Aguilar-Islas et al., 2010) so it is reasonable to hypothesize that Th dissolves from dust as colloids as well. Each 230Th atom in the ocean however is produced from a single decay event that releases it into solution. The
average dissolved speciation of two Th isotopes may therefore be different, 230Th more soluble, 232Th more colloidal, because of their differing sources, with implications for their cycling in the water column. For instance, when colloidal 232Th is converted into truly dissolved 232Th, this represents a net addition of dissolved 232Th unaccounted for by the adsorption/desorption (reversible scavenging) reactions of 230Th.

Few data on marine colloidal 232Th/230Th exist. In two out of three samples from the Gulf of Mexico, it was found that a larger proportion of dissolved 232Th existed in the colloidal phase than did the radiogenic 234Th (Baskaran et al., 1992). However, it is worth noting that Baskaran et al. (1992) could not confidently exclude 232Th contamination. In contrast, Roy-Barman et al. (2002) found that the 232Th/230Th ratio did not change between dissolved (<0.2 µm) and ultra-filtered (<1 kDa) seawater from the Mediterranean Sea, suggesting similar speciation of the 2 isotopes in both colloidal and truly dissolved size-classes.

Apparently low 232Th concentrations in the mixed layer (most dramatically for example at SO202-39) could be the result of rapid removal by colloidal aggregation and/or biologically-mediated particle packaging followed by the sinking of these particles with which 230Th does not equilibrate. Colloidal material has a very rapid turnover time (days to weeks) in the upper ocean (Moran and Buesseler, 1992) and laboratory experiments have shown that Th can be effectively regenerated from particles through protistan grazing (Barbeau et al., 2001). Therefore, apparently high 232Th concentrations at depth (the subsurface maxima) could represent the disaggregation of those sinking particles into colloids or fully regenerated as truly dissolved Th.

Regeneration of Th at 100-200 m depth has also been documented for the shorter-lived Th isotopes, as excess activities of 234Th (Buesseler et al., 2009; Maiti et al., 2010) and 228Th (Li et al., 1980; Luo et al., 1995) over their soluble parent nuclides (238U and 228Ra, respectively).
While these isotopes are also products of in-situ decay (not dust dissolution), because of their much shorter half-lives (24.1 days and 1.9 yrs, respectively), their excess activities below the euphotic zone require rapid regeneration of particulate Th.

Perhaps the shorter-lived Th isotopes can capture rapid scavenging dynamics while 230Th does not. For instance, we do not observe strong evidence for regeneration at depth in the 230Th profiles, considering the near-linear depth profiles of dissolved 230Th (Fig. 2). Alternatively, 230Th concentration anomalies in profile may be smoothed by vertical mixing, as 230Th displays larger depth gradients in concentration than the other Th isotopes. Future size-fractionated Th isotope studies in seawater will inform us about differing removal rates among the thorium isotopes (Marchal and Lam, 2012). For instance, the high depth-resolution 234Th-232Th-230Th-228Th data being collected by the GEOTRACES program will help test the hypothesis that each dissolved Th isotope is subject to similar removal rates. Identifying the chemical composition of the colloids important for cycling Th (e.g., lithogenic versus organic) would also be of great interest.

3.2 Full water column 232Th profiles

Before applying the 232Th data to estimate lithogenic fluxes, it is useful to consider the full-depth distribution of 232Th measured in the INOPEX region (Fig. 4). Among stations SO202-36 through -44, the 232Th profiles show concentration maxima above 500 m depth, minimum concentrations at ~1-3 km depth, and generally increasing concentrations within about 1 km of the seafloor. The only previously reported full-depth profile of dissolved 232Th from the subarctic Pacific (north of 38° N), station AN-4 (39.6°N, 145.5°E) (Nozaki et al., 1987), did not sample above 1 km depth, and showed Th concentrations 2-5 times greater (100-240 pg/kg) than those observed at SO202-44 at similar depths. This may reflect higher Th input near the Japanese
coast but also could be related to differences in sampling and methodology as seawater Th analysis has progressed (Huh et al., 1989). Increasing Th concentration near the seafloor has also been found in the subtropical Pacific (Nozaki and Horibe, 1983; Okubo et al., 2012; Roy-Barman et al., 1996). The average dissolved 232Th concentration for all the INOPEX samples is 33 pg/kg, higher than the average (~15 pg/kg) observed in the subtropical Pacific (Okubo et al., 2012; Roy-Barman et al., 1996) and tropical Pacific (Singh et al., 2013).

The “mid-depth-minimum” profile shape of the 232Th profiles of SO202-32 through -44 is similar to that of Al in the North Pacific (Measures et al., 2005; Orians and Bruland, 1986). As Orians and Bruland (1986) pointed out for Al, we conclude that there are two sources of Th to the ocean: one shallow due to dust dissolution and one deep associated with sediment dissolution/resuspension; and one removal mechanism, scavenging throughout the water column. At SO202-5 and SO202-24, 232Th appears to increase in concentration continuously with depth, implicating a full-depth sediment source from the nearby continental margin. Resuspension of sediments by deep currents along the Aleutian and Kurile margins (Owens and Warren, 2001) may enhance the release of dissolved 232Th near the seafloor.

At all sites, the near-bottom source of dissolved 232Th is most likely introduced by lateral mixing or advection along isopycnals that impinge on the seafloor where sediment resuspension/dissolution occurs. Upward mixing of dissolved 232Th from the seafloor directly underlying the sampling sites is most likely too slow in comparison to lateral transport (Roy-Barman, 2009). We cannot at this time, however, directly trace the source of this deep 232Th input, as sediment resuspension appears to be spatially inhomogeneous (Hayes et al., 2013; Okubo et al., 2012) and high quality data on dissolved 232Th from the North Pacific margins do not yet exist.
To further dissect the Th cycle in the North Pacific, we calculate the depth-integrated dissolved 232Th flux at all depths in the INOPEX, ALOHA and SAFe profiles (Fig. 5). The 232Th flux always increases rapidly with integrated depth to at least 500 m. Excluding SO202-5 and SO202-24, which appear to receive 232Th from the continental margin at all depths, the 232Th flux does not increase greatly between 1 km and 3.5 km depth. We interpret this regular pattern to indicate that after the dissolved Th flux is generated due to dust dissolution above 1 km depth, little new Th is added in the deeper water column, until within about 1 km of the seafloor where the flux begins to increase again due to the bottom sediment source.

The full-depth dissolved 232Th flux at the subtropical sites is 3-4 times smaller than the INOPEX sites. This likely reflects the greater aerosol-232Th input in the subarctic; however, the subarctic Pacific may also be influenced by a greater sedimentary 232Th source (boundary exchange).

3.3 Dissolved 232Th-based dust fluxes

Because 232Th fluxes change dramatically with integration depth, it is necessary to justify the depth at which depth-integrated dissolved 232Th fluxes best represent input from dust. Originally we chose 500 m to integrate through features of the 232Th concentration profile that suggest rapid Th cycling in the upper water column. In general, the integrated 232Th fluxes reach an asymptote with integration depth around 1 km. Importantly, between 100 m and 1000 m integration depth, the relative variation between the station fluxes remains similar (Fig. 5). Therefore the exact integration depth within the zone of increasing 232Th flux may be less important than choosing a standard depth, although this will influence the apparent fractional solubility (see below). We propose to continue using 500 m integration as a baseline for estimating open ocean dust fluxes from dissolved 232Th-230Th data. This may need to be revised.
depending on the Th regeneration signals observed, seasonality in mixed layer depth, or proximity to advective/diffusive Th sources.

In order to estimate dust flux from dissolved 232Th flux, estimates of the 232Th concentration in dust and the fractional solubility of Th are necessary (Eq. 1b). Dust sources have 232Th concentrations in a narrow range of the average for the upper continental crust (McGee et al., 2007). A recent study determined an end-member concentration for Th in East Asian aerosol dust of 14.6±0.2 ppm (Serno et al., in revision), making it simple to apply a $[\text{Th}]_{\text{litho}}$ with confidence for estimating dust fluxes (Eq. 1b). It is possible that volcanic ash presents another eolian source of dissolved 232Th to the water column. Although Th solubility of volcanic ash is not known, the Th concentration of volcanic material in marine sediments from this region is 2.2 ppm (Serno et al., in revision), much lower than that of aerosol dust, and the contribution of volcanic material to the lithogenic flux (as determined in the sediments) becomes small with distance >500 km from the coast (Serno et al., in revision). Contribution from volcanic ash could therefore cause a small overestimate of dust deposition at stations SO202-5 and -24, but it is expected to be negligible at other stations.

The fractional solubility, S_{Th}, is much more difficult to estimate with available data. Previous studies have estimated this factor in the range 1-20% (Arraes-Mescoff et al., 2001; Hsieh et al., 2011; Roy-Barman et al., 2002). Following the approach of Hsieh et al. (2011), by fixing a $[\text{Th}]_{\text{litho}}$, and assuming the model-derived dust deposition estimates of Mahowald et al. (2005) are correct (within 20% uncertainty), one can use Eq. 1b and the calculated dissolved 232Th fluxes to estimate the fractional solubility. Using our mixed layer fluxes, this technique implies $S_{\text{Th}} = 2$-10% for the INOPEX, ALOHA and SAFe sites, similar to that found by Hsieh et al., while using the 500-m fluxes we infer $S_{\text{Th}} = 15$-40% (Table 2, Fig. 6). Increases in apparent
solubility may be due to dissolution or regeneration processes occurring at depth. For instance, lithogenic particles may continue to be leached at subsurface depths by the low pH microenvironments associated with microbial colonies or zooplankton. However, given the refractory nature of Th, it seems unlikely that S_{Th} can be as high as 40% under any oceanic conditions. We suggest that such high apparent fractional solubility indicates that the model-derived results underestimate the true dust deposition in this region, although lateral supply of sedimentary 232Th cannot be excluded entirely (Sec. 3.1.1).

An independent estimate of Th solubility can be derived by comparing the measured upper water column 232Th flux to an annually resolved measurement of aerosol 232Th flux on land, Mt. Haruna, Japan (Hirose et al., 2010). After correction for local sources, in 2007, the annual total 232Th flux was 27.6 µg m$^{-2}$yr$^{-1}$. The nearest dissolved 232Th flux (SO202-44) is 4.7 µg m$^{-2}$yr$^{-1}$, implying 17% Th-solubility. We also compare our dissolved 232Th fluxes to the total 232Th fluxes determined in the underlying surface sediments at the INOPEX sites. The Holocene, eolian component of sediment flux was determined with geochemical end-members (terrigenous 4He, 232Th, and rare earth elements) and 230Th-normalized burial fluxes (Serno et al., in revision). The eolian-232Th sediment fluxes compared with the 500-m dissolved 232Th fluxes indicate $S_{\text{Th}} = 22\pm6\%$. Based on these two comparisons, we assume a fractional Th solubility of 20±5%.

Our estimates of dust deposition to the North Pacific (Table 2), derived by integrating 232Th inventories to 500 m, agree with the model results (Mahowald et al. 2005) reasonably well for the subtropical sites (~0.4 g m$^{-2}$yr$^{-1}$), while in the subarctic our estimates are 1.3-2 times higher than predicted in the model (~1.6 g m$^{-2}$yr$^{-1}$ for SO202-36- through -44). We can also compare our 500-m dissolved 232Th-based dust estimates with the Holocene dust deposition estimates from the underlying sediment-232Th fluxes (Serno et al., in revision), while we
acknowledge that both of these techniques are subject to the uncertainty of lateral 232Th transport in the water column. At 4 of the 6 INOPEX sites where both water column and sediment measurements were made, dissolved 232Th- and sediment 232Th-based dust fluxes agree within error. This is encouraging since the two techniques average over very different timescales (3-5 years in 500 m water depth versus thousands of years in the sediments).

Dissolved Al has also been used to estimate dust deposition in the North Pacific (Measures et al., 2005) in a similar way to that described for Th, although for Al, a residence time, in addition to a fractional solubility, must be assumed. These Al results from the subarctic suggest very low dust fluxes (< 0.3 g m$^{-2}$ yr$^{-1}$), even lower than model-derived estimates. We hypothesize that the assumed Al residence time in surface waters (5 yrs) is overestimated, especially in the more productive subarctic Pacific (Shiller and Bairamadgi, 2006).

3.4 Dissolved metal fluxes based on dissolved 232Th fluxes

If 232Th sources can be used as a model for other lithogenic trace metals (Me), one can estimate the flux of metals derived from the same lithogenic source. This requires knowledge of the metal to 232Th ratio of the source and the relative fractional solubility (Eq. 2):

$$Dissolved\text{ Me flux} = \left(\frac{Me}{^{232}Th}\right)_{litho} \times \left(\frac{SMe}{STh} \right) \times Dissolved\text{ }^{232}\text{Th flux} \quad (Eq. 2)$$

The relative solubility of aerosol dust is also largely unconstrained, but it is currently being pursued in the GEOTRACES program through leaching experiments (Morton et al., 2013). Relative solubilities may have an advantage over separately-determined metal solubility during leaches in that they may be less sensitive to artifacts relating to, e.g., the length of leaching, the type of leach solution or adsorption to container walls. Relative solubility may also be less sensitive to the source of dust. For instance, while fractional Fe solubility estimates range by
orders of magnitude (Sholkovitz et al., 2012), the relative Fe/Th solubility may be more consistent among dust with differing source regions or atmospheric histories.

Increases in the apparent solubility when considering the longer-term processing of lithogenic particles, similar to that for Th, have been reported for Fe (Boyd et al., 2010; Frew et al., 2006; Hansard et al., 2009). On this basis, we infer a general similarity in the dissolution of relatively insoluble lithogenic elements such as Fe, Nd, etc. Assuming an Fe/Th ratio of the average continental crust, 3262 g g$^{-1}$ (Taylor and McLennan, 1985), and congruent dissolution ($S_{Fe}/S_{Th} = 1$), the 232Th flux data from the INOPEX sites around 40°N translates into a dissolved Fe flux due to dust dissolution of about 15 mg Fe m$^{-2}$yr$^{-1}$. Applying our assumed $S_{Fe}=20\%$ to model estimates of natural mineral Fe deposition (Mahowald et al., 2009) gives 5-10 mg Fe m$^{-2}$yr$^{-1}$. This suggests, similar to what was concluded for dust fluxes in Sec. 3.3, that models currently underestimate the flux of soluble aerosol Fe, at least in the INOPEX region.

Note that the dissolved 232Th flux and the 232Th-based dissolved Fe flux reflect the input of natural mineral aerosols. Total dissolved Fe fluxes, on the other hand, especially in a region downwind of industrial nations such as Japan and China, will likely have a significant anthropogenic component (Gao et al., 2007; Luo et al., 2008). Furthermore, volcanic ash contains little Th, but may be an important source of Fe (Duggen et al., 2010).

3.5 Bottom water 232Th fluxes as a constraint on boundary exchange

While depth-integrated dissolved 232Th fluxes arise primarily from the input of aerosol dust in shallow waters, additional fluxes near the seafloor appear to arise from the dissolution of post-depositional sediments (Figure 5). This may represent the boundary exchange source of trace elements suspected to play a role for elements of paleoceanographic interest such as Nd and Hf (Lacan and Jeandel, 2005; van de Flierdt et al., 2004). As an attempt to quantify this source,
we take the difference in integrated 232Th flux between the bottom of each profile and 1 km depth (below which input from dust dissolution/regeneration processes attenuates). These results range from 1-5 μg 232Th m$^{-2}$yr$^{-1}$ (Fig. 5), representing ~30% of the full-depth dissolved 232Th flux. This probably underestimates the boundary exchange flux at SO202-5 and SO202-24 which may receive a sediment dissolution flux at all depths.

Here we also assume crustal Nd/Th and Hf/Th ratios of 2.4 and 0.54, in g g$^{-1}$ respectively (Taylor and McLennan, 1985), and congruent dissolution. Of course, few data exist on S_{Nd} or S_{Hf} to test these assumptions. A field study in the North Atlantic estimated S_{Nd} =20% (Tachikawa et al., 1999), consistent with our assumption, while experimental leaches suggest smaller values S_{Nd} =1-2% (Greaves et al., 1994) and 5-12% (Arraes-Mescoff et al., 2001). Under our assumptions, the bottom water dissolved Th fluxes from the North Pacific sites imply bottom fluxes of 2.4-12 μg m$^{-2}$yr$^{-1}$ dissolved Nd and 0.5-2.7 μg m$^{-2}$yr$^{-1}$ dissolved Hf (Eq. 2). For scale, the water column inventories (~5 km depth) of dissolved Nd and Hf in the North Pacific are 26,000 μg m$^{-2}$ (Amakawa et al., 2009) and 2100 μg m$^{-2}$ (Firdaus et al., 2011), respectively. The residence time of these elements is also still under investigation, but for purposes of illustration, let us assume 500 yrs for both, within the range of estimated values (van de Flierdt et al., 2004). Under steady state, supply and removal fluxes for the full water column cycles of Nd and Hf would then be 52 and 7.1 μg m$^{-2}$yr$^{-1}$, respectively. Therefore the boundary exchange fluxes calculated are potentially significant (10’s of percent, similar to Th).

4. Conclusions and Further Work

The long-lived Th isotopes offer a unique and powerful tool to evaluate the supply of trace elements from lithogenic sources. We have identified, however, a number of sources of uncertainty that must be addressed in future studies to further refine our estimates of lithogenic
fluxes. These include the lateral transport of 232Th in the water column, seasonal effects of Th input and removal, the chemical speciation and size-partitioning of 232Th and 230Th in seawater, and fractional metal solubility.

Dissolved 232Th and 230Th distributions in the North Pacific demonstrate that the oceanic Th cycle is relatively simple, with two sources, including aerosol dust dissolution in shallow waters and sediment dissolution/resuspension in bottom water, and one removal mechanism, involving scavenging throughout the water column. The delivery mechanism of dissolved Th from dust dissolution, however, is relatively complex, possibly involving rapid export of colloidal Th and its subsequent regeneration or disaggregation within 500-1000 m below the sea surface. This mechanism, as well as the mechanism describing how Th is released from sediment dissolution/resuspension at the seafloor, deserves further investigation. Dissolved 232Th fluxes, nonetheless, can be applied to estimate fluxes of other lithogenically-sourced dissolved trace metals (such as aerosol-derived Fe or boundary exchange-derived Nd or Hf), or fluxes of the parent lithogenic material (such as aerosol dust) with reasonable accuracy.

Acknowledgements

We acknowledge the German Ministry of Education and Research (BmBF) for financially supporting SO-202-INOPLEX, the U. S. National Science Foundation for funding the work at L-DEO (award 1029211), and the crew of the R/V Sonne. Natalie Mahowald is thanked for providing the model estimates of dust deposition. Comments made by Jerry McManus, Samar Khatiwala, Leo Peña, Mathieu Roy-Barman, 3 anonymous reviewers, and Gideon Henderson were helpful during the writing of the manuscript. Figure 1 was produced using Ocean Data View (Schlitzer, 2011).
References

Morton, P.L., 2010. Trace metal biogeochemistry in the western North Pacific, PhD Dissert. Old Dominion University, Norfolk, VA.

Figure 1. Map of the locations from which dissolved Th data is presented in the paper overlain with the model-derived atmospheric dust deposition estimates of Mahowald et al. (2005). Schematic representations of the Subarctic Front (SAF), the Kuroshio Extension (KE) and Oyashio Current (OY) are included as drawn by Harrison et al. (2004) and Chen (2008).
Figure 2. Shallow depth profiles of dissolved 232Th and 230Th from the INOPEX stations along coordinates of water depth (top) and potential density (bottom). The profiles in the left four panels are located along 40°N (Fig. 1) and are expected to receive higher dust input than the stations whose profiles are plotted in the right four panels, according to the Mahowald et al. (2005) model.
Figure 3. Hydrographic parameters calculated from CTD measurements for the INOPEX stations. Fluorometer measurements (arbitrary units) were only available from some stations.
Figure 4. Full depth profiles of dissolved 232Th and 230Th from the INOPEX sites. Measurement errors are smaller than or equal to the symbol size.
Figure 5. Depth profiles of depth-integrated dissolved Th residence times (left) and 232Th fluxes (right) for the locations in Fig. 1. Error bars on the x-axes are 3-5% in both cases and are omitted for clarity. Dissolved 232Th-230Th from ALOHA and SAFe were reported by Roy-Barman et al. (1996) and Anderson et al. (2012), respectively.
Figure 6. Dissolved 232Th fluxes as calculated for the mixed layer (triangles) and by integrating Th inventories from the surface to 500 m depth (diamonds) from the locations in Fig. 1 against model-derived estimates of dust deposition for the same locations (Mahowald et al., 2005). The dotted and solid lines represent a constant fractional Th solubility of 5.5 and 20%, respectively, both assuming a Th concentration in East Asian dust of 14.6 ppm (Serno et al., in revision). Note break in y-axis.
Table 1. Dissolved Th residence times and fluxes (steady state rates of supply and removal) calculated for the mixed layer (ML), and by integrating from the sea surface to 500 m water depth. Mixed layer depths (MLD) were determined as the depth at which potential density became 0.125 kg m\(^{-3}\) greater than at the surface from CTD (Fig. 3) at the time of sampling.

<table>
<thead>
<tr>
<th>Station</th>
<th>MLD (^a) (m)</th>
<th>(\tau) (ML, yrs)</th>
<th>(\tau) (500 m, yrs)</th>
<th>(^{232})Th flux (ML, (\mu g) m(^{-2}) yr(^{-1}))</th>
<th>(^{232})Th flux (500 m, (\mu g) m(^{-2}) yr(^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>SO202-5</td>
<td>18</td>
<td>0.7 ± 0.3</td>
<td>4.7 ± 0.1</td>
<td>0.33 ± 0.07</td>
<td>2.26 ± 0.07</td>
</tr>
<tr>
<td>SO202-24</td>
<td>35</td>
<td>0.7 ± 0.2</td>
<td>4.9 ± 0.1</td>
<td>0.52 ± 0.04</td>
<td>2.00 ± 0.05</td>
</tr>
<tr>
<td>SO202-32</td>
<td>26</td>
<td>1.2 ± 0.2</td>
<td>3.7 ± 0.1</td>
<td>0.82 ± 0.05</td>
<td>3.50 ± 0.10</td>
</tr>
<tr>
<td>SO202-36</td>
<td>24</td>
<td>1.0 ± 0.3</td>
<td>3.3 ± 0.1</td>
<td>0.76 ± 0.10</td>
<td>5.48 ± 0.23</td>
</tr>
<tr>
<td>SO202-39</td>
<td>19</td>
<td>0.8 ± 0.3</td>
<td>3.6 ± 0.1</td>
<td>0.24 ± 0.05</td>
<td>4.64 ± 0.16</td>
</tr>
<tr>
<td>SO202-41</td>
<td>22</td>
<td>1.1 ± 0.3</td>
<td>4.0 ± 0.1</td>
<td>0.84 ± 0.10</td>
<td>4.74 ± 0.15</td>
</tr>
<tr>
<td>SO202-44</td>
<td>17</td>
<td>0.8 ± 0.3</td>
<td>4.2 ± 0.1</td>
<td>0.92 ± 0.16</td>
<td>4.70 ± 0.14</td>
</tr>
<tr>
<td>ALOHA</td>
<td>20(^b)</td>
<td>2.2 ± 1.3</td>
<td>6.4 ± 1.2</td>
<td>0.34 ± 0.06</td>
<td>1.06 ± 0.26</td>
</tr>
<tr>
<td>SAFe</td>
<td>15</td>
<td>2.2 ± 0.5</td>
<td>5.2 ± 0.4</td>
<td>0.12 ± 0.03</td>
<td>1.03 ± 0.09</td>
</tr>
</tbody>
</table>

\(^a\)MLD in the region of SO202 stations is highly seasonal. Data here was collected in late summer while winter mixed layers can exceed 200 m (see section 3.1.2).

\(^b\)CTD data was not available from the 1994 cruise from which this data was collected by Roy-Barman et al. (1996). Surface samples were taken from 25 m depth and noted to be within the mixed layer. We chose 50 m mixed layer based on climatology (Church et al. 2013).
Table 2. Apparent fractional Th solubilities derived by comparing model-derived dust deposition

<table>
<thead>
<tr>
<th>Station</th>
<th>Model-Dust Deposition (g m$^{-2}$ yr$^{-1}$)</th>
<th>S_{Th} (ML, %) b</th>
<th>S_{Th} (500 m, %) c</th>
<th>Dissolved Th-derived dust deposition d (500 m, $S_{Th} = 20%$, g m$^{-2}$ yr$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SO202-5</td>
<td>0.58 ± 0.12</td>
<td>3.9 ± 1.8</td>
<td>26.5 ± 6.7</td>
<td>0.77 ± 0.20</td>
</tr>
<tr>
<td>SO202-24</td>
<td>0.45 ± 0.09</td>
<td>8.0 ± 2.8</td>
<td>30.5 ± 7.7</td>
<td>0.69 ± 0.17</td>
</tr>
<tr>
<td>SO202-32</td>
<td>0.57 ± 0.11</td>
<td>9.9 ± 2.6</td>
<td>42.3 ± 10.7</td>
<td>1.20 ± 0.30</td>
</tr>
<tr>
<td>SO202-36</td>
<td>0.96 ± 0.19</td>
<td>5.4 ± 2.1</td>
<td>39.1 ± 10.0</td>
<td>1.88 ± 0.48</td>
</tr>
<tr>
<td>SO202-39</td>
<td>1.13 ± 0.23</td>
<td>1.5 ± 0.6</td>
<td>28.2 ± 7.1</td>
<td>1.59 ± 0.40</td>
</tr>
<tr>
<td>SO202-41</td>
<td>1.18 ± 0.24</td>
<td>4.9 ± 1.6</td>
<td>27.6 ± 7.0</td>
<td>1.62 ± 0.41</td>
</tr>
<tr>
<td>SO202-44</td>
<td>1.23 ± 0.25</td>
<td>5.1 ± 1.8</td>
<td>26.1 ± 6.6</td>
<td>1.61 ± 0.41</td>
</tr>
<tr>
<td>ALOHA</td>
<td>0.38 ± 0.08</td>
<td>6.1 ± 3.7</td>
<td>19.1 ± 7.6</td>
<td>0.36 ± 0.13</td>
</tr>
<tr>
<td>SAFe</td>
<td>0.45 ± 0.09</td>
<td>1.8 ± 0.5</td>
<td>15.7 ± 4.2</td>
<td>0.35 ± 0.09</td>
</tr>
</tbody>
</table>

aDust deposition estimates extracted from the model results of Mahowald et al. (2005), assuming 20% uncertainty

bFractional solubility of Th using ML dissolved 232Th fluxes, assuming model dust deposition is correct and the concentration of Th in East Asian dust is 14.6±0.2 ppm (Serno et al., in revision)

cFractional solubility of Th using dissolved 232Th fluxes integrated from the sea surface to 500 m depth, assuming model dust deposition is correct and the concentration of Th in East Asian dust is 14.6±0.2 ppm (Serno et al., in revision)

dDust deposition estimates based on 232Th fluxes integrated from the sea surface to 500 m depth, assuming a fractional Th solubility of 20±5% (see section 3.3), and a Th concentration in East Asian dust of 14.6±0.2 ppm (Serno et al., in revision)
Chapter 3. Chemical fractionation of 231Pa/230Th in the Pacific Ocean: paleoceanographic implications

Christopher T. Hayesa,b, Robert F. Andersona,b, Martin Q. Fleishera, Sascha Sernoa,c, Gisela Wincklera,b, Rainer Gersonded

aLamont-Doherty Earth Observatory of Columbia University, Palisades, NY, USA
bDepartment of Earth and Environmental Sciences, Columbia University, New York, NY, USA
cDFG-Leibniz Center for Surface Process and Climate Studies, Institute of Earth and Environmental Science, University of Potsdam, Potsdam-Golm, Germany
dAlfred Wegener Institute for Polar and Marine Research, Bremerhaven, Germany

In preparation for Earth and Planetary Science Letters
Abstract

The ratio of unsupported protactinium-231 to thorium-230 in marine sediments, \((\text{Pa/Th})_{xs}\), is potentially sensitive to several processes of oceanographic and climatological interest: deep ocean circulation, marine biological productivity (as it relates to total particle flux) and particle composition (specifically biogenic opal and authigenic Mn). In order to attribute variations in \((\text{Pa/Th})_{xs}\) observed in sediment records to changes in specific processes through time, a better understanding of the chemical cycling of these elements in the modern ocean is necessary. To this end, a survey was undertaken of \((\text{Pa/Th})_{xs}\) in surface sediments from the subarctic Pacific (SO202-INOPLEX expedition) in combination with a Pacific-wide compilation of published data. Throughout the Pacific, \((\text{Pa/Th})_{xs}\) is robustly correlated with the opal content of sediments. In the North and equatorial Pacific, simultaneous positive correlations with productivity indicators suggest that boundary scavenging and opal scavenging combine to enhance the removal of Pa in the eastern equatorial Pacific and subarctic Pacific. Deep ocean water mass ageing (>3.5 km) associated with the Pacific overturning appears to play a secondary role in determining the basin scale distribution of \((\text{Pa/Th})_{xs}\). We hypothesize that through time \((\text{Pa/Th})_{xs}\) distributions in the Pacific could define the evolving boundaries of contrasting biogeographic provinces in the North Pacific, while the influence of hydrothermal scavenging of Pa potentially confounds this approach in the South Pacific.
1. Introduction

Chemical proxies of past ocean change are built upon knowledge of an association between certain elements or isotopes and a controlling ocean property or process. The ratio of the radionuclides ^{231}Pa to ^{230}Th, in excess of that supported by the in-situ decay of their respective parents, $(\text{Pa/Th})_{xs}$, in ocean sediments has multiple potential controls: biological productivity, total particle flux, advective overturning circulation or particle composition (Chase et al., 2002; Kumar et al., 1993; Walter et al., 1999; Yu et al., 1996). To determine how variations in $(\text{Pa/Th})_{xs}$ in sediment records can be interpreted as a proxy for a process of interest, observations of $(\text{Pa/Th})_{xs}$ in oceanic environments that differ in the potentially controlling parameters are necessary.

Here we report new $(\text{Pa/Th})_{xs}$ data from the SO202-INOPEX expedition to the subarctic Pacific (Gersonde, 2012), which sampled environments of relatively high rates of biological productivity and burial of biogenic opal. To assess the influence of the Pacific overturning circulation and a larger range of oceanic particle composition and flux, we combine the INOPEX data with published surface sediment data throughout the Pacific basin. Enhanced removal of Pa due to opal scavenging is found to be the most robust influence on $(\text{Pa/Th})_{xs}$ in modern Pacific sediments. We briefly discuss how this proxy might be used in determining how the geographic distribution of particle composition, which is ultimately related to biogeographic community structure, has evolved over glacial-interglacial cycles.

2. Background and approach: potentially controlling processes

Dissolved uranium is homogeneously distributed throughout the ocean with a uniform isotopic composition (Andersen et al., 2010; Chen et al., 1986; Weyer et al., 2008). This leads to
a constant and well-known production of the daughter products ^{231}Pa (from ^{235}U) and ^{230}Th (from ^{234}U) throughout the water column at a constant initial activity ratio of 0.093. Because of their particle-reactive, insoluble nature, Pa and Th are removed to the seafloor by scavenging onto particles on timescales of 50-200 yrs and 10-40 yrs (Henderson and Anderson, 2003), respectively, i.e., rapidly compared to their respective half-lives: 32,760 yrs for ^{231}Pa (Robert et al., 1969) and 75,690 yrs for ^{230}Th (Cheng et al., 2000). It is their uniform source and differential timescales of removal by scavenging which make them potentially sensitive to several processes: particle flux, overturning circulation and particle composition. We elaborate on each process below and describe how we assess the associated influence on $(\text{Pa}/\text{Th})_{xs}$ distributions. Section 2.4 describes the new surface sediment data presented here and the published results used in our analysis.

2.1 Biological productivity, total particle flux and boundary scavenging

Regional variations in biological productivity are closely related, though not equivalent, to regional variations in total particle flux, as sinking particles are dominated by biogenic components, at least in most of the open ocean (François et al., 2002; Honjo et al., 2008). When lateral gradients in particle flux exist, scavenged elements are potentially removed preferentially in areas of high particle flux often associated with ocean margins, a concept termed boundary scavenging (Bacon et al., 1976; Spencer et al., 1981). More intense scavenging reduces ^{231}Pa and ^{230}Th concentrations in margin seawater to a greater degree than in the open ocean. This situation creates lateral gradients in concentration which should cause dispersive fluxes of both nuclides from low to high flux sites. More ^{231}Pa, relative to ^{230}Th, can be transported laterally because of its longer residence time (Bacon, 1988). This interpretation is consistent with the finding of
many studies in the Pacific (Anderson et al., 1983a; Anderson et al., 1983b; Lao et al., 1993; Lao et al., 1992b; Mohamed and Tsunogai, 1998; Shimmield et al., 1986; Yang et al., 1986) that the

\((\text{Pa/Th})_{\text{xs}}\) of particulate matter and sediments from the continental margin are generally much higher than those of open-ocean sites. A recent investigation of boundary scavenging in the water column found that Pa is more efficiently scavenged throughout the entire subarctic Pacific gyre, not only at continental margins (Hayes et al., 2013).

To assess the influence of boundary scavenging on sedimentary

\((\text{Pa/Th})_{\text{xs}}\), we use satellite-derived estimates of net primary productivity (NPP) and export productivity (EP, the fraction of primary productivity which is exported below the euphotic zone). These parameters are not equivalent to particle flux, which is more relevant to scavenging, but more biological production of organic carbon at the surface (NPP) and its export to depth (EP) are both likely related to scavenging intensity (Coale and Bruland, 1987). The excellent geographic coverage of satellite records allows us to estimate these parameters for any given location. Long term annual averages of NPP were calculated using monthly SeaWiFS-data (1997-2009, 1/6°-resolution) and the standard VGPM algorithm (http://www.science.oregonstate.edu/ocean.productivity) (Behrenfeld and Falkowski, 1997). Average EP values were calculated according to Laws et al. (2000) as a function of the aforementioned NPP and the World Ocean Atlas 2009 sea-surface temperature (Locarnini et al., 2010) at 1°-resolution.

One could in principle also compare sedimentary

\((\text{Pa/Th})_{\text{xs}}\) with burial fluxes calculated by \(^{230}\text{Th}\)-normalization (François et al., 2004) to assess the influence of boundary scavenging since both these parameters are based on the same measured quantities. Th-normalization calculates a sediment flux assuming \(^{230}\text{Th}\) is being buried at its production rate in the overlying
water column. The burial or preserved sediment flux is to first order related to particle flux or scavenging intensity in the overlying water column; however spatial variations in burial fluxes become decoupled with spatial variations in particle rain because of the differential preservation of oceanic particles. For instance, biogenic CaCO$_3$ particles contribute to scavenging throughout the water column, but will only contribute to the total burial flux if the core site is above the calcite compensation depth (~4.5 km over most of the Pacific (Berger and Winterer, 1974)). Additionally, burial fluxes of biogenic opal (Nelson et al., 1995) and organic matter (Emerson and Hedges, 1988) are highly attenuated signals of their particle rain to the seafloor and the degree of attenuation is spatially variable. Therefore, we appeal to the satellite-derived productivity indicators in the absence of a better available metric of scavenging intensity.

2.2 Overturning circulation

The differential removal rates of Pa and Th by scavenging is also the basis for a potential sensitivity of sedimentary (Pa/Th)$_{xs}$ to lateral advection by deep ocean circulation (Marchal et al., 2000; Yu et al., 1996). Scavenging is a reversible process, i.e. the average Th and Pa atom experiences several cycles of adsorption and desorption as they are removed to the seafloor by sinking particles (Bacon and Anderson, 1982; Nozaki et al., 1981). This causes the scavenged radionuclides to become concentrated with depth in the water column. In fact, a linear increase in concentration with depth is expected for a steady-state balance between radionuclide production and removal by scavenging in the absence of lateral circulation.

Where deep ocean ventilation occurs, surface waters with low 231Pa and 230Th concentrations are injected to depth. In these regions, such as the North Atlantic, observed 231Pa and 230Th concentrations in deep water are less than predicted by reversible scavenging (Cochran
et al., 1987; Moran et al., 1997; Moran et al., 1995; Moran et al., 2002; Vogler et al., 1998). As a deep water mass ages and spreads laterally, particles sinking into it from above will experience enhanced desorption of 231Pa and 230Th until the higher steady-state radionuclide concentration is reached (François, 2007; Thomas et al., 2006). Because of its shorter residence time (faster response time, 10-40 yrs), 230Th returns to a steady-state with respect to scavenging faster than 231Pa (50-200 yrs). Consequently, dissolved 231Pa/230Th in deep waters are expected to increase with water mass age since ventilation.

The meridional overturning circulation of the Atlantic is believed to result in a large southward transport of 231Pa relative to 230Th because the ventilation timescale of that basin is on the order of the Pa residence time (<200 yrs) (Yu et al., 1996). The Pacific meridional overturning circulation (PMOC), however, occurs over longer timescales (>500 yrs) (Matsumoto, 2007) and at more zonally disperse spatial scales. The schematic overturning, a northward inflow at high southern latitudes of Lower Circumpolar Deep Water (LCDW) and subsequent upwelling in northern mid-latitudes to form a southward return flow of North Pacific Deep Water (NPDW) (Kawabe and Fujio, 2010; Macdonald et al., 2009) clearly influences the distribution of long-lived circulation tracers such as natural radiocarbon (Schlosser et al., 2001) or dissolved silicon (Talley et al., 2003), but it is unclear whether Pa will be redistributed by PMOC (Hayes et al., 2013; Luo et al., 2012).

A complete treatment of the influence of deep circulation in the Pacific is beyond the scope of this paper and may require a 3-dimensional circulation modeling approach with imposed particle fields and scavenging dynamics that are becoming more realistic (Dutay et al., 2009; Siddall et al., 2005). As a simplified and expedient approach, we will compare
sedimentary (Pa/Th)xs, with bottom water (>3.5 km) mean age (Khatiwala et al., 2012), defined as the mean of the distribution of transit times between a location and the sea surface, estimated at 1°-resolution.

2.3 Particle composition

All marine particle types do not scavenge Pa and Th with equal intensity based on experimental and observational work (Chase et al., 2002; Geibert and Usbeck, 2004; Guo et al., 2002; Kretschmer et al., 2011; Scholten et al., 2005; Yu et al., 2001). In general, it has been recognized that Pa has a higher affinity for biogenic opal (Chase, 2008; Chase et al., 2002; DeMaster, 1979; Taguchi et al., 1989) and authigenic manganese oxides (Anderson et al., 1983a; Kadko, 1980) compared with the other major sedimentary components (e.g., calcium carbonate or clay/lithogenic material), while Th is scavenged more equally among different particle types. Thus, it is possible that the 231Pa/230Th ratio in sediments represents the relative contribution of biogenic opal and/or manganese oxides to scavenging.

The fractionation factor (Th/Pa), F, is a measure of the intensity with which Th is scavenged relative to Pa. It is defined (Anderson et al., 1983a) as the ratio of the distribution coefficient (atoms radionuclide per gram particulate matter over atoms radionuclide per gram seawater) of Th over that of Pa. Equivalently, F equals the 231Pa/230Th in seawater over (Pa/Th)xs in sediments or particulate matter. In particulate material dominated by biogenic opal (Chase et al., 2002; Venchiarutti et al., 2011a; Venchiarutti et al., 2011b; Walter et al., 2001; Walter et al., 1997) or when authigenic Mn oxides (MnO$_2$, for simplicity) are present (Anderson et al., 1983a), measured F values are close to 1. When other phases (calcium carbonate and clay) dominate, F is generally much larger, 10 to 20 (Chase et al., 2002; Luo and Ku, 1999; Moran et al., 2001). One
expects, therefore, that in areas where particles contain little opal or MnO₂, particulate

\(^{231}\text{Pa}/^{230}\text{Th}\) will be low due to the preference for Th during scavenging. As opal or MnO₂ content increase, relatively more Pa will be scavenged, increasing the Pa/Th ratio.

We will compare \((\text{Pa}/\text{Th})_\text{xs}\) observations to the concentration of opal in the sediments (opal%). The preserved \((\text{Pa}/\text{Th})_\text{xs}\) is thought to represent equilibration with respect to scavenging onto the particles within about 1 km of the seafloor (Thomas et al., 2006), and the deep particulate \(^{231}\text{Pa}/^{230}\text{Th}\) is generally unaffected during burial (Anderson et al., 1983b; Chase et al., 2003b; Scholten et al., 2005; Taguchi et al., 1989). Unfortunately, particulate opal concentration changes during burial because of sediment diagenesis at the seafloor. Deep particulate rain of opal is nonetheless positively related to opal% in surface sediments in the equatorial Pacific and Southern Ocean (Pacific sector) (Sayles et al., 2001). Therefore, without attempting to correct burial fluxes for sediment diagenesis, we use measured opal% as a qualitative indicator of the importance of opal during scavenging in the water column. Concurrent measurements of MnO₂ and \((\text{Pa}/\text{Th})_\text{xs}\) are limited but we signify examples in the literature where this particle composition effect can be important.

Because concurrent measurements of radionuclides and particle composition in the water column are sparse, we will eventually make an assumption that geographic variation in particle composition is largely produced by contrast in biological community structure. For instance, eutrophic conditions favor large phytoplankton such as diatoms (opal producers) while oligotrophic conditions favor small phytoplankton such as coccolithophores (CaCO₃ producers) (Alvain et al., 2008; Eppley and Peterson, 1979; Falkowski et al., 1998; Kostadinov et al., 2010; Ryther, 1969). The ratio opal:CaCO₃ of sinking particles, which is positively correlated with
particulate (Pa/Th)$_{xs}$ globally (Chase et al., 2002), exhibits strong contrast across biogeographic boundaries in the Pacific (Honjo et al., 2008). Additionally, distributions of dissolved 231Pa and 230Th in the North Pacific water column indicate a threshold of scavenging intensity for both nuclides between the subtropical and subarctic gyres (Hayes et al., 2013). Oceanic conditions which favor certain phytoplankton and/or particle compositions arise due to inter-related environmental factors such as atmospheric circulation, light availability, and nutrient availability. Furthermore, distinct oceanic regions are physically bound by continents or ocean fronts and pycnoclines (Longhurst, 2006). To extend our understanding of the Pa/Th cycle in the modern ocean we will spatially extrapolate within defined biogeographic provinces (Longhurst, 2006).

2.4 Materials and Methods

The new data presented here comprise a surface sediment (Pa/Th)$_{xs}$ survey of the INOPEX cruise of July-August 2009 in the subarctic Pacific and selected samples for which (Pa/Th)$_{xs}$ has been previously reported (Lao et al., 1992b) and new opal% data are available (Fig. 1). We assume modern age for INOPEX samples since the sediment-water interface was successfully collected, although independent age constraints have not been made. Sediments were analyzed by published methods for thorium, protactinium and uranium isotopes (Fleisher and Anderson, 2003) and opal (Mortlock and Froelich, 1989). U, Th and opal data from the INOPEX multicores have been previously reported (Serno et al., in revision). INOPEX water samples were collected and analyzed by intercalibrated methods developed for the GEOTRACES program (Anderson et al., 2012) and have been previously described (Hayes et al., 2013).
To investigate the distribution of (Pa/Th)_{xs} in a wider range of oceanographic conditions we compiled available modern surface sediment data. In general we report (Pa/Th)_{xs} as corrected for detrital-supported fractions and age-decay by the original authors but in some cases this has been recalculated and some cores have only limited age constraints. For INOPEX cores, a detrital U/Th activity ratio of 0.5 was applied based on detrital sediments near Japan (Taguchi and Narita, 1995). If not corrected for by the original authors for other sites, we assumed detrital U/Th = 0.7, the basin-wide average (Henderson and Anderson, 2003). For locations with multiple data of Holocene age, the younger datum is used. A subgroup of sites has opal% data. We assign to each site NPP, EP and bottom water age estimates only if the site is within a half-grid-node radius of the nearest gridded datum. In the case of bottom water age (mean age below 3.5 km), only sites deeper than 3.5 km are assigned an age. Bibliographic information for the database is found in the Supplemental Material (Table S1, Appendix 1). INOPEX surface sediment data is archived at PANGAEA (pangaea.de) and the U.S. National Climate Data Center.

3. Results and discussion

3.1 INOPEX surface sediment (Pa/Th)_{xs} survey

The subarctic Pacific has long been known as a preferential sink for 231Pa (Yang et al., 1986). High particulate fluxes and high opal contents of sinking particles (Taguchi et al., 1989) have been invoked to explain the enhanced removal of 231Pa over 230Th in this region, through the boundary scavenging (Sec. 2.1) and particle composition (Sec. 2.3) mechanisms, respectively. The INOPEX surface sediment survey allows us to revisit these hypotheses with
greater geographic resolution, higher precision (ICP-MS) measurements and more knowledge of sediment composition (opal% in particular).

Results are presented in Figure 2 of \((\text{Pa}/\text{Th})_{xs}, \text{opal}\%, \text{NPP} \) and EP for the INOPEX and northwestern Pacific sites (Lao et al., 1992b). We do not expect oceanic Pa/Th fractionation to apply to the semi-isolated basin of the Bering Sea (sites SO202-10 through -22), and sediment from the shallow site SO202-26 (742 m water depth) was characterized by heavily winnowed sand (Gersonde, 2012) and thus not representative of the fine fraction of settling particles assumed to carry the scavenged \(^{231}\text{Pa}\) and \(^{230}\text{Th}\). These sites are excluded in analyses of linear dependence. We report the Pearson correlation coefficient, \(r\), which denotes the direction and strength of the linear correlation between two variables. The strength of correlation is associated with the (somewhat arbitrary) categories: none, small, medium and strong for absolute \(r\) values between 0-0.09, 0.1-0.3, 0.3-0.5 and 0.5-1, respectively.

Throughout the subarctic Pacific, \((\text{Pa}/\text{Th})_{xs}\) is strongly correlated (\(r = 0.67\)) with opal\% (Fig. 2D), consistent with opal being a major carrier phase for the removal of \(^{231}\text{Pa}\) from the water column. Nearly all of the \((\text{Pa}/\text{Th})_{xs}\) values are above the production ratio of 0.093. Clearly, we confirm previous findings that the subarctic Pacific is a large scale sink for \(^{231}\text{Pa}\) (Lao et al., 1992b; Yang et al., 1986). Nonetheless, there is considerable scatter in the \((\text{Pa}/\text{Th})_{xs}\) vs. opal\% relationship which we cannot specifically attribute to variations in sediment diagenesis without intimate knowledge of the sedimentary environments (sedimentation rate, bioturbation mixing depth, etc.) (Sayles et al., 2001). Sedimentary opal concentrations are not well correlated with total burial flux (Fig. 2C), indicating at least that opal\% is driven not only by preservation but also influenced by variation in opal rain to the sediments.
In contrast, (Pa/Th)_{ss} has a small negative correlation with NPP (Fig. 2A, r = -0.24) in the INOPEX survey. This suggests that total particle flux and the associated boundary scavenging mechanism are not as important as opal% for the enhanced removal of 231Pa in the subarctic Pacific. A better positive correlation is found between (Pa/Th)_{ss} and EP (Fig. 2B, r = 0.60). Thus the flux of organic carbon exported to depth (EP) may more accurately represent scavenging intensity throughout the water column than does its net production at the surface (NPP). The better correlation with EP may also be found because higher EP is often associated with diatom productivity (Buesseler, 1998) and mineral ballasting by biogenic opal enhances the downward flux of organic carbon (François et al., 2002; Honda and Watanabe, 2010).

This survey confirms that the subarctic Pacific is a basin-wide sink for 231Pa. A strong association with opal concentration suggests that particle composition is largely responsible for this chemical fractionation. Assuming a long-term steady-state, (Pa/Th)_{ss} ratios elevated above the production ratio require a lateral transport of 231Pa to the subarctic by ocean circulation, if we further assume that 230Th is laterally transported to a lesser extent than 231Pa. The transport of 231Pa to sites of its highest removal by opal occurs by eddy diffusion generally, but deep advection also may contribute. As the overturning circulation in the Pacific encompasses both the northern and southern hemispheres, it is difficult to assess the influence of PMOC on the fate of 231Pa removal in the subarctic in isolation. We now turn to the Pacific-wide survey to address the influence of PMOC while testing the other potential controlling parameters (particle flux and particle composition) under a larger range of oceanic conditions.
3.2 Pacific \((\text{Pa/Th})_{xx}\) and statistical analysis of basin-wide influences

Confirming previous mapping exercises (Walter et al., 1999; Yang et al., 1986), our compilation of \((\text{Pa/Th})_{xx}\) in Pacific surface sediments (Fig. 3) shows three regions of enhanced \(^{231}\text{Pa}\) removal in the Pacific at large: the subarctic Pacific, the eastern equatorial Pacific and the Pacific sector of the Southern Ocean, indicated by ratios well above production (0.093). As well, the subtropical gyres show a deficit of \(^{231}\text{Pa}\) with ratios well below the production ratio. This new compilation affords an investigation of the reasons behind this large-scale chemical fractionation of \text{Pa/Th}\) in greater geographical detail than has been possible before. In Fig. 4, we present basin wide maps of the potential forcings against each of which we test for correlations with the observed \((\text{Pa/Th})_{xx}\) in Fig. 5.

We divide the analysis into a series of zonal regions for the following reasons. A distinct response is expected for \((\text{Pa/Th})_{xx}\) of the Pacific sector of the Southern Ocean (>60°S). It is obviously connected to the other ocean basins through the Antarctic Circumpolar Current and it has very high opal fluxes in the water column (Honjo et al., 2000). Additionally, the Laws et al. (2000) algorithm for EP may not be optimal for the Southern Ocean, where the relationship between export efficiency and net production differs from the rest of the ocean (Maiti et al., 2013). The equatorial region (5°N-10°S) is considered separately as it has the largest East-West gradients in productivity, opal%, and in bottom water age (Fig. 4). The northern (55°N-5°N) and southern (10°S-60°S) hemisphere regions both contain a strong subtropical to subpolar contrast in productivity but differ significantly in mean bottom water age (>500 yrs). We plot samples from the Bering Sea in Fig. 5 for completeness but will not interpret them for reasons mentioned (Sec. 3.1). Finally, we exclude from the correlation analysis any sites shallower than 2 km water
depth (see Fig. S1), sites with analytical uncertainty in \((\mathrm{Pa}/\mathrm{Th})_{xs} \) >20%, and sites that are influenced by hydrothermal scavenging (Sec. 3.3).

In Table 1, we show the correlation coefficients between \((\mathrm{Pa}/\mathrm{Th})_{xs} \) and NPP, EP, opal\%, and bottom water age. We consider first the indices of total particle flux (NPP and EP) and opal scavenging (opal\%) for each region and then consider bottom water age in terms of the whole basin.

South of 60°S, correlation between \((\mathrm{Pa}/\mathrm{Th})_{xs} \) and NPP or EP is weak to none (r < 0.15). Similar results are found using the Maiti et al. (2013) algorithm for EP, developed for the Southern Ocean. The better positive correlation (r = 0.55) between \((\mathrm{Pa}/\mathrm{Th})_{xs} \) and opal\% suggests that opal scavenging is the dominating influence here. In fact total particle flux has been found to be less important than the opal content of particles in determining \((\mathrm{Pa}/\mathrm{Th})_{xs} \) in all sectors of the Southern Ocean (Dezileau et al., 2003; Walter et al., 1999; Walter et al., 1997).

Within 10°S-60°S, no correlation is found between EP and \((\mathrm{Pa}/\mathrm{Th})_{xs} \) and, surprisingly, with NPP, a medium negative correlation (r = -0.4) is found. This is due to the fact that high NPP and EP values are estimated along the subtropical frontal zone (~40-50°S) whereas the observed \((\mathrm{Pa}/\mathrm{Th})_{xs} \) along this latitude band is consistently low. This region of the southwest Pacific has very low sedimentation rates (<2 mm kyr\(^{-1}\)) (Schmitz et al., 1986). Therefore, it is possible that the surface sediments here are not modern and the reported \((\mathrm{Pa}/\mathrm{Th})_{xs} \) values are too low because of uncorrected age decay. If initial \((\mathrm{Pa}/\mathrm{Th})_{xs} \) at these high productivity (NPP > 150 gC m\(^{-2}\) yr\(^{-1}\), EP > 75 gC m\(^{-2}\) yr\(^{-1}\)) sites from 40-50°S is assumed to be similar to sites with comparable productivity estimates in the North Pacific (ratios of 0.15-0.2, see Fig. 4B), an age correction of 100-120 kyr is necessary. On the other hand, one could argue that the medium correlation (r =
0.41) between (Pa/Th)$_{xs}$ and opal% within 10°S-60°S suggests a similar decoupling between total particle flux and opal scavenging as was found in the Southern Ocean. Nonetheless, this region has few opal% data (Fig. 4C). This is true generally in the South Pacific subtropical gyre, even in global sediment databases (Seiter et al., 2004). Future sediment surveys in the South Pacific are required to better understand the (Pa/Th)$_{xs}$ distribution there.

In the equatorial (5°N-10°S) Pacific, (Pa/Th)$_{xs}$ ratios are increasingly correlated with NPP (r = 0.26), EP (r = 0.44) and opal% (r = 0.64). This situation may be analogous to that seen in the INOPEX survey (Sec. 3.1) in which opal% shows the highest linear correlation to (Pa/Th)$_{xs}$, and the increase in correlation from NPP to EP is related to the export efficiency of diatoms and/or the mineral ballasting effect of opal found at higher EP. Pichat et al. (2004) found that (Pa/Th)$_{xs}$ was strongly correlated with EP in the eastern equatorial Pacific, interpreted as a clear expression of boundary scavenging. Many cores from the western equatorial Pacific, however, have higher (Pa/Th)$_{xs}$ ratios than would be predicted by the trend with EP found in the east. Authors reporting these results invoked particle composition effects (either opal or MnO$_2$ scavenging) to explain the western equatorial results.

In the North (55°N-5°N) Pacific, (Pa/Th)$_{xs}$ has a strong correlation with NPP, EP and opal% (r > 0.65, Table 1). This makes it difficult to separate the total particle flux and particle composition effects in the North Pacific. In the North Pacific especially, the two mechanisms of enhanced Pa removal (total particle flux and opal scavenging) may combine.

At first glance, it might appear water mass ageing is also hopelessly convolved in the North (and equatorial) Pacific (Pa/Th)$_{xs}$ distribution (Fig. 5C), given the positive correlations between bottom water age north of 10°S (Table 1). However there are two arguments supporting
the view that these correlations are spurious due to the covariance of bottom water age and opal% and to a lesser extent, particle flux.

The youngest bottom water ages in the Pacific are 300-400 years. This indicates the basin is not ventilated entirely from the proximal LCDW source in Southern Ocean but more extended circulation pathways from other sources of deep water such as the North Atlantic contribute to the ventilation (Broecker et al., 1998; Khatiwala et al., 2012). After deep water formation and subsequent large-scale flow, one expects 231Pa to tend toward higher “equilibrium” values most quickly within the first 200-300 years (1-2 residence times) of isolation from ventilation (Gherardi et al., 2010; Rutgers v. d. Loeff and Berger, 1993). Even if the “starting age” of ventilation (northward flow of LCDW) is taken to be ~400 years, the apparent positive relationship between $(Pa/Th)_{xs}$ and water mass age only begins 600 years later (Fig. 5C), in the Northern Hemisphere. There is a lack of sensitivity to water mass age in the first few hundred years since perturbation by ventilation, precisely when the greatest effect is expected.

Second, south of 10°S, $(Pa/Th)_{xs}$ ratios are anti-correlated ($r = -0.46$) with bottom water age, opposing the expected influence of water mass ageing. In addition to ventilation, some authors have argued that deep water 231Pa/230Th ratios are perturbed (made lower) across the Southern Ocean because of intense Pa-scavenging by opal. Dissolved 231Pa/230Th is then expected to increase with subsequent ageing of northward flowing water masses (Negre et al., 2010; Thomas et al., 2006). While our mapping efforts (Fig. 3) clearly indicate the Southern Ocean as a large-scale sink of Pa, most likely due to opal scavenging, no measurable depletion of seawater 231Pa has been found along isopycnals across the Antarctic Polar Front in the Pacific (Chase et al., 2003b). The enhanced uptake of Pa in the Southern Ocean must be balanced by Pa
supply by eddy diffusion with the South Pacific gyre and/or the southward advection of NPDW. Therefore deep water $^{231}\text{Pa}/^{230}\text{Th}$ in the Southern Ocean does not appear to be “re-set” by opal scavenging.

The positive correlations with water mass age most likely results from covariance of water mass age with opal% and particle flux in the east-west sense in the equatorial Pacific and in the subtropical-subarctic sense in the North Pacific. One exception in that covariance is with total particle flux indices (NPP and EP) in the northwest subarctic Pacific where NPP and EP decline in the northward direction from local maxima along ~40°N while $(\text{Pa}/\text{Th})_x$ and opal% remain high or continue to increase toward the continental margin in the north.

3.2.1 Geographic variation in seawater $^{231}\text{Pa}/^{230}\text{Th}$ and fractionation factors

When assuming a steady-state removal of Pa and Th to the sediments on the basin scale, one loses some detail in how the two elements become spatially fractionated in the water column. Water column Pa/Th distributions will be of great use in distinguishing the removal mechanisms discussed above. For instance, boundary scavenging and water mass ageing influence both the dissolved and particulate radionuclide phases whereas particle composition effects can cause a change in particle/sediment $(\text{Pa}/\text{Th})_x$ without a change in the dissolved phase. Unfortunately at present the available data on water column $^{231}\text{Pa}/^{230}\text{Th}$ in the Pacific is sparse.

We have compiled the available data on bottom water (within 500 m of the seafloor) $^{231}\text{Pa}/^{230}\text{Th}$ ratio (dissolved or total, dissolved plus particulate) from the Pacific (Fig. 6A), a subset of which can be used in conjunction with the surface sediment database to calculate fractionation factors (Fig. 6B). This includes the INOPEX sites for which fractionation factors are reported for the first time. Where total ^{231}Pa and ^{230}Th concentrations were used to estimate
F, minor corrections for the particulate phase (18% of total for Th (Roy-Barman et al., 1996) and 4% for Pa (Nozaki et al., 1998)) were made following the method described by Hayes et al. (2013). The range in observed seawater $^{231}\text{Pa}/^{230}\text{Th}$ activity ratio is between 0.2 and 0.6, with some tendency for the higher ratios to be associated with the areas of higher productivity and/or opal flux along the equator, the northwestern North Pacific and the Antarctic polar front. The range in observed fractionation factors is roughly 1 to 10. Higher values are associated with the opal-poor regions of the (sub)tropical Pacific and low values are associated with the opal-rich (sub)polar regions. At least in this sparse survey, the relative range in $(\text{Pa}/\text{Th})_{xs}$ is larger than that of the dissolved ratio. Therefore, variable fractionation during scavenging must play a significant role in determining the sedimentary $(\text{Pa}/\text{Th})_{xs}$ across the Pacific.

3.3 $(\text{Pa}/\text{Th})_{xs}$ across biogeochemical provinces and hydrothermal scavenging of Pa

In a basin-wide sense, while our correlation analysis indicates opal scavenging as the most robust influence on surface sediment $(\text{Pa}/\text{Th})_{xs}$ ratios, this analysis has excluded the findings in the Pacific of enhanced ^{231}Pa scavenging by MnO$_2$ associated with hydrothermal activity (Frank et al., 1994; Kadko, 1980; Lao et al., 1992b; Shimmield and Price, 1988; Walter et al., 1999). This effect is expressed in $(\text{Pa}/\text{Th})_{xs}$ ratios above 0.093 along or near the East Pacific Rise (EPR), markedly between 10-20°S where one expects a deficit of Pa, as observed in the rest of the South Pacific subtropical gyre, due to very low productivity (and opal%, assumedly, Fig. 4, (Seiter et al., 2004)). One might expect similar scavenging of Pa along the length of the EPR, the Pacific-Antarctic Ridge, the Chile Rise, the Galapagos Rift, and the Juan de Fuca Ridge (all roughly indicated by the 3.5 km isobar in Fig. 3). Additionally, particles in neutrally buoyant plumes originating from vent sites may reach up to 100 km off-axis away from
the vent sites (German et al., 2002). Therefore hydrothermal scavenging is potentially a widespread sink for Pa throughout the deep Pacific (Hayes et al., 2013). Indeed, new observations from the Atlantic (Chapter 4) indicate that hydrothermal scavenging and near-bottom scavenging processes in general can have “downstream” impacts on dissolved 231Pa/230Th distributions up to 100’s of km away the site of local scavenging.

Since hydrothermal formation of authigenic MnO$_2$ is unrelated to the overlaying biological productivity, hydrothermal Pa scavenging confounds the linkage between 231Pa removal and biogeographic contrast. Studies also report enhanced scavenging of 231Pa due to diagenetic MnO$_2$ formed in the sediments near the North American continental margin due to high organic matter inputs and redox cycling (Anderson et al., 1983a; Lao et al., 1993; Lao et al., 1992b; Shimmield et al., 1986); in this case, however, the total particle flux and particle composition removal mechanisms combine to enhance Pa scavenging as was found with the covariation of opal% and productivity indices in the North Pacific.

To quantify the redistribution of 231Pa throughout the Pacific, we extrapolate the observed (Pa/Th)$_{xs}$ survey within 16 defined biogeographic provinces (Fig. 7, Table 2) (Longhurst, 2006). We make the assumption that the strongest contrasts in total particle flux, opal scavenging, and diagenetic MnO$_2$ (and therefore the contrasts in Pa removal) occur across these province boundaries. Each province was assigned the mean and standard deviation of the average (Pa/Th)$_{xs}$ for all sites within the province boundaries (Table 2). We do not extrapolate to the Archipelagic Deep Basins, the Tasman Sea, or the New Zealand Coastal provinces (ARCH, TASM, and NEWZ in Fig. 3, 7) because these provinces are very shallow and/or not represented by any (Pa/Th)$_{xs}$ data. We altered the Kuroshio Current province (KURO) to only include area
east of Japan. The Austral Polar, Antarctic, and Subantarctic provinces (APLR, ANTA, SANT) are artificially confined between 70°W in the east and 120°E in the west (for which the South Subtropical Convergence, SSTC is also artificially confined) in our calculations.

By assuming the flux of ^{230}Th to the sediments is everywhere equal, the extrapolated map can be interpreted as displaying variation in ^{231}Pa flux, or removal, to the sediments (see also Fig S3). Using the related assumption of each province having a similar mean depth (roughly true since only deep provinces are used in this analysis), the sum of each province’s $(\text{Pa}/\text{Th})_{xs}$ ratio, $(\text{Pa}/\text{Th})_{xs,i}$, weighted by each its fractional contribution to the total surface area, $f(SA)_i$ should equal the production ratio, 0.093, assuming steady-state for the Pacific radionuclide budget (Eq. 1).

$$\text{Production ratio (0.093)} = \sum_i (\frac{\text{Pa}}{\text{Th}})_{xs,i} * f(SA)_i \quad \text{Eq. 1}$$

The total surface area-weighted $(\text{Pa}/\text{Th})_{xs}$ ratio in Pacific sediments by this analysis is 0.087 ± 0.003, slightly below the production ratio. In Table 2, we also calculate the percentage of Pa removed in each province relative to the total Pa produced in the Pacific, $f(\text{Pa removed})$, again assuming a basin-wide (Pa/Th) production ratio of 0.093. This parameter allows us to quantify relative enhancement of Pa removal for various provinces. For instance, the combined provinces PSAW, PSAE, CCAL, KURO, CHIL, PEQD, APLR and ANTA represent 23% of the surface area of the Pacific considered but they are responsible for 32% of the Pa removal (see Table 2 for province names). The remaining Pacific: NPSW, NPTG, PNEC, WARM, SPSG, SSTC, and NPPF, thus represents 77% of the surface area but only 62% of the Pa removal. While we have assumed a uniform removal flux of ^{230}Th, modeling efforts (Henderson et al., 1999) and sediment trap studies (Yu et al., 2001) estimate that up to 30% of the production of
\(^{230}\)Th is redistributed into the same high productivity areas that serve as preferentials sinks for \(^{231}\)Pa. This implies that the contrast in Pa removal is most likely greater than calculated above. Nonetheless, in our calculated budget, roughly 6% of the Pacific’s Pa production is left unaccounted for.

Perhaps the large areas of the EPR which have yet to be mapped in terms of \((\text{Pa/Th})_s\), in particular in the SPSG (see Fig. 3), could make up for this difference via hydrothermal scavenging of Pa. Two alternative scenarios for the apparent imbalance of Pa budget are (1) the result of undersampling the continental margins, particularly of Antarctica, where very high \((\text{Pa/Th})_s\) ratios may be found or (2) the subtropical provinces underestimate the true modern \((\text{Pa/Th})_s\) because of unaccounted-for age-decay. With regard to (1), the coastal provinces represent small fractional surface areas (and shallower water depths, representing a very small fractional Pacific volume), making it difficult to change the basin-wide average by this explanation. The subtropical provinces, however, represent large fractional surface areas and the Pa budget is much more sensitive to the average ratios used there. Similarly, the contribution of hydrothermal scavenging, if it exists, is most likely in the South Pacific where the largest area of hydrothermal ridge systems are found (see Fig. 3). In the North Pacific therefore, we are most confident in attributing the redistribution of Pa to biogeographic contrast.

3.4 Paleo-mapping of biogeographic province contrast

Given these findings, how should variation in past Pacific \((\text{Pa/Th})_s\) ratios be interpreted? In a record from a single site, independent evidence of variation in total particle flux, changes in particle composition, or changes in deep water ventilation must be sought in order to ascribe changes in \((\text{Pa/Th})_s\) to a specific process. Alternatively, mapping the spatial distribution of
(Pa/Th)$_{xs}$ ratios in the past provides the context to interpret the large-scale redistribution of Pa. In the modern Pacific, the influence of deep water circulation was generally found to be overridden by scavenging effects, and the deep Pacific is believed to have remained weakly ventilated since at least the last glacial maximum (Bradtmiller et al., 2010; Jaccard and Galbraith, 2013; Jaccard et al., 2009; Keigwin, 1987; Lund et al., 2011). The mid-ocean ridge system may have remained a large-scale sink for Pa throughout the Pleistocene in the South Pacific (e.g., Frank et al., 1994). By contrast in the North Pacific we can attribute past redistribution of Pa as primarily due to provincial contrast in diatom productivity (opal scavenging), and to a lesser extent total particle flux and diagenetic MnO$_2$ scavenging (which coincide with regions of high opal scavenging in the North Pacific).

In particular, paleo-mapping across the North Pacific subtropics (NPSW and NPTG) and in the high productivity and upwelling provinces in the subarctic (KURO, PSAW, PSAE, and CCAL) would be of interest to monitor any change in the intensity of biogeographic contrast between the provinces or in the location of the province boundaries themselves. This knowledge can be further related to the physical forcings (atmospheric circulation, oceanic fronts and nutrient supply to surface waters) which define the provinces and is therefore valuable information for paleoclimate studies. Despite the confounding influence of hydrothermal scavenging, the modern South Pacific and Pacific sector of the Southern Ocean displayed the most robust sensitivity to opal% in our analysis. Therefore, the (Pa/Th)$_{xs}$ contrast between the equatorial provinces (PNEC and PEQD) and the surrounding subtropical provinces, between the South Pacific Subtropical Gyre and the Peru-Chile upwelling province, and between the Subantarctic and Antarctic provinces may be very sensitive to regional changes in diatom
productivity in the past. Unfortunately, in all of these potential applications the subtropical regions will be more difficult to characterize on millenial-scale time slices as their slow sedimentation rates limit temporal resolution.

To illustrate the potential of this technique, we compiled the available data for $(\text{Pa/Th})_{xs}$ from cores, including SO202-07-6 (51°16′N, 167°42′E, Serno et al., unpublished), that have dated sections of the last glacial maximum (19-24 ka) (Fig. 8) (Berelson et al., 1997; Bradtmiller et al., 2006; Bradtmiller et al., 2009; Chase et al., 2003a; Frank et al., 1994; Lao et al., 1992a; Pichat et al., 2004; Shimmield et al., 1986; Yang et al., 1995). For cores with multiple data in this age range, an average $(\text{Pa/Th})_{xs}$ was taken.

This follows the work of Lao et al. (1992a) who invoked reduced boundary scavenging in glacial times, largely based on lower $(\text{Pa/Th})_{xs}$ ratios (with respect to modern) in cores off the coast of Oregon and Peru and slightly higher than modern $(\text{Pa/Th})_{xs}$ ratios in some interior Pacific sites. Lao et al. (1992a) suggested that higher fluxes of lithogenic particles throughout the glacial Pacific reduced the ocean residence time of Pa enough that its lateral redistribution by dispersion was reduced. Glacial $(\text{Pa/Th})_{xs}$ ratios well above the production ratio published subsequently from large regions of the Southern Ocean (Bradtmiller et al., 2009; Chase et al., 2003a), the equatorial Pacific (Bradtmiller et al., 2006; Yang et al., 1995), the EPR (Frank et al., 1994), and one new core from the subarctic (Serno et al, unpublished) suggest that Pa was redistributed laterally across the basin in a similar sense to today, although perhaps to a lesser extent than in the modern ocean as Lao et al. (1992a) concluded. Future mapping of the poorly represented glacial subarctic Pacific could evaluate the hypothesis that the three modern regions of enhanced Pa removal persisted in the glacial ocean. This in turn could support the hypothesis.
that a similar biogeographic contrast in diatom productivity and particle flux existed and that the locations of the associated major ocean fronts were similar to today.

4. Conclusions

New surface sediment (Pa/Th)$_{xs}$ data from the subarctic Pacific display a clear sensitivity to opal scavenging. A Pacific-wide compilation of sedimentary (Pa/Th)$_{xs}$ data is also consistent with enhanced removal of Pa due to opal scavenging. Scavenging of 231Pa is additionally sensitive to the total particle flux and the abundance of particulate MnO$_2$. The influence of deep water ventilation associated with the Pacific overturning circulation appears to be outweighed by opal scavenging and boundary scavenging effects. We offer the concept of biogeography to estimate a Pa removal budget for the Pacific, but note that hydrothermal scavenging may be accounted for insufficiently in this approach. Past changes in the position of the oceanic fronts separating biogeographic provinces may be reconstructed through regional or basin-wide paleo-mapping of (Pa/Th)$_{xs}$ distributions.

Acknowledgements

We acknowledge the German Ministry of Education and Research (BmBF) and the U. S. National Science Foundation (award 1029211) for funding. Thanks go to the crew of the R/V Sonne, the INOPEX participants, Samar Khatiwala for providing the estimates of mean age and to Jerry McManus and Leo Peña for comments.

References

DeMaster, D.J., 1979. The marine budgets of silica and 32Si, PhD Dissert. Yale University, New Haven, CT.

Lund, D.C., Mix, A.C., Southon, J., 2011. Increased ventilation age of the deep northeast Pacific Ocean during the last deglaciation. Nature Geosci. 4, 771-774.

Yang, Y.-L., Elderfield, H., Pedersen, T.F., Ivanovich, M., 1995. Geochemical record of the Panama basin during the last glacial maximum carbon event shows that the glacial ocean was not suboxic. Geology 23, 1115-1118.

Figure 1. Map of coring sites for which new \((\text{Pa}/\text{Th})_{\text{v}}\) and/or opal\% data are presented here. SO202 cores (gray circles) are from the INOPEX cruise (Gersonde, 2012). Radionuclide data for Vema (V) and Conrad (RC) cores (black squares) have been previously published (Lao et al., 1992b). The scheme of bathymetric shading is displayed on the right.
Figure 2. $(\text{Pa/Th})_{xs}$ results from 31 coretops from the subarctic Pacific (see Fig. 1), excluding sites from the Bering Sea and SO202-26, versus (A) net primary productivity, (B) export productivity and (D) opal concentration. (C) shows the relationship between opal% and 230Th-normalized total mass burial flux. Error bars are equal to or smaller than the symbol size. Reported in the insets is the Pearson linear correlation coefficient, r.

- **A**: $r = 0.24$
- **B**: $r = 0.60$
- **C**: $r = 0.28$
- **D**: $r = 0.67$
Figure 3. Map of surface sediment (Pa/Th)$_{xs}$ activity ratio [A.R.] of data from this study compiled with published results (see Table S1 for references). Thin lines demarcate the biogeographic provinces as defined by Longhurst (2006) (See Fig. 7 and Table 2 for province names). The heavy dashed lines approximate the 3.5 km isobar which also roughly trace the mid-ocean ridge system in the Pacific.
Figure 4. (A) Map of net primary productivity and (B) export productivity as estimated from satellite data (Sec. 2.1). (C) Map of opal concentration in sediments for which \((\text{Pa}/\text{Th})_{xs}\) has also been measured. (D) Map of bottom water (>3.5 km) age as estimated by Khatiwala et al. (2012).
Figure 5. Cross plots of observed (Pa/Th)xs activity ratios in the Pacific versus (A) net primary productivity (NPP), (B) export productivity (EP), (C) bottom water (>3.5 km) age and (D) opal concentration. These sites are all deeper than 2 km water depth, have analytical uncertainties in (Pa/Th)xs < 20%, and have not been designated in the literature to be affected by hydrothermal scavenging.
Figure 6. Available (A) bottom water 231Pa/230Th activity ratios [A.R.] and (B) fractionation factors calculated between bottom water and the underlying sediment from this study and the literature (Anderson, 2002; Anderson et al., 2012; Berelson et al., 1997; Chase et al., 2003b; François, 2007; Hayes et al., 2013; Nozaki and Nakanishi, 1985; Nozaki and Yang, 1987; Yang et al., 1986).
Figure 7. Interpolated map of (Pa/Th)$_{xs}$ activity ratios [A.R.] in Pacific surface sediments generated by representing each of 16 defined biogeographic provinces (Longhurst, 2006) by the average (Pa/Th)$_{xs}$ ratio observed in that province. See Table 2 for the full names of biogeographic provinces.
Figure 8. Map of $(\text{Pa/Th})_{xs}$ activity ratios [A.R.] in sediments from the last glacial maximum (19-24 ka) according to published data (see Sec. 3.4 for references). Thin lines demarcate the modern biogeographic provinces as defined by Longhurst (2006) (See Fig. 7 and Table 2 for province names). The heavy dashed lines approximate the 3.5 km isobar which also roughly trace the mid-ocean ridge system in the Pacific.
Figure S1. A. Surface sediment (Pa/Th)$_{xs}$ activity ratios [A.R.] replotted. B. Detailed bathymetry of the sample distribution. White space indicates areas deeper than 5.5 km. C. Pacific surface sediment (Pa/Th)$_{xs}$ activity ratios [A.R.] against water depth [km] in which each point is colored by latitude [$^\circ$N]. There is no trend of (Pa/Th)$_{xs}$ with depth for sites deeper than 2 km.
Figure S2. (Pa/Th)xs versus 230Th-normalized total mass burial flux (left) and opal flux (right). These sites are all deeper than 2 km water depth, have analytical uncertainties in (Pa/Th)xs <20%, and have not been designated in the literature to be affected by hydrothermal scavenging.
Figure S3. Spatial distribution of 230Th-normalized total mass burial flux (A) and 230Th-normalized 231Pa flux (B). There is some trend of increasing Pa flux with depth (C), which is expected if Pa is removed by reversible scavenging, in particular for sites in the North Pacific and Southern Ocean (points are colored by latitude [°N]). Because 230Th fluxes also increase with depth (assumed in the normalization technique), $(\text{Pa/Th})_{xs}$ ratios are essentially equivalent to 230Th-normalized 231Pa fluxes which have been normalized by water depth. Thus the $(\text{Pa/Th})_{xs}$ ratio is a proxy for Pa removal and is not majorly biased by differing water depth among the core sites.
Table 1. Correlation coefficients between Pacific surface sediment (Pa/Th) and: Net Primary Productivity (NPP), Export Productivity (EP), sediment opal concentration (opal%), and bottom water (>3.5km) age among different latitude bands

<table>
<thead>
<tr>
<th></th>
<th>55°N-5°N</th>
<th>5°N-10°S</th>
<th>10°S-60°S</th>
<th>>60°S</th>
</tr>
</thead>
<tbody>
<tr>
<td>NPP</td>
<td>0.66</td>
<td>0.26</td>
<td>-0.40</td>
<td>0.14</td>
</tr>
<tr>
<td>EP</td>
<td>0.73</td>
<td>0.44</td>
<td>0.00</td>
<td>0.10</td>
</tr>
<tr>
<td>opal%</td>
<td>0.67</td>
<td>0.64</td>
<td>0.41</td>
<td>0.55</td>
</tr>
<tr>
<td>Age</td>
<td>0.60</td>
<td>0.53</td>
<td>-0.46</td>
<td>-0.46</td>
</tr>
</tbody>
</table>

Number of sites in analysis

<table>
<thead>
<tr>
<th></th>
<th>55°N-5°N</th>
<th>5°N-10°S</th>
<th>10°S-60°S</th>
<th>>60°S</th>
</tr>
</thead>
<tbody>
<tr>
<td>NPP</td>
<td>111</td>
<td>44</td>
<td>43</td>
<td>21</td>
</tr>
<tr>
<td>EP</td>
<td>106</td>
<td>44</td>
<td>43</td>
<td>21</td>
</tr>
<tr>
<td>opal%</td>
<td>31</td>
<td>15</td>
<td>13</td>
<td>14</td>
</tr>
<tr>
<td>Age</td>
<td>111</td>
<td>25</td>
<td>40</td>
<td>17</td>
</tr>
</tbody>
</table>
Table 2. Budget of Pa removal in the Pacific. The biogeographic provinces (Longhurst 2006) are considered to have the average (Pa/Th)$_{xs}$ activity ratio [A.R.] of the sites included within each province. The fractional surface areas, f(SA), of the provinces are then used to calculate a weighted average (Pa/Th)$_{xs}$ for the whole basin (box below). Further assuming as basin wide removal ratio equal to the production ratio (0.093), the surface-area weighted (Pa/Th)$_{xs}$ can be used to estimate the fraction of total Pa produced in the Pacific removed in each province, f(Pa removed).

<table>
<thead>
<tr>
<th>Province</th>
<th>Code</th>
<th>No. of Sites</th>
<th>Avg. (Pa/Th)$_{xs}$ [A.R.] ±</th>
<th>SA $[10^6 \text{km}^2]$</th>
<th>f(SA) [%]</th>
<th>f(Pa removed) [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antarctic</td>
<td>ANTA</td>
<td>28</td>
<td>0.141 ± 0.047</td>
<td>2.8</td>
<td>2.1</td>
<td>3.1</td>
</tr>
<tr>
<td>Austral Polar</td>
<td>APLR</td>
<td>2</td>
<td>0.174 ± 0.002</td>
<td>3.0</td>
<td>2.2</td>
<td>4.1</td>
</tr>
<tr>
<td>California Upwelling Coastal</td>
<td>CCAL</td>
<td>15</td>
<td>0.158 ± 0.012</td>
<td>1.0</td>
<td>0.7</td>
<td>1.2</td>
</tr>
<tr>
<td>Chile-Peru Coastal</td>
<td>CHIL</td>
<td>6</td>
<td>0.172 ± 0.020</td>
<td>2.6</td>
<td>2.0</td>
<td>3.6</td>
</tr>
<tr>
<td>Kuroshio Current</td>
<td>KURO</td>
<td>18</td>
<td>0.177 ± 0.015</td>
<td>1.4</td>
<td>1.1</td>
<td>2.0</td>
</tr>
<tr>
<td>North Pacific Polar Frontal</td>
<td>NPPF</td>
<td>19</td>
<td>0.085 ± 0.006</td>
<td>7.2</td>
<td>5.4</td>
<td>4.9</td>
</tr>
<tr>
<td>North Pacific Subtropical Gyre (West)</td>
<td>NPSW</td>
<td>8</td>
<td>0.087 ± 0.017</td>
<td>10.5</td>
<td>7.9</td>
<td>7.4</td>
</tr>
<tr>
<td>North Pacific Tropical Gyre</td>
<td>NPTG</td>
<td>13</td>
<td>0.045 ± 0.006</td>
<td>14.7</td>
<td>11.1</td>
<td>5.4</td>
</tr>
<tr>
<td>Pacific Equatorial Divergence</td>
<td>PEQD</td>
<td>24</td>
<td>0.098 ± 0.008</td>
<td>13.7</td>
<td>10.3</td>
<td>10.8</td>
</tr>
<tr>
<td>North Pacific Equatorial Counter Current</td>
<td>PNEC</td>
<td>19</td>
<td>0.076 ± 0.012</td>
<td>9.3</td>
<td>7.0</td>
<td>5.7</td>
</tr>
<tr>
<td>Pacific subarctic gyre (East)</td>
<td>PSAE</td>
<td>9</td>
<td>0.128 ± 0.010</td>
<td>3.2</td>
<td>2.4</td>
<td>3.3</td>
</tr>
<tr>
<td>Pacific subarctic gyre (West)</td>
<td>PSAW</td>
<td>10</td>
<td>0.177 ± 0.011</td>
<td>2.9</td>
<td>2.1</td>
<td>4.1</td>
</tr>
<tr>
<td>Subantarctic</td>
<td>SANT</td>
<td>12</td>
<td>0.089 ± 0.009</td>
<td>21.5</td>
<td>16.1</td>
<td>15.5</td>
</tr>
<tr>
<td>South Pacific Subtropical Gyre</td>
<td>SPSG</td>
<td>22</td>
<td>0.076 ± 0.010</td>
<td>29.0</td>
<td>21.8</td>
<td>17.9</td>
</tr>
<tr>
<td>South Subtropical Convergence</td>
<td>SSTC</td>
<td>6</td>
<td>0.040 ± 0.004</td>
<td>5.9</td>
<td>4.4</td>
<td>19</td>
</tr>
<tr>
<td>West Pacific Warm Pool</td>
<td>WARM</td>
<td>17</td>
<td>0.073 ± 0.010</td>
<td>4.6</td>
<td>3.5</td>
<td>2.7</td>
</tr>
</tbody>
</table>

Total SA-weighted (Pa/Th)$_{xs}$ | Total | Total |
| 0.087 ± 0.003 | 133.2 | 93.8 |
Table S1. References cited for Pacific (Pa/Th)$_{xs}$ survey and the biogeographic provinces represented by those references.

<table>
<thead>
<tr>
<th>Reference (in alphabetical order)</th>
<th>Biogeographic province(s) represented See Fig. 6 for province locations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anderson et al., 1983b</td>
<td>NPTG</td>
</tr>
<tr>
<td>Anderson et al., 1990</td>
<td>PNEC, SPSG, WARM, CHIL</td>
</tr>
<tr>
<td>Berelson et al., 1997</td>
<td>PEQD, PNEC</td>
</tr>
<tr>
<td>Bernat and Goldberg, 1968</td>
<td>NPTG</td>
</tr>
<tr>
<td>Bradtmiller et al., 2006</td>
<td>CHIL, PEQD, PNEC</td>
</tr>
<tr>
<td>Bradtmiller et al., 2009</td>
<td>ANTA, SANT</td>
</tr>
<tr>
<td>Chase et al., 2003a</td>
<td>ANTA, SANT</td>
</tr>
<tr>
<td>Cochran and Krishnaswami, 1980</td>
<td>NPTG, PNEC</td>
</tr>
<tr>
<td>DeMaster, 1979</td>
<td>PEQD</td>
</tr>
<tr>
<td>Frank et al., 1994</td>
<td>PEQD</td>
</tr>
<tr>
<td>Hayes et al. (this study)</td>
<td>PSAE, PSAW, NPPF, KURO, Bering Sea</td>
</tr>
<tr>
<td>Huh et al., 1987</td>
<td>CCAL</td>
</tr>
<tr>
<td>Kadko, 1980</td>
<td>PNEC</td>
</tr>
<tr>
<td>Kadko, 1983</td>
<td>NPTG</td>
</tr>
<tr>
<td>Ku, 1966</td>
<td>ANTA, NPSW, SPSG</td>
</tr>
<tr>
<td>Lam et al., 2013</td>
<td>PSAW</td>
</tr>
<tr>
<td>Lao et al., 1992b</td>
<td>ANTA, SANT, CHIL, NPPF, NPTG, PEQD, PSAW, Bering Sea</td>
</tr>
<tr>
<td>Mangini and Kühnel, 1987</td>
<td>PNEC</td>
</tr>
<tr>
<td>Mohamed et al., 1996; Mohamed and Tsunogai, 1998</td>
<td>KURO</td>
</tr>
<tr>
<td>Müller and Mangini, 1980</td>
<td>PEQD, NPTG, PNEC</td>
</tr>
<tr>
<td>Narita et al., 2003</td>
<td>KURO</td>
</tr>
<tr>
<td>Pichat et al., 2004</td>
<td>PEQD, WARM</td>
</tr>
<tr>
<td>Schmitz et al., 1986</td>
<td>SANT, SPSG, SSTC</td>
</tr>
<tr>
<td>Shimmiel and Price, 1988</td>
<td>SPSG</td>
</tr>
<tr>
<td>Shimmiel et al., 1986</td>
<td>CCAL</td>
</tr>
<tr>
<td>Taguchi and Narita, 1995</td>
<td>KURO, NPSW</td>
</tr>
<tr>
<td>Walter et al., 1999</td>
<td>APLR, ANTA, CHIL, PEQD, PNEC, SANT, WARM</td>
</tr>
<tr>
<td>Yang et al., 1986</td>
<td>NPSW, KURO, ARCH, NPPF, NPTG, PSAW, SANT, SPSG, WARM, PNEC, Bering Sea</td>
</tr>
<tr>
<td>Yang et al., 1995</td>
<td>PNEC</td>
</tr>
</tbody>
</table>
Chapter 4. 230Th and 231Pa on the US GEOTRACES North Atlantic section and implications for modern and paleoceanographic chemical fluxes

Christopher T. Hayesa,b, Robert F. Andersona,b, Martin Q. Fleishera, Kuo-Fang Huangc, Laura F. Robinsond,e, Yanbin Luf, Hai Chengf,g, R. Lawrence Edwardsf, S. Bradley Moranh

aLamont-Doherty Earth Observatory of Columbia University, Palisades, NY, USA
bDepartment of Earth & Environmental Sciences, Columbia University, New York, NY, USA
cDepartment of Geology & Geophysics, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
dDepartment of Marine Chemistry & Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
eSchool of Earth Sciences, University of Bristol, Bristol, United Kingdom
fDepartment of Earth Sciences, University of Minnesota, Minneapolis, MN, USA
gInstitute of Global Environmental Change, Xi’an Jiaotong University, Xi’an, China
hGraduate School of Oceanography, University of Rhode Island, Narragansett, RI, USA

In preparation for Deep Sea Research, Part II
Abstract

The long-lived uranium decay products 230Th and 231Pa are widely used as quantitative tracers of adsorption to sinking particles (scavenging) in the ocean by exploiting the principles of radioactive disequilibria. Because of their preservation in the Pleistocene sediment record and through largely untested assumptions about their chemical behavior in the water column, the two radionuclides have also been used as proxies for a variety of chemical fluxes in the past ocean. This includes the vertical flux of particulate matter to the seafloor, the lateral flux of insoluble elements to continental margins (boundary scavenging), and the southward flux of water out of the deep North Atlantic. In a section of unprecedented vertical and zonal resolution, the distributions of 230Th and 231Pa across the North Atlantic shed light on the marine cycling of these radionuclides which further informs their use as tracers of chemical flux. Enhanced scavenging intensities are observed in benthic layers of resuspended sediments on the eastern and western margins and in a hydrothermal plume emanating from the Mid-Atlantic Ridge. Boundary scavenging is clearly expressed in the water column along a transect between Mauritania and Cape Verde which is used to quantify a bias in sediment fluxes calculated using 230Th-normalization and to demonstrate enhanced 231Pa removal from the deep North Atlantic by this mechanism. The influence of deep ocean ventilation that leads to the southward export of 231Pa is apparent but convolved with spatial variability in scavenging intensity. The observations presented here are of use in constraining biogeochemical cycles of trace metals in the modern ocean and in ground-truthing paleo-proxy applications which should be ultimately confirmed in ocean circulation models.
1. Introduction

The motivations to quantify chemical fluxes in the ocean are manifold. For instance, marine biological productivity is set by the balance between nutrient sources and sinks in surface waters and global climate is influenced by the redistribution of heat and salt associated with the ocean’s overturning circulation. The well-known rates of radioactive production and decay of 230Th and 231Pa (half-lives 75.69 kyr (Cheng et al., 2000) and 32.76 kyr (Robert et al., 1969), respectively), in addition to their insoluble nature, make them attractive tools to quantify the rates of the marine processes in which they are involved. These include removal from the water column by adsorption to particles (scavenging), redistribution by ocean circulation, and sedimentation to the seafloor. Unfortunately, the influences of these processes on radionuclide distributions are potentially convolved. This study aims to utilize the spatial distribution of 230Th and 231Pa across the U.S. GEOTRACES North Atlantic transect (Fig. 1) to characterize the modern cycling of these isotopes in effort to more completely calibrate their use as flux tracers in the modern and past ocean.

Because their production (234U and 235U decay, respectively) is uniform throughout the ocean (Andersen et al., 2010; Delanghe et al., 2002; Robinson et al., 2004; Weyer et al., 2008), the key question in 230Th and 231Pa cycling in the water column is the balance between removal mechanisms. These are primarily (1) the downward flux by scavenging onto sinking particles and (2) lateral fluxes by advection and eddy diffusion. If lateral fluxes can be neglected, the concentration of the scavenged nuclide is expected to increase linearly with depth, representing an “equilibrium” between adsorption onto, and desorption from, vertically homogeneous sinking particles, a concept known as reversible scavenging (Bacon and Anderson, 1982; Krishnaswami et al., 1976; Nozaki et al., 1981).
Deviations from linearity in the radionuclide profiles therefore signal where this vertical equilibrium is perturbed by lateral fluxes or where the scavenging intensity has changed. This is admittedly a simple approach, as relatively linear depth profiles are not inconsistent with some lateral flux by dispersion (Roy-Barman, 2009; Venchiarutti et al., 2008). In a basin-scale view, nonetheless, characterizing anomalies to the predictions of reversible scavenging is our first step in deconvolving the oceanic 230Th and 231Pa cycles. Three such anomalies, boundary scavenging, the effects of recently ventilated deep water, and bottom scavenging, appear in unprecedented detail in our North Atlantic section (Fig. 1). We now provide a context for these findings.

1.1 Boundary scavenging of 230Th and 231Pa

Boundary scavenging (Bacon, 1988; Bacon et al., 1976; Spencer et al., 1981) is the enhanced removal of scavenged-type elements (Bruland and Lohan, 2003) at ocean margins. When lateral gradients in particle flux exist, as between biologically productive ocean margin regions and oligotrophic ocean interior regions, insoluble elements are removed from the water column by scavenging to a greater extent at the margin versus the interior. The resulting gradient in radionuclide concentration produces a dispersive flux toward the margin from the interior. Lateral transport in the water column toward ocean margins is more significant for 231Pa than for 230Th because it is removed vertically by scavenging more slowly. The residence time with respect to scavenging of 231Pa is 50-200 yrs while that for 230Th is 10-40 yrs (Henderson and Anderson, 2003). On the basis of the boundary scavenging concept alone, elevated 231Pa/230Th ratios in both the dissolved and particulate phase at ocean margins are expected. Prior to this study, the lateral gradients in the dissolved 231Pa/230Th ratio or in dissolved 230Th (231Pa) concentrations, predicted by the boundary scavenging concept, have not been definitively observed in the North Atlantic.
Modeling efforts have concluded that in ~70% of the ocean, 230Th is redistributed laterally by no more than 30% of its in situ production in the water column (Henderson et al., 1999), consistent with available observations from sediment traps (Yu et al., 2001). However, on the basis of sedimentary records some authors have argued that water column 230Th redistribution could be much greater than 30% due to boundary scavenging-type mechanisms, specifically along the equator in the Pacific (Broecker, 2008; Lyle et al., 2005; Lyle et al., 2007). This claim derives from a concern regarding 230Th-normalization, a method for calculating sediment accumulation rates on the basis of sedimentary 230Th concentrations (Bacon, 1984; François et al., 2004). This method assumes that the burial flux of 230Th is equal to its rate of production by 234U decay in the overlying water column, which allows one to correct for the lateral redistribution of sediments at the seafloor (sediment focusing). Because glacial-interglacial changes in sediment focusing have enhanced or diminished apparent accumulation rates by more than a factor of 2 (Francois et al., 1990; Suman and Bacon, 1989), the approach has been defended on the basis that neglecting a relatively small bias in the assumption that 230Th burial is equivalent to its production in the overlying water column is justified (François et al., 2007; Siddall et al., 2008). One aim of this study is to quantitatively estimate the magnitude of 230Th redistribution due to boundary scavenging.

While the effect of boundary scavenging of 231Pa is well-expressed in the Pacific (Anderson et al., 1983; Anderson et al., 1990; Walter et al., 1999; Yang et al., 1986), it is considered to be suppressed in the Atlantic. This is because this basin is ventilated by southward flowing North Atlantic Deep Water (NADW) on timescales (<100-200 yrs) (Broecker et al., 1991) shorter than the Pa residence time with respect to scavenging (Walter et al., 1999; Yu et al., 1996; Yu et al., 2001). This means Pa can be transported south by deep water flow before it
can be dispersed to North Atlantic margins. Although some studies have found evidence, in the form of sedimentary $^{231}\text{Pa}/^{230}\text{Th}$ activity ratios above that produced in seawater by uranium decay of 0.093, for the enhanced removal of ^{231}Pa in the upwelling area off Northwest Africa (Legeleux et al., 1995; Lippold et al., 2012b; Mangini and Diester-Haas, 1983), studies of the North American (Anderson et al., 1994; Lippold et al., 2012a) and the northern Brazil (Lippold et al., 2011) margins do not support boundary scavenging of Pa. The dissolved $^{231}\text{Pa}/^{230}\text{Th}$ distribution toward the margins of our transect (Fig. 1) will be used to determine the significance of boundary scavenging in the North Atlantic in light of its recent ventilation.

1.2 The impact of Atlantic circulation

The possibility of boundary scavenging notwithstanding, previous studies have demonstrated that deepwater distributions of ^{230}Th and ^{231}Pa are significantly perturbed by the influence of the recent ventilation of NADW (Luo et al., 2010; Moran et al., 1997; Moran et al., 1995; Moran et al., 2002; Scholten et al., 2001; Vogler et al., 1998). Deep convection at sites of deep water formation results in the injection to depth and propagation along deepwater flow paths of ^{231}Pa and ^{230}Th concentrations which are lower than predicted by reversible scavenging (Moran et al., 1997; Moran et al., 1995; Moran et al., 2002). As the water mass ages, isolated from further perturbations to scavenging equilibrium, dissolved ^{230}Th concentrations increase due to exchange with sinking particles, reaching a steady-state distribution relatively rapidly (determined by the residence time of 10-40 yrs), while ^{231}Pa responds more slowly (residence time of 50-200 yrs) because of the differing scavenging rates of the two elements (Moran et al., 2001; Rutgers v. d. Loeff and Berger, 1993). The longer residence time of ^{231}Pa allows for its southward export with NADW, leaving a ^{231}Pa deficit in deep North Atlantic sediments (Yu et al., 1996). This is the basis for using the sedimentary $^{231}\text{Pa}/^{230}\text{Th}$ ratio as an indicator of the
strength of the Atlantic meridional overturning circulation (McManus et al., 2004). The present water column transect is also intended to document the impact of ventilation on \(^{231}\)Pa and the \(^{231}\)Pa/\(^{230}\)Th ratio.

In the absence of variations in scavenging intensity, one expects \(^{230}\)Th and \(^{231}\)Pa concentrations and the \(^{231}\)Pa/\(^{230}\)Th ratio to increase with water mass age. The strongest response to ageing occurs within 1 to 2 water column residence times after deep-water formation. Our section is appropriate to test this prediction because deep water age, or the time since deep-water (as averaged below 2 km) has been isolated from the atmosphere, ranges from <50 yrs in the west to >250 yrs in the east (Broecker et al., 1991). We have extracted an estimate of mean age for our North Atlantic transect from a recent inversion of ventilation tracer observations (\(^{14}\)C, CFCs, \(\text{PO}_4^+\), temperature and salinity) by Khatiwala et al. (2012). These ages, which represent that time since a water parcel was last at the surface, taking into account contributions from multiple pathways and source regions, are referred to in the text as either mean ages or ventilation ages.

In addition to consideration of water mass ageing, we put our transect into hydrographic context with the salinity and neutral density (\(\gamma_n\)) section in Fig. 1. The dome of salty subtropical mode water, also known as Eighteen Degree Water, is apparent in the upper 500-800 m and is roughly bound at depth by \(\gamma_n = 26.65 \text{ kg m}^{-3}\) (LeBel et al., 2008). The remaining density surfaces in Fig. 1 demarcate the boundaries between the various sources of NADW, which are defined most clearly in the Northwest section between Bermuda and Woods Hole, Mass., known as Line W (Toole et al., 2011). These are, in order of increasing density, Upper and Classic Labrador Sea Water, Iceland-Scotland Overflow Water, and Denmark-Strait Overflow Water, which is underlain by Antarctic Bottom Water (AABW, \(\gamma_n > 28.125\)). While we name the densest layer of
water in the western basin AABW, this far from its source the water mass must have gone through significant mixing with the overlaying NADW.

The deep waters of the Northeastern Atlantic (>3 km depth) are not as clearly defined by the contributions to NADW and are characterized by a relatively homogeneous water mass called Northeast Atlantic Deep Water (NEADW). NEADW is sourced by a mixture of NADW and AABW which enters the Northeast basin largely through the Romanche Trench near the equator and a smaller proportion through the Vema Fracture Zone at 11°N (Broecker et al., 1980; Schlitzer, 1987; Schlitzer et al., 1985). The intermediate water in the southeastern portion of the cruise track intersects the northern extent of the salinity minimum (and silicic acid maximum) originating from Antarctic Intermediate Water (AAIW) (Talley, 1999; Tsuchiya, 1989), outlined in Fig. 1. Lastly, the high salinity intrusion of Mediterranean Outflow Water (MOW) at ~1 km depth is well represented on the largely south-north part of the transect approaching Portugal.

1.3 Bottom scavenging

Deep water ^{231}Pa and ^{230}Th concentrations can also be perturbed by changes in scavenging intensity near the seafloor (bottom scavenging) associated with a change in particle concentration or particle composition. Nepheloid layers (Biscaye and Eittreim, 1977; McCave, 1986), or zones up to 100’s of meters above the seafloor of increased particle concentration caused by the resuspension of sediments, have been known to enhance the scavenging of the shorter-lived ^{234}Th (half-life 24.1 days) in the northwest (Bacon and Rutgers v. d. Loeff, 1989; DeMaster et al., 1991) and northeast (Schmidt, 2006; Turnewitsch et al., 2008; Turnewitsch and Springer, 2001) Atlantic. Previous studies in the North Atlantic have suggested that bottom scavenging could reduce the ^{230}Th concentration in deep water, but since the same effect can be achieved via recent water mass ventilation without invoking a change in scavenging intensity,
ventilation was the preferred explanation (Moran et al., 1997; Moran et al., 1995; Vogler et al., 1998). However, recent results from the Pacific, where the ventilation effect is not large enough to produce observed radionuclide depletions in deepwater, have confirmed early observations (Bacon and Anderson, 1982; Nozaki and Nakanishi, 1985) that significant bottom scavenging indeed occurs for 230Th (Hayes et al., 2013; Okubo et al., 2012; Singh et al., 2013) and 231Pa (Hayes et al., 2013).

Based on extensive observations in the northwest Atlantic of thick nepheloid layers (Biscaye and Eittreim, 1977; Brewer et al., 1976), our transect is well-situated to determine the effect of sediment resuspension on 230Th and 231Pa. In addition to increased particle loading, bottom scavenging may also be affected by a change in particle composition. This section is also well-suited to test the hypotheses that 230Th and 231Pa are scavenged especially efficiently by authigenic iron and manganese oxide phases associated with hydrothermal activity at the mid-Atlantic ridge (German et al., 1991; German et al., 1993) or by (oxy)hydroxide coatings of particles formed in regions of organic-rich sediment diagenesis at ocean margins (Anderson et al., 1983; Bacon et al., 1976; Shimmield et al., 1986). To infer likely changes in scavenging intensity in our transect, we utilize the distribution of the particle beam attenuation coefficient, C_p, as measured by transmissometer from CTD casts, which is, to first order, linearly related to particle concentration (Bishop, 1986; Gardner et al., 1985), although the sensitivity of C_p to particle concentration is known to vary with particle size and composition (Baker and Lavelle, 1984; Richardson, 1987).

2. Methods

The U.S. Geotraces North Atlantic transect (Fig. 1) consisted of two legs. KN199-4 (referred to as GT10) from Lisbon, Portugal to Mindelo, Cape Verde was completed in Oct-Nov
2010. KN204-1 (referred to as GT11) from Woods Hole, Massachusetts to Praia, Cape Verde via St. Georges, Bermuda was completed in Nov-Dec 2011. Radionuclide data were produced by three collaborating laboratories which were intercalibrated (Anderson et al., 2012) to analyze dissolved (<0.45 µm) and particulate (0.45-51 µm) 232Th, 230Th, and 231Pa in seawater: the Lamont-Doherty Earth Observatory of Columbia University (L-DEO), the Woods Hole Oceanographic Institution (WHOI) and the University of Minnesota (UMN). Five liter water samples were collected using conventional Niskin bottles, filtered with 0.45 µm Acropak™-500 filter capsules, and acidified to pH = 1.8 at sea for storage according GEOTRACES protocols. Particulate samples representing 55-350 L of seawater were collected by McLane Research in situ pumps (Lam and Morris, Patent Pending) using paired 0.8 µm Pall Supor800 polyethersulfone filters (Bishop et al., 2012).

Th and Pa isotopes (including the added tracers 229Th and 233Pa) were co-precipitated with Fe (oxy)hydroxide for pre-concentration and purification using acid digestions (HNO$_3$/HF/HClO$_4$, depending on the laboratory) and ion exchange chromatography. Filter samples were co-precipitated with Fe after complete dissolution (HNO$_3$/HClO$_4$/HF). Radionuclide concentrations (reported as fg, 10^{-15} g, radionuclide per kg seawater) were determined by isotope dilution inductively-coupled plasma mass spectrometry. The analytical procedures used at L-DEO, WHOI, and UMN have been fully described by Anderson et al. (2012), Auro et al. (2012), and Shen et al. (Shen et al., 2003; Shen et al., 2002; Shen et al., 2012), respectively.

We correct measured dissolved radionuclide concentrations for in-growth due to uranium decay during sample storage. In-growth during sample storage from particulate U concentrations is negligible (Ohnemus, pers. comm.). In order to isolate the signature of scavenging in the
dissolved phase we also correct ^{230}Th and ^{231}Pa concentrations for a contribution produced by the partial dissolution of U-containing lithogenic material based on dissolved ^{232}Th as described by Hayes et al. (2013), assuming a crustal $^{238}\text{U}/^{232}\text{Th}$ ratio and congruent dissolution of ^{232}Th, ^{230}Th and ^{231}Pa. Similarly, in the particulate phase we correct measured ^{230}Th and ^{231}Pa for a lithogenic component based on particulate ^{232}Th. All radionuclide concentrations discussed in the text are corrected for lithogenic sources and are denoted as “xs”. For more information on data analysis see the metadata associated with these datasets at BCO-DMO (bco-dmo.org). Forthcoming studies will present and interpret the distribution of ^{232}Th and particulate radionuclides in their own right. These results are used here only for the interpretation of the dissolved (or total) ^{230}Th and ^{231}Pa distributions.

3.1 Results and Discussion

3.1 Sections of dissolved ^{230}Th xs and ^{231}Pa xs

Deviations from linear concentration-depth profiles as predicted by the model of reversible scavenging are immediately apparent in the North Atlantic sections (Fig. 2). Both radionuclides display substantial lateral concentration gradients, some of which are clearly related to recent ventilation. Generally, lower concentrations of both radionuclides are found in the western and northern parts of the transect, coincident with younger mean ages (Fig 2E). Additionally low concentrations of ^{231}Pa xs in shallow water (Fig. 2D) take on a dome structure, coinciding with EDW, and are presumably reflective of the rapid (<10 yrs) ventilation of this subtropical mode water (Jenkins, 1988).

Notably unrelated to any change in mean age (Fig. 2E), ^{230}Th xs also has reduced concentrations throughout the water column in the section between Cape Verde and Mauritania (Cape Verde transect, Fig. 2B) coincident with increasing particle concentrations (Fig 2A, 5000-
6500 km section distance). The plunging isolines of 230Th xs concentration toward the continental margin on this transect are strong evidence for the process of boundary scavenging occurring. We quantify the lateral transport of 230Th xs and 231Pa xs associated with this boundary scavenging in section 3.2.

Both radionuclides show vertical concentration anomalies as well. Concentrations generally increase linearly from the surface to depth but nearly always begin to decrease toward the seafloor. These negative deviations with respect to reversible scavenging generally start higher in the water column for dissolved 231Pa xs (2-3 km depth) than for dissolved 230Th xs (4-5 km). This is a pervasive feature in the Atlantic (Luo et al., 2010; Moran et al., 2002; Scholten et al., 2008; Scholten et al., 2001; Vogler et al., 1998) which has been largely attributed to the advection of NADW in previous work.

At stations GT-10-01, GT11-04, GT11-06, GT11-08, and GT11-10, however, the dissolved radionuclide depletions can be clearly associated with a large increase in beam attenuation related to higher particle concentration (Fig. 2A) and presumably bottom scavenging. Additionally, the near-bottom waters at GT11-16 (mid-Atlantic ridge) and GT10-09 (African margin) have a more modest increase in C_p, but very large dissolved phase depletions. The near-bottom particles at these two sites showed a clear enrichment in metal oxides (Lam et al., in prep.), the former being up to 40% authigenic Fe oxides from a hydrothermal plume at the mid-Atlantic ridge, the latter being enrichment of authigenic Fe and Mn oxides (each 2-3% of the particle mass) related to reducing conditions in the surface sediments created by organic matter diagenesis. It thus seems likely that bottom scavenging due to increased particle abundance and/or unique particulate chemistry is at least as significant as ventilation in regulating the distributions of dissolved 230Th xs and 231Pa xs across the North Atlantic. In section 3.3, we give
a few examples of how ventilation and bottom scavenging may be convolved in determining ^{230}Th xs and ^{231}Pa xs distributions. The de-convolution of these effects requires sensitivity testing in 3-dimensional ocean models which is beyond the scope of this study.

3.2 Quantification of boundary scavenging

Enhanced removal of trace elements at ocean margins is supported by advective and diffusive fluxes that arise due to the lateral concentration gradients imposed by lateral gradients in scavenging intensity (Bacon, 1988). To quantify the magnitude of this flux, one can calculate the lateral concentration gradients from concentration profiles. Since radionuclides are exchanged between dissolved and adsorbed forms faster than they are removed to the seafloor (Bacon and Anderson, 1982), for mass continuity, one must consider the total radionuclide concentration (dissolved plus particulate). In Figure 3, we plot particulate and total ^{230}Th xs and ^{231}Pa xs for the stations between Mauritania and GT11-22. Total ^{230}Th xs concentrations (Fig. 3C) are consistently lower at stations closer to the African margin, at nearly all depths. Total ^{231}Pa xs (Fig. 3D), on the other hand, is largely uniform among these stations. These observations are consistent with the boundary scavenging concept. Th-230, being more sensitive to the lateral gradient in scavenging intensity approaching the margin, is drawn down more efficiently than ^{231}Pa, which, because of its longer residence time, can support higher concentration at the margin supplied by lateral dispersion. Consequently, both dissolved and particulate $^{231}\text{Pa} / ^{230}\text{Th}$ xs ratios are higher at the margin versus the interior (Fig. 3E-F), as predicted by Bacon (1988).

In one dimension (x, an isopycnal surface, since circulation occurs preferentially along lines of constant seawater density), for total ^{230}Th xs (Th), the steady-state mass balance is:

$$
\frac{dTh}{dt} = P - S \frac{dTh_p}{dz} - u \frac{dTh}{dx} + K_H \frac{d^2Th}{dx^2} \quad \text{Eq. 1}
$$
P is production due to 234U decay. S is the particle sinking rate which, when multiplied by the vertical gradient of particulate 230Th concentration (second term on right-hand side of Eq. 1), represents the downward flux by scavenging. The third and fourth terms on the right-hand side of Eq. 1 represents lateral fluxes due to advection (isopycnal velocity, u, multiplied by the first isopycnal concentration gradient) and eddy diffusion (isopycnal eddy diffusion coefficient, K_H, multiplied by the second isopycnal concentration gradient), respectively.

In order to affect the steady-state mass balance, the advective and diffusive terms must occur on a timescale appropriate to the residence time, τ, of the tracer. The residence times, as defined by the water column inventory of radionuclide divided by its integrated production in the water column, between GT10-09 and GT11-22 for 230Th and 231Pa, respectively, are 10-28 yrs and 120-150 yrs. The corresponding length scales over which lateral eddy diffusivity should be considered are ~800-1300 km for 230Th and 2750-3080 km for 231Pa ($\Delta x = \sqrt{2K_H/\tau}$, parameterizing eddy diffusivity as a random walk process), using $K_H = 10^3$ m2 s$^{-1}$, as determined in the Northeast Atlantic (Ledwell et al., 1998). The advective length scale ($\Delta x = u\tau$) depends linearly on the current speed and will be >1500 km for both radionuclides if u is greater than a typical deep current speed of 2 mm/s. However, because east-west velocities cyclically change direction in this region (Zenk et al., 1991) and their magnitude is difficult to estimate for the deep ocean, we do not attempt to quantify the advective flux.

The isopycnal gradients in 230Th are discretely estimated using the observations from GT10-09, GT10-10, GT10-11 and GT10-12 (Fig. 3C). We do not include GT11-22 in the analysis because it makes the transect larger than the 230Th-mixing length scale (~1400 km). Within the analytical uncertainties we cannot derive isopycnal 231Pa gradients that are significantly different than zero. Th-230 concentrations were interpolated onto a common set of
isopycnals (Fig. 4A), and because GT10-11 and GT10-12 are nearly indistinguishable we average these two profiles and consider the average profile representative of the region at the mid-point between the two stations. Uncertainties were accounted for and propagated in the calculations by assuming a conservative analytical uncertainty for total 230Th xs of 1.5%. Two isopycnal gradients (Fig. 4B) were calculated by differencing the concentration profiles, between GT10-09 and GT10-10 and between GT10-10 and GT10-11/12, and dividing by the lateral distance between the stations. A positive gradient is defined as lower concentration in the east (leading to lateral fluxes toward Mauritania). Then the second isopycnal gradient (Fig. 4C) was calculated by differencing the two isopycnal gradient profiles and dividing by the distance between the mid-points of the stations used to calculate the first gradient (Fig. 4D).

The second isopycnal gradient is variable above $\gamma_n = 27.8$ (1.2 km depth), but below this density surface, in the bulk of the water column, the gradient is consistently positive (down gradient toward Mauritania). By multiplying the $d^2\mathrm{Th}/dx^2$ profile by $K_H \,(10^3 \text{ m}^2 \text{ s}^{-1})$, and integrating with depth (~0-3 km), we estimate the lateral convergence of 230Th xs to the margin (technically between two boxes, encompassing stations GT10-10/11/12 and GT10-09/10, respectively) as $670 \pm 225 \text{ pg m}^{-2} \text{ yr}^{-1}$. In 3 km of seawater, 230Th production due to U decay is $1630 \text{ pg m}^{-2} \text{ yr}^{-1}$ and thus the diffusive flux adds $41 \pm 14\%$ to the water column production in the margin box (and removes the equivalent from production in the open-ocean box). This is consistent with the upper limit for the model-derived redistribution of water column 230Th (Henderson et al., 1999).

Th-230 normalized sediment fluxes will therefore be biased (underestimated) by up to 30-50% for core sites at high productivity continental margins such as offshore Mauritania. The magnitude of the complementary bias (overestimation) in 230Th-normalized fluxes in the interior
ocean is likely to be smaller than 30-50%. This is because the 230Th added to the relatively small zone of high productivity at the margin is drawn from a much larger pool of the subtropical North Atlantic gyre. The subtropical gyre 230Th budget, however, cannot be fully constrained here because there are likely additional lateral removal fluxes of 230Th to other more expansive high productivity regions such as the equatorial or subpolar North Atlantic (Henderson et al., 1999).

Interestingly, the degree of boundary scavenging (and its impact on lateral 230Th redistribution) may have changed through time (Lao et al., 1992). Nonetheless, the 40% redistribution estimate can be seen as close to a global maximum (in the modern ocean at least) since the Canary Current upwelling regime in which our observations are made produces one of the largest lateral gradients in productivity (and in turn particle flux) in the world (Behrenfeld and Falkowski, 1997). Thus our finding supports the use of 230Th-normalization to reconstruct sediment fluxes within cited uncertainties (François et al., 2004).

Although we cannot directly estimate the magnitude of boundary scavenging for 231Pa because the lateral water column 231Pa gradients are not discernible, we can use the 230Th results in conjunction with the particulate 231Pa/230Th xs data (Fig. 3F) to estimate the redistribution of 231Pa. The near-bottom 231Pa/230Th xs ratio of particulate material, $(Pa/Th)_{\text{bottom}}$, should represent the ratio of sinking flux for the two elements. If both elements were being buried at their production rate by U decay, we would expect this ratio to be 0.093 (activity units, see dotted line, Fig. 3F). Therefore the actual ratio of sinking flux to overlaying production for 231Pa, $(F/P)_{Pa}$, is proportional to that of 230Th, weighted by the deviation of the near-bottom particulate material from the production ratio:

$$(F/P)_{Pa} = (F/P)_{Th} \times (Pa/Th)_{\text{bottom}} / 0.093$$

(Eq. 2)
The average particulate $^{231}\text{Pa}/^{230}\text{Th}$ ratio at GT10-09, 1 km above the seafloor (~2-3 km depth), is 0.15 (Fig. 3F). Using $(F/P)_\text{Th} = 1.4$ as calculated above, we estimate that ^{231}Pa is being buried at 2.3 times its production in the overlying water column at this site. While clearly a region of enhanced ^{231}Pa removal, this region will likely not account for observed depletion of ^{231}Pa in deep North Atlantic sediment. High productivity areas such as GT10-09, where boundary scavenging of ^{231}Pa is occurring, are likely only a small volumetric percentage of the basin (Lippold et al., 2012b). This is indicated by the sharp decrease in particulate $^{231}\text{Pa}/^{230}\text{Th}$ xs ratio between stations GT10-09 and GT10-10 (Fig. 3F). Nonetheless, more detailed mapping of the extent of this type of enhanced ^{231}Pa burial on the North African margin is required before its impact on the basin-wide Pa budget can be quantified (Marchal et al., 2000).

3.3 Bottom scavenging and ventilation: convoluted influences across the North Atlantic

Both ^{231}Pa xs and ^{230}Th xs (Fig. 2) have negative concentration anomalies associated with the high salinity waters of the Mediterranean Outflow Water (MOW, ~1 km depth at station GT10-01, Fig. 1). This is expected due to the high particle load of MOW, a result of the interaction of the flow of Mediterranean Water over the Gibraltar Strait and the Iberian margin (McCave and Hall, 2002; Thorpe, 1972), which is known to enhance scavenging of ^{234}Th and ^{228}Th (half-life 1.8 yrs, parent ^{228}Ra) (Schmidt, 2006). Unexpectedly, the low radionuclide concentrations (causing negative deviations to a linear profile) appear to be advected along with the flow of MOW to station GT10-03 and even to GT10-05 for ^{231}Pa xs, while the high particle concentrations (on the basis of C_p, Fig. 2A) are not, i.e. the downstream effects are not necessarily due to in-situ scavenging. There is a strong boundary in ^{231}Pa xs concentrations and water mass age between GT10-05 and GT10-07 at 2 km depth (Fig. 2), indicating more recently ventilated water to the north, making it difficult to separate the downstream effects of
specifically MOW from a large-scale influence of other NADW components. This is the first of several examples of how ventilation and bottom scavenging combine to produce low concentration anomalies in the water column radionuclide distributions.

Second, we look in more detail at the impact of the enhanced scavenging observed at station GT11-16, also known as the TAG hydrothermal site (Rona, 1980; Rona et al., 1984). Clearly, dissolved 230Th xs and 231Pa xs are removed from solution in the observed hydrothermal plume around 3.3 km depth (Figs. 2B, 2D). But it also appears that the low concentration anomaly in the plume is dispersed by circulation to shallower depths in the water column. The TAG concentration profile departs negatively for dissolved 230Th xs at 2.1 km, and for dissolved 231Pa xs at 1.5 km. Furthermore, the low radionuclide concentrations appear to be advected to sites west of the ridge. For both radionuclides at 2.5 km depth, concentrations at GT11-14 are lower than they are to the west at GT11-12, opposite the expected trend due to water mass ageing.

Westward and shoaling propagation of the hydrothermal scavenging anomaly is consistent with theory, i.e. buoyant plume water rising and heading west due to geostrophic considerations (Speer, 1989). We note that these “downstream” hydrothermal effects (both vertical and lateral) are not caused only by the observed venting at the TAG site but are more likely the integrated result of vent sites all along the ridge (German et al., 2010). This is support for the hypothesis that hydrothermal vents are a basin-scale sink of Pa in the deep ocean (Hayes et al., 2013). However, because the observed hydrothermal anomaly and its far-field effect occur in a region with strong zonal and meridional gradients in water mass age, it is difficult to remove the influence of ventilation and isolate the hydrothermal scavenging magnitude. For instance, one could estimate the removal flux of 231Pa (or 230Th) by using the deficit of the observed
concentration profile compared to a linear profile (expected due to reversible scavenging). The expected profile however cannot be chosen *a priori*, because in a region of recent deep water ventilation one does not expect a linear profile.

Similarly, along Line W (GT11-01 thru GT11-10), dissolved 230Th xs and 231Pa xs concentrations are clearly depleted near the bottom (Figs. 2B, 2D) due to increased particle concentrations in nepheloid layers (Fig. 2A). Depletion of 230Th and 231Pa below 3.5 km depth cannot be attributed to ventilation, the conventional explanation (e.g., Luo et al., 2010), because ventilation time scales increase with depth below 3.5 km (Fig. 3E). Nonetheless, the fact that 230Th and 231Pa concentrations at mid-depth (1-3km) along Line W, the depth range of maximum southward NADW transport (Cunningham et al., 2007; Kanzow et al., 2010; Talley et al., 2003), are much lower than at the corresponding depths in the eastern basin at GT11-20 and GT11-22 (Fig. 2D, D), where particle concentrations (C_p values) are similar to those along Line W (Fig. 2A), seems clearly related to the east-west gradient in ventilation age. Radionuclide depletions due to bottom scavenging and recent ventilation again here seems convolved in a way that is difficult to untangle with static tracer observations.

In yet another combination of influences, dissolved 230Th xs and 231Pa xs concentrations both decrease toward the bottom at GT11-20 and GT11-22 at ~4 km and 2.5 km depth respectively where there is no evidence for increased particle concentrations or recent ventilation. While the deep water in the Northeast Atlantic has been long isolated from the atmosphere (>500 yrs), it may not have been this long since a significant scavenging event occurred. The northward inflow of NEADW from the Romanche Trench occurs on a timescale of 30 years based on radiocarbon distributions (Schlitzer et al., 1985). The mid-Atlantic ridge is associated with enhanced turbulent mixing because of its complex topography (Polzin et al.,
1996) and with metalliferous sediments from hydrothermal activity. Both of these factors could cause bottom scavenging of 230Th and 231Pa from water flowing through the gaps in the ridge, the former via resuspension of sediments and the latter by the increased scavenging efficiency of Fe-Mn oxides. A radionuclide depleted signal could then be advected northward, carrying with it its scavenging history. While this scenario is highly speculative, such are the possible interactions between deep water flow and bottom scavenging that need to be accounted for in a fuller understanding of the marine cycling of 230Th and 231Pa.

3.4 Apparent controls on the 231Pa/230Th ratio

Sensitivity tests in a scavenging-circulation ocean model, which can vary bottom scavenging intensity and ventilation ages independently, may be able to resolve the significance of each process in determining radionuclide distributions in the North Atlantic. This uncertainty notwithstanding, it is informative to inspect the section of the dissolved 231Pa/230Th ratio (Fig. 2C) with a motivation to examine its proxy applications. High ratios along the Cape Verde transect are consistent with the boundary scavenging discussed in section 3.2. In the areas of clear bottom scavenging along Line W and at the TAG hydrothermal site, the ratio is also elevated above the corresponding mid-depth values. This is because the 230Th is scavenged more intensely (larger depletion from the dissolved phase) relative to 231Pa at these locations. In analogy to the boundary scavenging due to lateral gradients in scavenging intensity, the bottom scavenging sites may act as small sinks for Pa, in that the imposed enhanced removal of Pa is partially compensated by greater dispersive fluxes because of its longer residence time.

The impact of ventilation on the dissolved 231Pa/230Th ratio distribution (Fig. 2C), however, is not obvious. For instance, between 2-3 km depth (excluding GT11-16) the 231Pa/230Th ratio changes very little between 500 and 4200 km section distance (Fig. 2C), along which the
ventilation age has a strong lateral gradient between roughly 80 yrs in the west and 400 yrs in the east. This range in age is the exact time period in which one expects the strongest return to a steady-state of ^{231}Pa concentrations after ventilation (Gherardi et al., 2010), according to a 1-dimensional mixing-scavenging model (Moran et al., 2001; Rutgers v. d. Loeff and Berger, 1993). The dissolved $^{231}\text{Pa}/^{230}\text{Th}$ xs ratio of course increases further toward the African margin as ventilation age also increases, but this is primarily due to the stronger removal of dissolved ^{230}Th xs (boundary scavenging, sec. 3.2) at the eastern margin. The observed zonal gradient in dissolved $^{231}\text{Pa}/^{230}\text{Th}$ xs is not consistent with removal of ^{231}Pa by southward flow between 2-3 km depth, which one expects to be strongest in the west (Wunsch and Heimbach, 2006). Whether the $^{231}\text{Pa}/^{230}\text{Th}$ distribution is rather responding to the zonally integrated southward flow of NADW remains to be demonstrated in a 3-D dimensional circulation-scavenging model.

In the deep basins (4-6 km depth), however, likely not influenced by the African margin processes, the dissolved $^{231}\text{Pa}/^{230}\text{Th}$ xs ratio is clearly higher on the eastern side of the mid-Atlantic ridge, as expected from the trend in mean age (Fig. 2D), perhaps reflecting the integrated removal of ^{231}Pa (relative to ^{230}Th) by southward flow throughout the water column. Additionally, the ratio decreases with depth (below 1 km and away from bottom scavenging sites), most significantly at the deep central basin stations GT11-12 and GT11-20. The decrease with depth of the $^{231}\text{Pa}/^{230}\text{Th}$ ratio in the Atlantic has been suggested to reflect the southward export of ^{231}Pa by deep water circulation (Lippold et al., 2011; Luo et al., 2010). Whether this effect could also be contributed to by a change in elemental fractionation during scavenging with depth due to changing particle compositions (Moran et al., 2002) remains to be clearly demonstrated. We will address this possibility in a forthcoming study of the particulate and dissolved ^{230}Th and ^{231}Pa in comparison to the measured mass and major chemical composition.
(CaCO₃, opal, organic matter, lithogenic material and authigenic metal oxides) of the particles along this transect.

A curious, yet robust feature in the dissolved 231Pa/230Th vs transect is the structure seen in the upper 1-1.2 km. High ratios near the surface are consistent with 230Th being more intensely scavenged out of the mixed layer, but a secondary subsurface maximum in dissolved 231Pa/230Th vs ratio around 1 km depth is observed at nearly every station. In the section between the mid-ocean ridge and Mauritania, the secondary dissolved 231Pa/230Th vs maximum overlaps with AAIW (cf. Fig. 1). Yet, the persistence of the 231Pa/230Th maximum in the more northern parts of the transect do not support an association with AAIW. An alternative scenario is that a high 231Pa/230Th ratios throughout shallow water (0-1200 m), related to more intense scavenging of 230Th, is overprinted with the strong minimum around 500 m depth which could be related to the low 231Pa content and rapid ventilation of EDW. Yet another possible scenario is that the subsurface dissolved 231Pa/230Th vs maximum is related to the preferential regeneration of dissolved 231Pa released during diatom dissolution (since biogenic opal is a strong scavenger of 231Pa (Chase et al., 2002)). This is not supported, however, by either the silicic acid distribution (except within AAIW, Fig. 5B) or the particulate opal distribution (Lam et al., pers. comm.). In any case, the possibility of 231Pa (and perhaps 231Pa/230Th) tracing shallow or intermediate water circulation is worth further attention since its longer-lived removal timescale and uniform production offers a complement to the traditional transient tracers of shallow circulation (3H-3He, CFC’s).

As a way of summarizing these observations we cross-plot the dissolved 231Pa/230Th vs data with another potential circulation tracer measured on the same water samples, silicic acid. The silicic acid distribution along our transect (Fig. 5B) has a strong resemblance to the inverse
estimates of mean age (Fig. 2E). Silicic acid is added to deep water through the dissolution of
diatom opal exported from surface water and accumulates with deep water age (Broecker and
Peng, 1982). Furthermore, its distribution is sensitive to the overturning circulation since NADW
has very low (preformed) silicic acid and southern-sourced waters (AABW and AAIW) have
much higher end-member concentrations (Sarmiento et al., 2007). There is a wide scatter in the
relationship between dissolved 231Pa/230Th xs and silicic acid (Fig. 5A) and the overall negative
trend reflects that fact the 231Pa/230Th ratio generally decreases with depth while silicic acid (and
ventilation age) increase with depth. At some given depths (color scheme of points in Fig. 5A),
however, 231Pa/230Th may be positively related with silicic acid. For instance, around 1 km depth
a positive trend possibly related to the influence of AAIW can be seen. Some of the high
231Pa/230Th values at 3-4 km depth, however, are related to locations of bottom scavenging
(marked in Fig. 5A) and therefore cannot be ascribed to water mass ageing.

While a basin-sale, integrated influence of the southward export of NADW cannot be
ruled out, the distribution of dissolved 231Pa/230Th appears to be insensitive to water mass age
across the North Atlantic. In order to validate the use of the 231Pa/230Th ratio as a paleo-indicator
of the AMOC, a more complex conceptual model needs to be developed, including the
influences of boundary scavenging and bottom scavenging demonstrated here. We note that a
possibly more informative investigation of the evolution the 231Pa/230Th ratio along the path of
NADW circulation is currently being completed by European groups working on a meridional
GEOTRACES section along the western basin of the entire Atlantic (GA02, see geotraces.org).

4. Summary

The cycling of 230Th and 231Pa in the ocean is complex. Deviations from the behavior
expected from a simple model of reversible scavenging are apparent across the North Atlantic
and improved spatial resolution allows us to study them in greater detail than has been done before. Boundary scavenging of 230Th in an exceptionally productive region off Northwest Africa was constrained to $40 \pm 10\%$ of its water column production, helping to quantify the uncertainties associated with 230Th-normalized sediment fluxes. Enhanced removal of 231Pa occurs on the Africa margin as well but quantitative conclusions about the significance of this sink in the basin-scale Pa budget cannot be made without more detailed mapping of the region. Both recent ventilation and bottom scavenging cause deep-water depletions of 230Th and 231Pa. The dissolved 231Pa/230Th ratio traces locations of intense scavenging intensity while its distribution in the transect is not consistent with a simple relationship to water-mass age. We observe several examples where the effects of scavenging and ventilation are convolved which provide excellent test cases for sensitivity studies of removal mechanisms in future ocean modeling of these isotopes. Circulation and scavenging affect many trace metals of biogeochemical and paleoceanographic interest (e.g. Fe, Co, Al), and thus further constraining the cycling of 230Th and 231Pa will be of broad appeal in the oceanographic community.

Acknowledgements

Funding for ship time, sampling operations, and hydrographic data was provided by the U. S. National Science Foundation to the US GEOTRACES North Atlantic Transect Management team of W. Jenkins (OCE-0926423), E. Boyle (OCE-0926204), and G. Cutter (OCE-0926092). Radionuclide studies were supported by NSF (OCE-0927064 to L-DEO, OCE-0926860 to WHOI, OCE-0927757 to URI, and OCE-0927754 to UMN). The crew of the R/V Knorr, the Ocean Data Facility team (Mary Johnson, Rob Palomares, Susan Becker, and Courtney Schatzman), and the science team samplers for Niskin bottles and in situ pumps (Katharina Pahnke, Brett Longworth, Paul Morris, Daniel Ohnemus, Kuanbo Zhou, Sylvain
Rigaud and Stephanie Owens) are all acknowledged for their critical roles in the success of these cruises. On-shore analysis efforts of Maureen Auro, Joanne Boudreau, and the WHOI Plasma Facility are greatly appreciated. Figures 1, 2 and 5 were created using Ocean Data View (Schlitzer, 2011).

References

Lam, P.J., Morris, P.J., Patent Pending. In situ marine sample collection system and methods, Goodwin Docket No. WHOI-005PR.

Figure 1. Map of the US GEOTRACES North Atlantic transect and section of salinity as measured in the Niskin bottle rosette casts. Neutral density overlays define, in order of increasing density, the bottom of Eighteen Degree Water (EDW), Upper and Classic Labrador Sea Water (ULSW/CLSW), Iceland-Scotland Overflow Water (ISOW), Denmark-Strait Overflow Water (DSOW) and Antarctic Bottom Water (AABW), defined largely for the western basin by Toole et al. (2010) and LeBel et al. (2008). The deep (>3 km) eastern basin is filled with a more homogeneous water mass named Northeast Atlantic Deep Water (NEADW) (Schlitzer et al., 1985). The southeastern section is influenced by Antarctic Intermediate Water (AAIW) at about ~1 km depth and the northeastern margin is clearly influenced by the high salinity Mediterranean Outflow Water (MOW). Station names are referred to in the text as labeled here.
Figure 2. (previous page) Property sections of the US GEOTRACES North Atlantic transect. (A) Particle beam attenuation coefficient, \(C_p\), determined by transmissometer. CTD casts are marked in black. (B) Dissolved (<0.45 µm) \(^{230}\)Th, (C) \(^{231}\)Pa/\(^{230}\)Th activity ratio, and (D) \(^{231}\)Pa. Black dots indicate discrete measurements. (E) Mean age of seawater since being at the surface as estimated by Khatiwala et al. (2012) Station locations for radionuclide data are as labeled in the map of Figure 1. Panels A and E, in addition, have data from shallow “demi” stations occupied in between full depth stations, as plotted in the inset map of panel E. See Fig. 1 for neutral density surfaces not included here for clarity.
Figure 3. Depth profiles of particulate (0.45-51 µm) (A, B) and total (C, D) 230Th xs and 231Pa xs and the dissolved (<0.45 µm) (E) and particulate (F) 231Pa/230Th xs ratio from stations along a zonal transect between Mauritania and west of Cape Verde. The dashed lines in (E) and (F) represent the activity ratio of 231Pa/230Th produced by uranium decay (0.093). Legend relates station names as located in Figure 1.
Figure 4. (A) Depth profiles of total 230Th interpolated onto a common set of isopycnal surfaces. (B) Discretely calculated lateral concentration gradients in total 230Th. Units are fg x 10^{-3} radionuclide per kilogram seawater per kilometer distance (C) Discretely calculated second lateral concentration gradient in total 230Th. Units are fg x 10^{-6} radionuclide per kilogram seawater per square kilometer (D) Schematic demonstrating the concept of calculating lateral gradients using the concentration difference between depth profiles and the distance separating the profile locations along the Cape Verde transect.
Figure 5. (A) Dissolved 231Pa/230Th xs ratios versus silicic acid measured in the same samples. The arrow indicates a possible positive trend between 231Pa/230Th xs ratios and silicic acid carried by Antarctic Intermediate Water (AAIW). The circled points represent locations of bottom scavenging which causes elevated 231Pa/230Th xs ratios which are unrelated to the circulation patterns traced by silicic acid (B) Silicic acid distribution along the North Atlantic transect.
Chapter 5. Scavenging intensity and fractionation of 230Th and 231Pa in the North Atlantic Ocean: results from the GEOTRACES transect

Christopher T. Hayesa,b, Robert F. Andersona,b, Martin Q. Fleishera, Phoebe J. Lamc, Daniel C. Ohnemusc, Kuo-Fang Huangd, Laura F. Robinsonc,e, Yanbin Luf, Hai Chengf,g, R. Lawrence Edwardsf, S. Bradley Moranh

aLamont-Doherty Earth Observatory of Columbia University, Palisades, NY, USA
bDepartment of Earth & Environmental Sciences, Columbia University, New York, NY, USA
cDepartment of Marine Chemistry & Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
dDepartment of Geology & Geophysics, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
eSchool of Earth Sciences, University of Bristol, Bristol, United Kingdom
fDepartment of Earth Sciences, University of Minnesota, Minneapolis, MN, USA
gInstitute of Global Environmental Change, Xi’an Jiaotong University, Xi’an, China
hGraduate School of Oceanography, University of Rhode Island, Narragansett, RI, USA

In preparation for Deep Sea Research, Part II
Abstract

There is a need for a better understanding of the scavenging behavior of the radiogenic isotopes 231Pa and 230Th in the ocean in order to fully validate their use as proxies in the sediment record and the water column. As one example, particulate 231Pa/230Th ratios are interpreted to reflect either ocean ventilation or changes in the composition of settling particles. We address the second of these possibilities through direct measurements of dissolved (<0.45 µm) and particulate (0.45-51 µm) 231Pa/230Th, along with major particle composition, from the U. S. GEOTRACES transect across the North Atlantic. These measurements allow calculation of distribution coefficients and fractionation factors which are independent of ocean circulation. We find elevated scavenging intensities of both Th and Pa in a hydrothermal plume at the Mid-Atlantic ridge and near the seafloor off the coast of West Africa, indicating a high scavenging efficiency for authigenic Fe/Mn oxides. Biogenic opal was not a significant scavenging phase for either element, essentially because of its low abundance in the water column, although this may be a result of synoptic sampling. Distribution coefficients in shallow (< 200 m) depths are anomalously low which suggests either the unexpected result of a low scavenging intensity for organic matter or that, in water masses containing abundant organic-rich particles, a greater percentage of scavenged radionuclides exist in the colloidal phase.
1. Introduction

The natural radionuclides 230Th and 231Pa are used for a variety of purposes in the ocean because of their uniform production due to U decay, their tendencies to rapidly adsorb to particles (scavenging), and their sensitivity to ocean ventilation (Henderson and Anderson, 2003). Although the chemical mechanism for this is not known, it is clear from radioactive disequilibria with their parent U isotopes that Pa is removed by scavenging more slowly than Th (Sackett, 1960). This overall differential in scavenging intensity is the key feature in their water column behavior which forms the basis of using the scavenged 231Pa/230Th ratio (written as Pa/Th in the text as shorthand) as a paleo-indicator of the strength of the Atlantic meridional overturning circulation (AMOC) (François, 2007; McManus et al., 2004; Yu et al., 1996).

However, it has also been shown that scavenging intensity for both elements can vary with particle type in the ocean (Anderson et al., 1983b; Chase et al., 2002; Walter et al., 1999) and in laboratory experiments (Geibert and Usbeck, 2004; Guo et al., 2002a; Luo and Ku, 1999). Changing proportions of different particle types over geologic time may overprint other influences on the Pa/Th sediment record such as the AMOC. While previous work has demonstrated a particle composition effect on Pa/Th scavenging, there is still debate about what are the major carrier phases (Chase and Anderson, 2004; Luo and Ku, 2004; Roy-Barman et al., 2009) and the importance of chemical fractionation during scavenging on basin-wide radionuclide budgets (Lippold et al., 2012; Luo et al., 2010; Siddall et al., 2007). Here we present measurements of dissolved and particulate (adsorbed) 230Th and 231Pa from the U. S. GEOTRACES North Atlantic transect in conjunction with measurements of the mass and major chemical composition of the suspended particles, to calculate scavenging intensities and the
degree to which Pa and Th are fractionated during scavenging in a basin-wide, analytically-consistent context.

2. Approach

The chemical composition of particles in the ocean has regional variations due to differential inputs (e.g., proximity to lithogenic sources, contrasting biological communities, etc.) and depth-dependent variations due to the dissolution or regeneration of particles due to thermodynamic and biological factors. Thus, we here utilize the U. S. North Atlantic GEOTRACES transect (Fig. 1) in an observational study of scavenging intensities across natural variations in particle compositions. Completed in two cruises, KN199-4 (GT10) and KN204-1 (GT11), the dissolved (<0.45 µm) radionuclide (230Th, 231Pa) data, produced by 3 collaborating labs, has been described previously in a basin-wide context (Chapter 4). The particulate (0.45-51 µm) radionuclide data presented here were produced solely at the Lamont-Doherty Earth Observatory of Columbia University. The dissolved samples were analyzed at 16-24 depths per station and the particulate samples at 12 depths per stations. If not within 10 m in the upper 1 km or within 50 m below 1 km, we linearly interpolated the particulate radionuclide profile onto the dissolved radionuclide depths for better comparison.

The composition (and mass) of particles collected in-situ on the cruise was analyzed by Phoebe Lam’s group at the Woods Hole Oceanographic Institution. Briefly, separate analytical procedures were performed to measure the lithogenic material (lith), particulate organic matter (POM), calcium carbonate (CaCO$_3$), biogenic opal (opal), and authigenic Fe(OH)$_3$ and MnO$_2$. Lithogenic material was based on particulate Ti and a continental crustal Ti concentration, and the authigenic Fe and Mn phases were determined by the excess of particulate Fe and Mn over that expected from crustal Fe/Ti and Mn/Ti ratios. The chemical weights of each component
were then added to estimate the total suspended particulate matter (SPM) concentration for each filter sample.

The basic intensity parameter for scavenging is the distribution coefficient, K_d. This is defined (for Th in Eq. 1, but similarly for Pa), as the ratio of the adsorbed radionuclide to dissolved radionuclide per unit seawater (sometimes called K), normalized by the suspended matter concentration. K_d here is expressed as atoms radionuclide per gram of particulate matter over atoms radionuclide per gram of seawater (g/g). We emphasize that K_d is operationally defined in terms of its size partitioning. If the radionuclides are to any great extent adsorbed/complexed with a colloidal phase (smaller than 450 nm), the operationally defined “dissolved” concentration will be an overestimate of the truly dissolved or soluble radionuclide concentration and the particulate radionuclide may be underestimated. The apparent K_d will be biased low.

$$K_d(Th) = \frac{Th_{xs}^p}{Th^d} \times \frac{1}{SPM} = K(Th) \times \frac{1}{SPM} \quad \left[\text{Units:} \frac{Th \text{ per g particles}}{Th \text{ per g seawater}} \right] \quad (\text{Eq. 1})$$

The adsorbed 230Th is considered as the particulate 230Th which is found in excess (xs) of that supported by U decay in the particulate lithogenic material. The measured particulate 230Th is corrected for by a supported fraction based on measured particulate 232Th (as a proxy for particulate U), and a 230Th/232Th ratio representative of lithogenic material. Using particulate 232Th to correct for supported 230Th has the advantage over using 234U directly because water column particulate U contains an authigenic component (Anderson, 1982) which is difficult to independently estimate. However, not all of the measured particulate 232Th is representative of lithogenic material either, as some of the 232Th is in the adsorbed phase (Robinson et al., 2008). In the correction for supported 230Th, one can take into account an adsorbed fraction of 232Th, $f(\text{ads.} \ ^{232}\text{Th})$ (Eq. 2).
\[^{230}Th_{xs}^{p} = ^{230}Th_{meas}^{p} - \left(\frac{^{230}Th}{^{232}Th}_{\text{lit tho}} \right) \times [1 - f(ads. \ ^{232}Th)] \times ^{232}Th_{meas}^{p} \quad \text{(Eq. 2)} \]

The adsorbed fraction of \(^{232}\text{Th}\) is estimated by making an assumption that the two Th isotopes, \(^{230}\text{Th}\) and \(^{232}\text{Th}\), should be subject to the same scavenging intensity, as defined by \(K(\text{Th})\) in Eq. 1. In this way, the adsorbed component of \(^{232}\text{Th}\) is equal to the Th distribution coefficient multiplied by the measured dissolved \(^{232}\text{Th}\), which divided by the total particulate \(^{232}\text{Th}\), gives the adsorbed fraction of \(^{232}\text{Th}\) (Eq. 3).

\[f(ads. \ ^{232}\text{Th}) = \frac{K(\text{Th}) \times ^{232}\text{Th}_{d}}{^{232}\text{Th}_{meas}^{p}} = \frac{^{230}Th_{meas}^{p}}{^{230}Th_{d}} \times \frac{^{232}\text{Th}_{d}}{^{232}\text{Th}_{meas}^{p}} \quad \text{(Eq. 3)} \]

By substituting Eq. 3 into Eq. 2, the adsorbed \(^{230}\text{Th}\) can be solved for explicitly (Eq. 4).

\[^{230}Th_{xs}^{p} = \frac{^{230}Th_{meas}^{p} - \left(\frac{^{230}Th}{^{232}Th}_{\text{lit tho}} \right)}{1 - \left(\frac{^{230}Th}{^{232}Th}_{\text{lit tho}} \right) \times \frac{^{232}\text{Th}_{d}}{^{232}\text{Th}_{meas}^{p}}} \quad \text{(Eq. 4)} \]

To calculate the adsorbed \(^{231}\text{Pa}\) (Eq. 5), we use a lithogenic \(^{231}\text{Pa}/^{232}\text{Th}\) ratio, and the adsorbed fraction of \(^{232}\text{Th}\) calculated from Eq. 3. The fractions of particulate \(^{230}\text{Th}\) and \(^{231}\text{Pa}\) supported by decay in lithogenic material ranged from 0-32% and 0-37% respectively depending on water depth (adsorbed concentrations generally increase with water depth) and lithogenic content. The fraction of particulate \(^{232}\text{Th}\) in the adsorbed phase was 30-40% in most cases, consistent with previous estimates (Robinson et al. 2008).

\[^{231}\text{Pa}_{xs}^{p} = ^{231}\text{Pa}_{meas}^{p} - \left(\frac{^{231}\text{Pa}}{^{232}\text{Th}} \right)_{\text{lit tho}} \times [1 - f(ads. \ ^{232}\text{Th})] \times ^{232}Th_{meas}^{p} \quad \text{(Eq. 5)} \]

In order to statistically interpret the variations in \(K_d\) values with respect to particle composition, we consider each measured \(K_d\) a linear sum of contributions from each major particle phase (lith, CaCO\(_3\), opal, POM, Fe(OH)\(_3\), MnO\(_2\)) (cf. Li, 2005). Each contribution is the
product of the K_d for a pure end-member phase (unknown), weighted by its fraction of the total mass of a particle sample (Eq. 6).

$$K_d = f(lith) * K_d^{lith} + f(CaCO_3) * K_d^{CaCO_3} + f(opal) * K_d^{opal} + f(POM) * K_d^{POM} + f(Fe(OH)_3) * K_d^{Fe(OH)_3} + f(MnO_2) * K_d^{MnO_2}$$ (Eq. 6)

This is done for each particle sample (e.g., sample 1, 2, 3, ... in Eq. 7) and the pure end-member K_d’s can be solved for using a non-negative least-squares regression (since a negative K_d is not physically meaningful).

$$\begin{bmatrix} K_d^{lith} \\ K_d^{CaCO_3} \\ K_d^{opal} \\ K_d^{POM} \\ K_d^{Fe(OH)_3} \\ K_d^{MnO_2} \end{bmatrix} = \begin{bmatrix} f(lith)^1 f(CaCO_3)^1 f(opal)^1 f(POM)^1 f(Fe(OH)_3)^1 f(MnO_2)^1 \\ f(lith)^2 f(CaCO_3)^2 f(opal)^2 f(POM)^2 f(Fe(OH)_3)^2 f(MnO_2)^2 \\ f(lith)^3 f(CaCO_3)^3 f(opal)^3 f(POM)^3 f(Fe(OH)_3)^3 f(MnO_2)^3 \end{bmatrix}$$ (Eq. 7)

Finally, we estimate the degree to which Th and Pa are fractionated during scavenging using the fractionation factor, $F(Th/Pa)$ (Anderson et al., 1983b), which is the intensity of Th scavenging relative to that of Pa (Eq. 8) or ratio of the corresponding K_d’s. Note that in calculating $F(Th/Pa)$ from the definition of K_d given in equation 1, the SPM term will cancel. Thus the fractionation factor is independent of particle concentration and should be a function only of particle composition. F may, however, be subject to a bias related to size-partitioning if Th and Pa exist in a colloidal phase at differing proportions.

$$F\left(\frac{Th}{Pa}\right) = \frac{K_d(Th)}{K_d(Pa)} = \frac{Th^{P_e}}{Th^{a_e}} + \frac{Pa^{P_e}}{Pa^{a_e}}$$ (Eq. 8)

Fractionation factors for specific particle types have been determined using experimental techniques or in locations dominated by certain phases. There are large variations in the results (see compilation by Roberts et al. (2009)) but somewhat of a consensus view is that biogenic opal and Fe/Mn oxide phases scavenge Th and Pa with the same intensity, $F(Th/Pa) \sim 1$. Most
other phases such as clays or calcium carbonate are believed to greatly prefer scavenging of Th, F(Th/Pa) ~ 10-20. There has been no consensus on the fractionation associated with scavenging by organic matter. We attempt to estimate phase-specific fractionation factors in this study as well using the end-member K_d’s from the described statistical regression.

3. Results

3.1 Distribution coefficient estimates

We first examine the depth distribution of the K_d measurements for the North Atlantic transect stations (Fig. 2). The K_d profile has logarithmic changes of a similar structure with depth for both elements. The lowest K_d’s are found in the upper 400 m. Below 500 m depth, except for near bottom anomalies of elevated values at GT10-09 and GT11-16, the K_d is largely uniform with depth, ~2-3 x 10^7 g/g for Th and 1-2 x 10^6 g/g for Pa.

In Figure 3 we put the K_d observations into the context of particle concentration and composition before proceeding with the statistical analysis in Sec. 4.1. We have sorted the data by increasing K_d(Th) (Fig. 3A) and use this same order to show the percent-weight composition of the major particle components (Fig. 3B) and the SPM for each sample (Fig. 3C). With a few exceptions, the particle samples are primarily mixtures of lithogenic material, CaCO$_3$, and POM. Opal was consistently a relatively minor component (0-14% by weight). Generally, increasing K_d values are associated with increasing lithogenic content, decreasing POM content, and decreasing SPM. Whether these general trends are related to true differences in the scavenging characteristics of the different particle types or to biases in our K_d estimates due to an increased proportion of colloidal Th and Pa at higher POM and SPM contents will be addressed in Sec. 4.2.

The near-bottom elevated K_d values (~10^8 g/g for Th and 10^7 g/g for Pa, Fig. 2), on the other hand, can be immediately associated with unique particle chemistry (Fig. 3, sample
numbers 106-113). At GT11-16, also known as the TAG hydrothermal site, a hydrothermal plume was observed at ~3.3 km depth and the particulate material in and surrounding it were 9-51% authigenic Fe hydroxide by weight (but interestingly little Mn oxide enrichment was observed). At station GT10-09 near Mauritania, two near-bottom samples were taken within a layer of resuspended sediments containing 2-3% each of Fe(OH)₃ and MnO₂. Metal oxide enrichments clearly enhance the scavenging of both Th and Pa.

Another interesting anomaly in this dataset comes from the bottom 2 samples of GT11-04 where a relatively particle-laden nepheloid layer (SPM = 730-1200 µg/L) of resuspended sediments (70% lithogenics) was observed. Despite SPM values orders of magnitude above the oceanic background (5-10 µg/L), the measured Kₐ values for Th and Pa were still in the typical range observed in deep water (Fig. 2).

3.2 Fractionation factor F(Th/Pa) estimates

The fact that the relative changes in Kₐ(Th) and Kₐ(Pa) values track each other quite closely (Fig 2, Fig. 3A) is representative of a relatively uniform fractionation factor across the transect (10-20, mean ~15). There is nonetheless a significant trend of the fractionation factor with depth (Fig. 4). The highest F(Th/Pa) values are found shallower than 1 km depth, particularly for the more interior sites (GT10-07, GT11-12, GT11-16, and GT11-22). The shallow water (< 1 km), however, also has the greatest variability and analytical uncertainty (>50% in some cases) in fractionation factor. The analytical uncertainty is large in part because error propagation in calculating F(Th/Pa) results in the compounding of analytical error from 4 separate analyses (Eq. 8). The largest contributor to the error (in shallow waters especially) is from the particulate ²³¹Pa analysis for which the sample size (<2 fg ²³¹Pa) approaches our limit of detection as defined by 3 standard deviations of ²³¹Pa in filter blanks (0.25 fg ²³¹Pa).
The fractionation factor below 1 km depth, generally decreases with depth for nearly all stations (Fig. 4) as has been observed in the equatorial and south Atlantic (Moran et al., 2002). The lowest F(Th/Pa) values obtained are 6-7 in the Fe and Mn oxide enrichment at the bottom of GT10-09. Interestingly there is a sharp increase in F(Th/Pa) in the heavily particle-laden nepheloid layer at GT11-04, possibly indicating high fractionation associated with the predominantly lithogenic particles there. That the fractionation factor generally decreases with depth is a reflection of the character of the scavenging particles having an increasing affinity to scavenge Pa relative to Th. Although throughout the whole water column Th is clearly preferentially scavenged over Pa by a factor of more than 7 at these sites, the preferential scavenging of Th over Pa is reduced with depth. Either the deep particles have a smaller affinity to scavenge Th or a greater affinity to scavenge Pa, the latter appearing more consistent with the K_d data (Fig. 2). Whether this can be clearly related to a distinction in particle composition is most adequately determined with the described statistical regression of K_d values (Sec. 4).

We put our fractionation factor observations into a basin-wide context with previously published results in Figure 5. Plotting all the water column observations as a function of latitude, one can see that throughout the (sub)tropical Atlantic (40°N-40°S) the fractionation factor is nearly always above 5. The results from the equatorial and subtropical South Atlantic (Moran et al., 2002; Scholten et al., 2008) have a range in F(Th/Pa) which is consistent with that observed in the North Atlantic transect. It appears that only at high latitudes (Labrador Sea, Moran et al., 2002; and south of 50°S, Walter et al., 1997) does F(Th/Pa) become lower than 5. Lower fractionation factors at high latitudes have been attributed to increased contents of biogenic opal (Moran et al., 2002; Walter et al., 1999) presumably because diatoms are more prevalent in nutrient-rich, (sub)polar waters.
If the lower $F(\text{Th/Pa})$ values at high latitudes are assumed to result from increased $K_d(\text{Pa})$, one can infer a longer water column residence time for Pa throughout the (sub)tropical Atlantic (because it is removed less intensely there). This would mean that mid- and low-latitude Pa is more sensitive than high latitude Pa to redistribution by circulation, either by advection or eddy diffusion. However, decreased values of $F(\text{Th/Pa})$ at high latitude could also result because of lower $K_d(\text{Th})$ values (with no change in $K_d(\text{Pa})$), as some studies have determined the $K_d(\text{Th})$ for opal is particularly low (Chase et al., 2002; Siddall et al., 2005). This caveat highlights the value of analyzing SPM in addition to dissolved and particulate radionuclides to be able to consider the geographic variation in $K_d(\text{Th})$ and $K_d(\text{Pa})$ separately. This presentation of the fractionation data (Fig. 5) is also somewhat incomplete since the plotted sites are largely from the interior ocean. If more sites were included from high productivity upwelling sites near the coast or along the equator where diatoms are more prevalent, lower fractionation factors may be observed at low latitudes as well.

4. Discussion

4.1 End-member distribution coefficient regressions

The results of the non-negative least squares regression between the measured K_d’s for Th and Pa and the particle component concentrations are listed in Table 1. For visual inspection of the correlations, the K_d and particle composition data are cross-plotted for Th (Fig. 6) and Pa (Fig. 7). Significant end-member K_d values could not be derived for opal or POM for both Th and Pa. The end-member K_d values for lithogenic material and CaCO$_3$ imply strong fractionation associated with the adsorption of Th relative to Pa, consistent with previous work (Chase et al., 2002; Geibert and Usbeck, 2004).
The K_d values for Fe and Mn (hydr)oxides (10^8-10^9 g/g for Th, 10^7-10^8 g/g for Pa) are orders of magnitude above those for lithogenics and CaCO$_3$ ($\sim 10^7$ g/g for Th, $\sim 10^6$ g/g for Pa), confirming the clear enhanced scavenging intensity inferred from depth profiles of K_d (Fig. 2). The MnO$_2$ K_d values reported here are much larger than what has been determined experimentally (Geibert and Usbeck, 2004; Guo et al., 2002a), but are consistent with measured K_d values from the Panama Basin where enrichment of MnO$_2$ in the surface sediments occurs (1-2% MnO$_2$; Anderson et al., 1983a), similar to that observed at GT10-09. Additionally, Roy-Barman et al. (2009) estimated an even higher K_d(Th) for MnO$_2$ of 60-110 x 10^8 g/g based on sediment traps from the Mediterranean Sea. These observations suggest that authigenic MnO$_2$ formed naturally is more reactive toward adsorption than when prepared in the laboratory. In oceanic settings, MnO$_2$ occurs as coatings, providing much higher reactive surface area than afforded by pure phases in the laboratory.

The enhanced intensity of scavenging by Fe(OH)$_3$ is not surprising given the known influence of intensified scavenging by hydrothermal plume particles (German et al., 1991). What is surprising are the fractionation factors estimated for MnO$_2$ ($F = 5$) and Fe(OH)$_3$ ($F = 11$) (Table 1), implying still a strong preference for scavenging Th. Previous work, on the other hand, has concluded that these phases do not fractionate the two elements during scavenging ($F = 1$) (Anderson et al., 1983b). Experimental studies have also found F close to 1 for manganese oxides, but for iron oxides F was determined as 4-5 (Geibert and Usbeck, 2004; Guo et al., 2002a). De-convolving the distributions coefficients using particle composition in terms of reactive surface area rather than weight percentage may help explain these discrepancies. The measurement of reactive surface area of undisturbed oceanic particles, however, presents a great
analytical challenge, and it may be that oceanic K_d and F values will always be to some extent operationally-defined.

The dynamic range in opal concentration in the dataset is small, <10, and opal did not have any apparent positive or negative relationship with either K_d(Th) or K_d(Pa) (Figs. 6B, 7B). This is unfortunate in that we cannot directly test the hypothesis that sedimentary Pa/Th ratios in the North Atlantic are controlled by the influence of opal scavenging (Keigwin and Boyle, 2008) with this dataset. We can conclude that it appears opal was not a major scavenging phase of Th or Pa along our transect. There is a possibility that our sampling suffers from a seasonal bias. In the Sargasso Sea diatoms are generally only a very small proportion of the phytoplankton community but their greatest abundances occur during winter/spring blooms (Nelson and Brzezinski, 1997), whereas our sampling took place in late fall (Oct-Dec). We would expect the variation in particle composition associated with diatom blooms to occur mostly in the upper water column (<1000 m), however, since deep sediment traps (3200 m) from near Bermuda have recorded very constant particle composition throughout the year for more than 10 yrs (Conte et al., 2001).

Despite low variation in opal concentrations, the opal/CaCO$_3$ ratio does vary by about 2 orders of magnitude. This ratio was suggested as the primary determinant of particulate Pa/Th ratios on the basis of a global compilation of sediment trap-seawater comparisons (Chase et al., 2002). Our data from the North Atlantic are largely consistent with the log-log correlation between the opal/CaCO$_3$ ratio and particulate Pa/Th ratio found by Chase et al. (Fig 8). A few of the outliers on this plot (results from this study with the highest Pa/Th ratio) are expected because these were the samples that had significant (2-3%) MnO$_2$-enrichment at GT10-09. What is immediately apparent from Fig. 8, though, is that the North Atlantic transect points fall only
on the low opal/CaCO$_3$-Pa/Th ratio side of the correlation. In fact, very few of the Pa/Th observations from this study fall above the activity ratio initially produced by U decay (0.093), which would be an indicator of preferential Pa scavenging. Furthermore, the consistency between the results of this study and the global compilation suggest that a cause for the low particulate Pa/Th ratios is the low opal/CaCO$_3$ ratios of North Atlantic particles (Honjo et al., 2008). This explanation, however, may only hold for the subtropical North Atlantic in which most of our observations are made and in which picoplankton and CaCO$_3$-producing coccolithophorids are favored in primary production over microplankton such as opal-producing diatoms. Further work in the subarctic and equatorial Atlantic may lend support to the hypothesis that large-scale regimes exist with distinct Pa/Th fractionation coinciding with biogeographic provinces (Chapter 3; Longhurst, 2006).

POM concentrations appeared to have an inverse relationship with K_d(Th) and K_d(Pa) (Figs. 6D, 7D). If using a standard least squares regression, K_d(Th) and K_d(Pa) for POM are negative. This finding is very much at odds with experimental and observational work that suggests very high sorption affinities, relative to inorganic substrates, for Th and Pa of organic macromolecules such as polysaccharides containing extracellular polymeric substances (EPS) (e.g., Guo et al., 2002b; Quigley et al., 2002; Roberts et al., 2009; Santschi et al., 2006). In the next section we explore the possibility that the finding of low K_d values for Th and Pa may actually be an artifact related to increased proportions of colloidal Th and Pa associated with high POM surface waters.

To summarize how changing particle composition affects the scavenging characteristics of Th and Pa, we calculate the contribution to the total observed scavenging intensity (K_d) of each individual particle phase (end-member K_d for phase x, multiplied by the concentration of
phase x in the particle sample). In this presentation of the data (Fig. 9), one can see that major carrier phases (largest contributions to the total K_d) of both Th and Pa in the North Atlantic are lithogenic material and CaCO$_3$. The high fractionation factors associated with these phases (Table 1, $F = 10^{-20}$) explains the overall high fractionation factors observed throughout the transect (Figs. 2, 5). Interestingly, the K_d(Pa) for MnO$_2$ is so high (2.5×10^8 g/g) that even at the low MnO$_2$ concentrations of the typical particles (0.1-0.3%, perhaps related to oxide coatings on detrital clays), we estimate that this phase is contributing 10-20% of overall Pa scavenging. Finally, the Fe and Mn oxide phases for both elements are clearly the dominant scavenging phase in the hydothermal plume samples (Fig. 9, sample nos. 105-110) and to a lesser extent in the bottom-boundary layer GT10-09 samples (Fig. 9, sample nos. 102, 104).

4.2 The colloid conspiracy

In the vein of Turekian’s “great particle conspiracy” (1977) in which sorption/scavenging processes were revealed to play a dominant role in the cycling of trace metals in the ocean, in this section we discuss the possibility that colloidal organic matter plays a dominant role in scavenging Th and Pa in shallow waters. While we have no measurements on colloidal organic matter or specific organic molecules/polymers known for radionuclide adsorption, we would expect these to roughly scale with POM content (Benner et al., 1992; Sugimura and Suzuki, 1988). Of course, POM content is largest in particle samples from the upper 200 m (POM = 60-80%), coincident with the lowest measured K_d values as well as relatively high SPM content (10-20 µg/L) (Figs. 2, 3, 6, 7).

An additional piece of evidence which implicates an increasing proportion of colloidal radionuclides at high SPM (and POM) contents is the relationship between the measured distribution coefficients and particle concentration (Fig. 10). Referred to as the particle
concentration effect (Honeyman et al., 1988), it has been shown that measured K_d values for Th are considerably lower in near-shore waters where particle concentrations ($>10^3$ µg/L) are much higher than in oceanic waters (SPM = 10^0-10^2 µg/L). This effect is attributed to a larger proportion of (adsorbed) colloidal Th, which passes through filters and thus appears as dissolved, at higher particle concentrations (Henderson et al., 1999; Moran and Buesseler, 1993). The particle concentration effect has been shown to affect the size-partitioning of many particle-reactive trace metals, such as Al, Pb, Hg, and Fe (Moran and Moore, 1989; Moran et al., 1996), so presumably it would also hold for Pa. It is significant in our study, however, that a trend of lower K_d’s with high SPM (log-log scale) is seen even at the typical oceanic particle concentrations. The samples with the highest POM content (equivalent to those at <200 m depth) are consistently on the low-K_d end of the observed trends (Fig. 10) giving further support to the association of some type of organic matter with a greater proportion of colloidal radionuclides.

Apparently low K_d values could also be the result of low molecular weight organic molecules with high complexation capacities which essentially stabilize Th (or Pa) in solution (Barbeau et al., 2001). This would be consistent with the finding of elevated Th complexation capacity confined to the upper 200-300 m of the ocean (Hirose et al., 2011; Hirose and Tanoue, 1994; 1998) and is difficult to distinguish from the colloidal hypothesis with the available data.

If one assumes the low shallow water K_d’s are artifacts and that the true K_d’s in shallow water should be similar to the more uniform values found in mid- to deep water (1-3 km depth), one can estimate the fraction of “dissolved” radionuclide that would have to be found in the colloidal/complexed phase, $f(\text{colloid})$, by mass balance. Essentially, $f(\text{colloid})$ is directly proportional to the relative deviation of the measured K_d (Eq. 9). Assuming a true $K_d(\text{Th}) = 1.5 \times 10^7$ g/g, the dissolved phase of ^{230}Th as measured is implied to be up to 80-90% colloidal (at a
maximum, most shallow samples are estimated between 30-60% colloidal). A similar result,
f(colloid) = 20-90%, is obtained for 231Pa (assuming true K_d(Pa) = 2×10^6 g/g).

$$f(\text{colloid}) = 1 - \frac{\text{true } K_d}{\text{measured } K_d} \quad \text{Eq. 9}$$

Very little work on colloidal 230Th (or 231Pa) has been done, but colloidal 234Th, reviewed by Guo and Santschi (1997), has received attention for its application in quantifying organic matter export. The colloidal fraction of dissolved 234Th has been estimated over a large range (0-78%). This large range is in part because of the analytical and operational issues associated with ultrafiltration techniques (e.g. Dai et al., 1998; Dai and Benitez-Nelson, 2001), but generally, f(colloid) values for 234Th greater than 50% are found only in near-shore waters with particle concentrations on the order of 10-100 mg/L. Thus, the estimated 80-90% colloidal fraction of 230Th (231Pa) reported here in for oceanic waters is a novel result worth attempting to replicate in other oceanic environments. Future work to determine the size partitioning of 230Th would also be helpful in understanding the scavenging removal of Th in shallow waters, which is of particular relevance for the use of dissolved 232Th fluxes as a tracer of lithogenic inputs based on 230Th scavenging removal (Hsieh et al., 2011; Chapter 2).

Because of the possible bias in our K_d estimates imparted by a presence of an organic colloidal fraction of radionuclides, we must defend the statistical approach (Sec. 4.1) used to determine scavenging intensity of different particle types. As well, if Th and Pa have colloidal content of differing proportions (different magnitude of bias in K_d(Th) vs. K_d(Pa)), our estimates of fractionation factors (Eq. 8) could be subject to the same type of artifact. Obviously we have less confidence in our derived scavenging parameters where the presence of a significant colloidal radionuclide phase is most likely to occur (shallow water, high POM content). The content of the most reactive organic sorption/complexing agents is most likely to decrease depth
via respiration processes (Cho and Azam, 1988; Lee et al., 2004). Furthermore, given that the anomalous \(K_d \) values are confined to the upper 500 m, the mid- and deep water results (sample no. > 15 in Fig. 3) are most likely reliable and suitable for determining the relative scavenging intensity and fractionation factors associated with different phases. Nonetheless, the statistical approach employed here would be improved with further information on the size-partitioning of the radionuclides. Additionally, rather than simply POM, characterizing types of POM, and their size partitioning, which may differ in their scavenging tendencies (poly acid saccharides, proteins, lipids, etc.) will provide more information about the mechanism of scavenging by organic matter.

5. Summary

In this study, we confirm previous work that lithogenic material and CaCO\(_3\) are major carrier phases of scavenged Th in the North Atlantic Ocean. Mn and Fe oxide phases have scavenging intensities orders of magnitude larger than the other major particle components for both elements. Metal oxides are most likely only major scavenging phases in a limited number of settings. These include sites of hydrothermal venting and near-shore environments where sediments undergo intense redox cycling due to high respiration rates of organic matter that creates Fe and/or Mn-oxide coatings on other particulate phases. Although, in our calculations scavenging intensity of MnO\(_2\) for Pa is so high that even at very low concentration (such as the oxide coatings of clay), this phase contributes significantly to Pa scavenging (~10%).

In our sampling, opal was not a major phase of the particles (< 15%) and was not correlated with an increase in Pa scavenging intensity. We cannot therefore directly test the hypothesis that sedimentary Pa/Th ratios are controlled by opal scavenging rather than the intensity of overturning circulation in the North Atlantic. However, if the low concentration of
opal we observed across the transect is characteristic of the basin on a year-round basis, then it may be that the Pa cycle in the North Atlantic (in the modern case, at least) is not significantly perturbed by opal scavenging.

Despite a lack of statistical correlation between POM and scavenging intensities, anomalously low K_d values in shallow water intimate the possibility that organic colloids or complexing agents play a significant role in scavenging/complexing both radionuclides. Future work should pursue the seasonal variability of particle composition and scavenging intensities (as determined by in-situ pumps), size-fractionation of dissolved ^{230}Th and ^{231}Pa to determine the role of colloids, and further characterization of POM (and colloidal OM) to determine which organic compounds are associated with the strongest scavenging intensities and as well as their spatial extent.

Acknowledegements

Cruise management was funded by the U. S. National Science Foundation to the US GEOTRACES North Atlantic Transect Management team of W. Jenkins (OCE-0926423), E. Boyle (OCE-0926204), and G. Cutter (OCE-0926092). Radionuclide studies were supported by NSF (OCE-0927064 to LDEO, OCE-0926860 to WHOI, OCE-0927757 to URI, and OCE-0927754 to U MN). The crew of the R/V Knorr, the Ocean Data Facility team (Mary Johnson, Rob Palomares, Susan Becker, and Courtney Schatzman), and the science team samplers for Niskin bottles and in situ pumps (Katharina Pahnke, Brett Longworth, Paul Morris, Daniel Ohnemus, Kuanbo Zhou, Sylvain Rigaud and Stephanie Owens) are all acknowledged for their critical roles in the success of these cruises. Figure 1 was created using Ocean Data View (Schlitzer, 2011).
References

Figure 1. Map of the sites from the US North Atlantic GEOTRACES cruises (red diamonds) reported on in this study in comparison to sites for which water column fractionation factors, $F(\text{Th}/\text{Pa})$, have been reported by Moran et al. (2002) (black squares), Walter et al. (1997) (green triangles) and Scholten et al. (2008) (purple x’s) and sites from a global compilation of sediment trap Pa/Th and particle composition reported by Chase et al (2002) (blue dots).
Figure 2. Depth profiles of the distribution coefficient (K_d) for 230Th (A) and 231Pa (B) from the US GEOTRACES locations mapped in Figure 1. Circled are the anomalous high K_d values associated with authigenic Fe(OH)$_3$ at the TAG hydrothermal site, GT11-16, and authigenic MnO$_2$ enrichment in a bottom nepheloid layer at GT10-09, an upwelling region off the coast of Mauritania.
Figure 3. K_d results for all samples analyzed in this study sorted by increasing K_d(Th) (red diamonds) (A). Note the corresponding K_d(Pa) values (blue triangles) (A) are on their own, offset scale on the right. (B) Corresponding particle compositions (% weights of lithogenic material, CaCO$_3$, biogenic opal, particulate organic matter, MnO$_2$ and Fe(OH)$_3$) and (C) suspended particulate matter concentrations of the particle samples ordered in the same way as (A). The error bars shown in (A) represent the propagated errors associated with the analysis of particulate and dissolved radionuclides and suspended matter concentration.
Figure 4. Depth profiles of the fractionation factor, F(Th/Pa), for the US GEOTRACES locations mapped in Figure 1. The error bars represent the propagated errors associated with the analyses of dissolved and particulate radionuclides. Circled are anomalous results associated with the manganese oxide enrichment in the nepheloid layer at GT10-09, the upwelling site near the coast of Mauritania and with the heavily particle-laden nepheloid (~1000 µg/L) layer observed at GT11-04, along Line W in the Northwest Atlantic, which was composed predominantly of lithogenic material and calcium carbonate.
Figure 5. Fractionation factors, $F(\text{Th}/\text{Pa})$, calculated between seawater and suspended particles in the water column, determined from the US GEOTRACES transect (red diamonds) compared with published estimates reported by Moran et al. (2002), Walter et al. (1997), and Scholten et al. (2008) as a function of latitude in the Atlantic. See Figure 1 for station locations.
Figure 6. Cross-plots of K_d(Th) versus the particulate matter content of lithogenic material (A), opal (B), CaCO$_3$ (C), particulate organic matter (D), manganese oxides (E), and iron hydroxides (F).
Figure 7. Cross-plots of K_d(Pa) versus the particulate matter content of lithogenic material (A), opal (B), CaCO$_3$ (C), particulate organic matter (D), manganese oxides (E), and iron hydroxides (F).
Figure 8. The ratio of adsorbed Pa/Th (particulate xs) on suspended particles from the US GEOTRACES transect versus the opal to CaCO$_3$ ratio of the particles compared with the xs Pa/Th ratio and opal/CaCO$_3$ of global sediments trap material (Chase et al. 2002, see Fig. 1 for station locations). Note that both axes are log-scale. The horizontal dotted line represents the Pa/Th activity produced initially by U decay in seawater (0.093).
Figure 9. The fractional contribution of the major particle components to the total scavenging (measured K_d) of Th (A) and Pa (B) in comparison to the weight-composition (C) of the particles analyzed in this study on the same sample no. axis as in Figure 3 (ordered by increasing K_d(Th)).
Figure 10. Log-log scatter plots of K_d(Pa) (A) and K_d(Th) (B) versus suspended particulate matter (SPM) concentration from our study sites. While there is a general trend for decreasing K_d values at higher SPM, and samples from shallower than 200 m water depth, especially, fall on the low-K_d-high-SPM end of the trend, we highlight that the stations for which metal oxide scavenging is significant (GT11-16 and GT10-09) do not fall on this trend.
Table 1. Results of a non-negative least squares regression between distribution coefficients (K_d) for Th and Pa and the major particle component concentrations (lithogenic material, calcium carbonate, biogenic opal, particulate organic matter, and authigenic Mn and Fe (hydr)oxide phases). Shown are the derived end-member distribution coefficients for pure phases and their associated fractionation factors ($F = K_d(\text{Th}) / K_d(\text{Pa})$).

<table>
<thead>
<tr>
<th></th>
<th>$K_d(\text{Th})$</th>
<th>±</th>
<th>$K_d(\text{Pa})$</th>
<th>±</th>
<th>$F(\text{Th/Pa})$</th>
<th>±</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lith</td>
<td>3.8 $\times 10^7$ (g/g)</td>
<td>0.7</td>
<td>3.6 $\times 10^6$ (g/g)</td>
<td>0.6</td>
<td>10 $\times 10^6$ (g/g)</td>
<td>3</td>
</tr>
<tr>
<td>CaCO$_3$</td>
<td>2.5 $\times 10^7$ (g/g)</td>
<td>0.6</td>
<td>1.2 $\times 10^6$ (g/g)</td>
<td>0.5</td>
<td>21 $\times 10^6$ (g/g)</td>
<td>11</td>
</tr>
<tr>
<td>Opal</td>
<td>0.0 $\times 10^7$ (g/g)</td>
<td>4.3</td>
<td>0.0 $\times 10^6$ (g/g)</td>
<td>0.0</td>
<td>3.6 $\times 10^6$ (g/g)</td>
<td>3.6</td>
</tr>
<tr>
<td>POM</td>
<td>0.3 $\times 10^7$ (g/g)</td>
<td>0.6</td>
<td>0.0 $\times 10^6$ (g/g)</td>
<td>0.0</td>
<td>0.5 $\times 10^6$ (g/g)</td>
<td>0.5</td>
</tr>
<tr>
<td>MnO$_2$</td>
<td>138 $\times 10^7$ (g/g)</td>
<td>39</td>
<td>252 $\times 10^6$ (g/g)</td>
<td>33</td>
<td>5 $\times 10^6$ (g/g)</td>
<td>2</td>
</tr>
<tr>
<td>Fe(OH)$_3$</td>
<td>34 $\times 10^7$ (g/g)</td>
<td>2</td>
<td>30 $\times 10^6$ (g/g)</td>
<td>2</td>
<td>11 $\times 10^6$ (g/g)</td>
<td>1</td>
</tr>
</tbody>
</table>