Bayes, Jeffreys, Prior Distributions and the Philosophy of Statistics

Gelman, Andrew E.

I actually own a copy of Harold Jeffreys's Theory of Probability but have only read small bits of it, most recently over a decade ago to confirm that, indeed, Jeffreys was not too proud to use a classical chi-squared p-value when he wanted to check the misfit of a model to data (Gelman, Meng and Stern, 2006). I do, however, feel that it is important to understand where our probability models come from, and I welcome the opportunity to use the present article by Robert, Chopin and Rousseau as a platform for further discussion of foundational issues. In this brief discussion I will argue the following: (1) in thinking about prior distributions, we should go beyond Jeffreys's principles and move toward weakly informative priors; (2) it is natural for those of us who work in social and computational sciences to favor complex models, contra Jeffreys's preference for simplicity; and (3) a key generalization of Jeffreys's ideas is to explicitly include model checking in the process of data analysis.


Also Published In

Statistical Science

More About This Work

Academic Units
Published Here
March 15, 2010