Academic Commons

Theses Doctoral

Bifurcation perspective on topologically protected and non-protected states in continuous systems

Lee-Thorp, James Patrick

We study Schrödinger operators perturbed by non-compact (spatially extended) defects. We consider two models: a one-dimensional (1D) dimer structure with a global phase shift, and a two-dimensional (2D) honeycomb structure with a line-defect or "edge''. In both the 1D and 2D settings, the non-compact defects are modeled by adiabatic, domain wall modulations of the respective dimer and honeycomb structures. Our main results relate to the rigorous construction of states via bifurcations from continuous spectra. These bifurcations are controlled by asymptotic effective (homogenized) equations that underlie the protected or non-protected character of the states. In 1D, the states we construct are localized solutions. In 2D, they are "edge states'' - time-harmonic solutions which are propagating (plane-wave-like) parallel to a line-defect or "edge'' and are localized transverse to it. The states are described as protected if they persist in the presence of spatially localized (even strong) deformations of the global phase defect (in 1D) or edge (in 2D). The protected states bifurcate from "Dirac points'' (linear/conical spectral band-crossings) in the continuous spectra and are seeded by an effective Dirac equation. The (more conventional) non-protected states bifurcate from spectral band edges are seeded by an effective Schrödinger equation. Our 2D model captures many aspects of the phenomenon of topologically protected edge states observed in honeycomb structures such as graphene and "artificial graphene''. The protected states we construct in our 1D dimer model can be realized as highly robust TM- electromagnetic modes for a class of photonic waveguides with a phase-defect. We present a detailed computational study of an experimentally realizable photonic waveguide array structure.

Files

  • thumnail for LeeThorp_columbia_0054D_13241.pdf LeeThorp_columbia_0054D_13241.pdf binary/octet-stream 16 MB Download File

More Information

Academic Units
Applied Physics and Applied Mathematics
Thesis Advisors
Weinstein, Michael I.
Degree
Ph.D., Columbia University
Academic Commons provides global access to research and scholarship produced at Columbia University, Barnard College, Teachers College, Union Theological Seminary and Jewish Theological Seminary. Academic Commons is managed by the Columbia University Libraries.