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Abstract

A wealth of data is hidden within unstructured text. This data is often best exploited in structured or relational
form, which is suited for sophisticated query processing, for integration with relational databases, and for data
mining. Current information extraction techniques extract relations from a text database by examining every doc-
ument in the database. This exhaustive approach is not practical, or sometimes even feasible, for large databases.
In this paper, we develop an efficient query-based technique to identify documents that are potentially useful for
the extraction of a target relation. We start by sampling the database to characterize the documents from which
an information extraction system manages to extract relevant tuples. Then, we apply machine learning and infor-
mation retrieval techniques to derive queries likely to match additional useful documents in the database. Finally,
we issue these queries to the database to retrieve documents from which the information extraction system can
extract the final relation. Our technique requires that databases support only a minimal boolean query interface,
and is independent of the choice of the underlying information extraction system. We report a thorough experi-
mental evaluation over more than one million documents that shows that we significantly improve the efficiency
of the extraction process by focusing only on promising documents. Our proposed technique could be used to
query a standard web search engine, hence providing a building block for efficient information extraction over
the web at large.

1 Introduction

Text documents often hide valualdtructured data For example, a database of newspaper articles might contain
information on thdocation of the headquarters of a numberasfjanizations Many large text databases, including

the set of publicly-accessible web pages, contain data that can be best exploited in structured form. The goal of
information extraction is to produce a structured representation of the information that is “buried” in unstructured
(text) documents.

As another example of an application that could benefit from automatic information extraction, consider a large
database of customer feedback emails to a large manufacturer. Presumably, this manufacturer would want to addre:
customer-reported problems effectively. A structured relaGustomerComplaints(ProductName, ProductType,
Retailer, Complaint)listing the details of the problems that a customer has encountered, would help analyze and
address customer complaints. An example of a document “hiding” a tuple for this relation is in Figure 1. From

this document, an information extraction system could extract a tafilekjet cartridge”, “printer cartridge”,
“www.greatcartridges.com”, “it lacked two of the three colors” Once the customer complaint information is in
structured form, the manufacturer could run sophisticated queries over it, and even mine the data for interesting

patterns (e.g., to identify particularly problematic retailers or products).



[...] When I purchasedour inkjet cartridges (two black and two color) from thig
company, | did not realize that they were remanufactured. Revisiting the site at
www.greatcartridges.comafter receiving the cartridges,.[]. My second mistake was
not to try thecolor cartridges when | received them. When | did put one of them into my
printer, | found thait lacked two of the three colorsnecessary for full-color printing angd
was useless. [...]

Figure 1: A document fragment that may be used to extract a tuple f@ukmmerComplainteelation.

State-of-the-art extraction systems [7] are quite sophisticated and typically require labor-intensive training. After
training, these systems apply many rules over each available text segment to determine whether the segment ce
be used to fill a value of an attribute in a tuple. Therefore, processing each document is relatively expensive, and
typically involves several steps such as named-entity tagging (e.g., identifying person names or dates), syntactic
parsing, and finally rule matching. This approach is not feasible for large databases, or for the web, when it is not
realistic to tag and parse, or even simply scan, every available document.

In this paper, we address this scalability problem of all information extraction systems, and introduce the first
guery-based technique to identify the database documents that are potentially useful for the extraction of a targe
relation. Our technique makes it possible for an information extraction system of choice to operate over large text
databases, or even the web, by first retrieving the set of documents worth analyzing, and then proceeding with the
usual extraction process over this smaller document set. Our approach automatically discovers the characteristics
documents that are useful for extraction of a target relation, starting with minimal user-provided feedback. Specif-
ically, a user needs to provide our system with only a handful of example tuples of the target relation. Our system
then retrieves a sample of documents from the database where all attributes of at least one of the initial tuples cat
be found. We process these documents using the information extraction tool of choice, after which our system
applies machine learning and information retrieval techniques to discover the features that make documents usefu
for extracting the desired relation. This information is used to generate queries that are likely to retrieve additional
useful documents from the database. The retrieved documents are processed by the information extraction systel
to extract the final relation.

The key contribution of this paper is our query-based technique for identifying useful documents for information
extraction from large text databases. Our technique expects document databases to support only a minimal boolee
query interface, and is independent of the choice of information extraction system. Furthermore, our technique
could be used to query a standard web search engine, hence providing icrfitacstfucture for efficient information
extraction from the web at largeWe report a large-scale evaluation of our technique over more than one million
real documents, which shows that we significantly improve the efficiency and scalability of the extraction process
by focusing only on promising documents.

Related Work

Information extraction has been the focus of active research for decades. The main emphasis of this researct
notably in the context of the Message Understanding Conference (MUC), has been on the quality of the extracted
relation [7]. In contrast, our work assumes a given information extraction system, and focuses on how to retrieve
a relatively small set of documents that would allow the extraction of a close approximation of the target relation
efficiently.

Two information extraction systems on which we focus in this papeDdRRE [2] and Snowball[1]. These
systems are attractive alternatives to traditional extraction systems because they require minimal human training tc
work. BothDIPRE and Snowballstart with only a handful of user-provided examples of the tuples to be extracted,
and proceed to extract the target relation by finding segments of text similar to those in which the seed tuples occur.
New tuples are extracted from these text segments and become the new seeds for the next iteration of the system. |
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this paper, we experiment with bolblPREandSnowballas the information extraction systems of choice.

The problem of retrieving documents that are “relevant” to a user’s information need has been studied exten-
sively in the information retrieval (IR) field [14]. Although our problem is different in nature, we exploit state-
of-the-art term weighting and query expansion results [12] from IR in the design of one of our system'’s variants
(Section 2.3.2). For this, we initially identify a set of “relevant” documents by sampling the database to discover
documents that are useful to the information extraction system, and then extract the most important terms from these
documents.

Alternatively, the characterization of the useful documents given an initial sample could be viewed as a tradi-
tional classification problem. In fact, we also explored a number of machine learning techniques [5, 9] in the design
of other variants of our system (Section 2.3.2).

Our work is related to recent research on focused web crawling (e.g., [4, 3]), which addresses the problem of
fetching web pages relevant to a given topic via focused crawling. Our proposed technique is tuned for information
extraction, and operates over any searchable text database, whether its contents are “crawlable” or not.

Recent work [11] addresses the problem of crawling thielden welj the portion of the web hidden behind
search forms. The authors report a method for crawling specialized data sources using a manually-constructec
task-specific database of potential query terms, which is further expanded during crawling. In contrast, our goal is
different: we attempt to extract the most complegkation from the text database while retrieviag few documents
as possible

The rest of the paper is organized as follows. Section 2 presents our new document retrieval method in detail.
Then, Section 3 summarizes the general experimental setting, including the evaluation methodology, metrics, anc
databases we used for tuning and evaluation of our strategy. Section 4 describes how we estimated the best param
ters for our system. Section 5 reports the results of an experimental evaluation of our technique (and several baselin
strategies) on a large database of text documents. Finally, we conclude the paper in Section 6.

2 Retrieving Promising Documents from Text Databases

To extract a relation from a document database, all current state-of-the art information extraction systems require
examining every document at least once, which is not practical or sometimes even feasible for large databases
In this section, we describe a new method for querying a text database to retrieve only the documents useful for
extraction of the target relation, which can then be processed as usual by an information extraction system.

Specifically, the problem we address in this section is as follows. We are given an information extraction system
E and a databas®,;;, together with a specification of the relation that we want to extract. Agtdenote the
actual instance of the relation thatwould extract from the entire databagg;;. Our goal is to construct a close
approximation ofR,;, R, by retrieving a small fraction oD,;, D, and then having” operate onD rather than
on the much larger databagg,;;. Note thatR,; may not contairall of the correct tuples that could be extracted
from the database by a perfect system. Rather, we are limited by the best relation that a given extraction system ca
extract, and we try to approximate that relation in an efficient manner.

Section 2.1 provides an overview of how we fetch useful documents to feed a given arbitrary information extrac-
tion system. We first retrieve a small sample of documents and determine those from which the extraction system
is able to extract tuples (Section 2.2). This sample is subsequently used to provide examples of useful and non
useful documents to our methods of generating queries to retrieve the rest of the useful documents in the databas
(Section 2.3), as we describe next.

2.1 System Overview

We would like to extract a specified relation from a database of text documents with a search interface, provided
a small number of example tuples in the relation. Throughout the paper, as a running example and also in mosi
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Figure 2: The architecture of an efficient information extraction system that identifies promising documents via
querying.

Organization Location of Headquarters|
MICROSOFT REDMOND

EXXON IRVING
IBM ARMONK
INTEL SANTA CLARA

Figure 3: Example user-provided seed tuples forHeadquartergelation.

experimental results, we will use relatitteadquarters(organization, locationjvhich contains a tuple< o,l >
if organizationo has headquarters in locatién Figure 3 shows the example seed tuples that we assume a user
specified to our system as the only human-generated input we require.

The text database from which we retrieve documents can be either local (e.g., a company’s archive of legal
documents or customer e-mails) or remote (e.g., the web-accessible and searchable archive of a newspaper, or
web search engine such as Google). Only a small fraction of the database may be relevant to the relation of interes
S0 in this case it would be wasteful to run the information extraction system over every available document. If our
database is the set of all web pages indexed by a search engine such as Google, then it is simply impossible to sce
every page to extract tuples. For these reasons, our approach zooms in on the potentially useful documents, whil
ignoring the rest.

The main components of the system are shown in Figure 2. We interact with the text database through a searcl
engine. We assume that the search interface supports simple boolean queries‘dathAND mining AND NOT
apriori” . This query model provides sufficient expressiveness, and is widely supported: all of the major available
text indexing tools (e.g., Glimpse [10]) and web search engines support such queries with minor variations in syntax.
For example, Google’s syntax for the above querylaa mining -apriori”, with the AND operator being implicit.

We can apply our general document retrieval approach to a database containing documents in any domain by
using an appropriate underlying information extraction system, which can be arbitrarily specialized for that domain.
For example, if we wanted to extract complex corporate acquisition events, might want to use the PET system [15],
a powerful information extraction system created at NYU and specifically trained for this task. Alternatively, if we
wanted to extract the relation of protein interaction with subcellar structures from MEDLINE, a database of more
than 9 million abstracts of medical articles we could use the system described in [6].



For flexibility, we developed a modular architecture by treating the information extraction system as a black
box, and interacting with it solely throughverapperthat exports a uniform interface to other components. The
wrapper hides peculiarities of the information extraction system, and provides a single input/output interface:

e Input: A set of example tuplesSgedl in the target relation, and a set of documemtdor the extraction
system to process.

e Output: The set of new tuplesTiples extracted fromD, and for each tuple € Tuples, the set of identifiers
U, of the documents from which was extracted. The wrapper returns the identity of all the useful documents,
computed adJseful=U; UUs U ... U Upp)-

e Optional Output: Confidence:Some extraction systems are able to assigridencevalue to each ex-
tracted tuple. In this case, the wrapper also returns a list of weights=< ..., W;,... >, whereW; is
the confidence with which tuplg was extracted.Matched Patterns:Some systems may store additional
information about each extracted tuple, such as the extraction pattern that produced the tuple. In this case, the
wrapper also returns this information in alisP =< ..., TP;,... >, whereTP; is the set of patterns used
to extract tuple;. All Patterns: An extraction system may export just the set of all the extraction patférns
that it has available for extracting the target relation.

Designing for a minimal, uniform interface to the extraction system allows us to plug in any information extraction
system to take advantage of our querying techniques, without any changes to the document retrieval process.

The only information that we assume we have initially is a set of user-provided tuples that are part of the
target relation (Figure 3). Our method does not require any additional prior information about the documents in
the database: we proceed to sample the database starting with only the example tuples. (Presumably, at least sor
of the seed tuples occur in the database.) The output of the document retrieval component (Figure 2) is a set o
promising documentsvhich are then used as input to the information extraction system.

Before we delve into details of our approach, we specify the general class of relations we coRsisi@n
arbitrary relation with attributes,, as, ..., a,,. Our querying technique will be able to support extractiokdf:

1. An attribute of R is a key, i.e., it must uniquely determine the remaining attributes of the relation (e.qg.,

ay — {ag,...,an}).

2. Atuplet € R will only be extracted if all of its attributes: a1, as, . . ., a,, > occur within the same document.
(In other words, we assume that the information extraction system does not “glue” together pieces of a tuple
from multiple documents.)

For example, thédeadquartergelation described earlier has the key attribotganization(an organization is
assumed to have a single headquarters location), and botiig@eizationand its associateldcation must appear
within the same document in order for the tuple to be extracted.

We will rely on these assumptions (which may be relaxed as part of our future work) during querying. The
information extraction system may impose additional internal constraints on the types of relations it can extract,
but it does not change the promising document retrieval procedure. For ex&npleball1] and DIPRE[2] both
have been developed to extract binary relations. Our document retrieval procedure does not have these additions
limitations.

The overall document retrieval process is shown in Figure 4. Starting with a set of user-provided seed tuples, we
first use the seed sampling procedure described in Section 2.2 to retrieve a small sample of documents, likely to be
useful to the extraction system for extracting the target relation. The information extraction system is run over this
sample set, producing as output the set of extracted tuples, and the identifiers of useful documents. The documer
sample is converted to positive and negative examples, where the positive examples represent the documents in tt
sample that were determined to be useful for extraction. These examples allow us to derive queries targeted to matc
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Figure 4: Promising document retrieval: detailed view.

—and retrieve— documents similar to the positive examples (Section 2.3). These queries are used to retrieve a se
of promising documents from the database (Section 2.4), which are returned as input to the information extraction
system.

2.2 Retrieving a Seed Document Sample for Query Training

At the initial stage of the overall document retrieval process, we have no information about the documents that
might be useful for extraction. The only information we have at this point about the target relation is the example
tuples provided by the user. Our goal is to retrieve enough useful documents to provide sufficient examples to the
subsequent query training stage. To accomplish this, we usgei Samplinglgorithm shown in Figure 5. Each

round of sampling consists of two stages:

1. We retrieve a set of documents to be added to the samplg,;. by querying the search engine for occur-
rences of the current seed tuples, which initially are provided by the usgteds (line 0).

2. We runE over the documents i, €Xtracting the current set of tuples. From these, we select a small
number as new seed tuples and start a new sampling round.

To retrieve documents, we build queries with the attribute values of eachttipldée currentSeed; set (line
3). Each tuplet is used to construct two queriegi = t.a; AND t.as AND ... t.a,, andg—= t.a; AND NOT
(t.as AND ... t.a,), assumingu; is the key of the target relation. Quegy will retrieve documents where all the
attributes oft appear somewhere within the same document. In principle, these are documents from aahilch
have been extracted by the information extraction system. In contrast, giuevifl retrieve documents where not



Procedure SeedSample( Seed;)

0 Dsample = {}

1 For ¢ =11to mazSamplingRounds

2 For s € Seed,

3 Temp = QuerySeed( s, mazSeedResults)
4 Dsample = Dsample U Temp

5 ( Tuples, Useful, W, TP, P) = FE.extract( Seed;,  Dsampie)
6 topTuples = getTopTuples(  Tuples, U, k)
7 Seed,+; = Seed; U topTuples

8 Useless = Dgsampie- Useful

9 Return( Tuples, Useful, Useless, W, TP, P)

Figure 5: The seed sampling algorithm.

all attributes of tuple appear together. These documents are not useful with respect to the extraction of tuple
although they mentio's key (i.e.,a;), they do not contain at least one of the remaining attributes and hence the
information extraction system would not have found these documents usefuliiduitively, queryq™ will tend to
retrieve useful documents for extraction, while querywill tend not to. We will need theseegativeexamples to

help derive queries for retrieving promising documents. We retrieve therfazsSeedResultsatches returned by

the database for each query. The query results are added to the set of documents retrievéd sg.fafline 4).

Clearly, not all documents retrieved by will be useful for extraction, and some of the documents retrieved by
g~ may actually be useful and contain a different valid tuple. To determine which documents are useful, we run the
information extraction syster® over D, (line 5), which returns the extracted tuple $aplesand identifiers of
useful documents from which the tuples were extracted. Additionally, the wrapper returns the assigned confidences
of the tuplesiV and the extraction patterns that the information extraction system used. Per our specifi€ation,

TP, andP may all be empty if the extraction system does not export this information.

In line 6, we seleck tuples from Tuples into top Tuples, which will be added td5eed and used for the next
round of sampling. The choice of seed tuples is critical, since it will strongly affect the resulting sample set.
Specifically, we need to decide on the valug:pand on the criteria by which to order the extracted tuples in order
to select the tog: tuples. We determine a good value foas part of the system tuning (Section 4). To each of the
extracted tuplesg; € T'uples we assign a score, equal|g;|, whereU; is the set of unique sample documents from
which t; was extracted, and order the tuples by this score. This favors selecting tuples that are likely to appear in
many documents in the database.

To select the new seed tuplésed;  ; (line 7) for sampling round + 1, we expandthe setSeed; with the new
tuplestop Tuples. The new sefeed; 1 becomes the current seed and a new round of sampling starts. The number
of sampling roundsnaxSamplingRoundg a parameter that we tune during training in Section 4.

Unfortunately, we cannot simply continue the seed sampling process to retrieve all of the useful documents in
the database. As we will show in Section 4, after a few sampling rounds only a small fraction of the target relation
is extracted, and the process tends to converge, with no additional useful documents added in subsequent round
However, many more useful documents are typically still “hiding” in the collection at this point. These documents
are not retrieved because they only contain tuples that have not yet been extracted. Therefore, we cannot retrieve tt
remaining documents using the attribute values of the extracted tuples alone so we need to resort to an alternativ
strategy.

Our key observation is that many useful documents share similarities in content. For example, useful documents
for the Headquartersrelation may contain terms or phrases such as “headquarters of,” “the spokesperson for the
company located in,” “in the interview given in the secluded campus of,” etc. These combinations of terms are more
likely to occur in useful documents than in non-useful documents for extractinggdquarterselation. Our goal
now is to generate queries that would identify and use such terms to retrieve the documents similar to the ones tha
the extraction system markeddseful For this, we exploit the documents ih,,,,,;c as a training set with positive



Okapi Ripper SVM Patterns
company based AND company laboratory| based AND losers AND fell
based based AND largest AND leader station bloomberg AND oct
bloomberg| based AND bloomberg AND acquisition| maker headquarters
percent | companies AND employees AND expected based shares
shares analysts AND earnings produces based AND rosemont

Figure 6: Some top candidate queries produced by the different query generation techniques.

and negative examples of useful documents.

2.3 Learning Queries to Retrieve Promising Documents

Given a set of useful and non-useful documents as the training set, our goal now is to generate queries that woul
retrieve many documents that the information extraction sydtenill find useful, and few that will not be able
to use. The process proceeds in three stages:

1. Convert positive and negative examples into an appropriate representation for training (Section 2.3.1).

2. Use the training examples to determine the distinguishing characteristics of the positive examples, and gener:
ate an ordered list of queries expected to retrieve new useful documents (Section 2.3.2).

3. Submit the queries to the database to retrieve new potentially useful documents (Section 2.4).

2.3.1 Representation of Training Examples

A good representation of the training examples is crucial in order for any learning mechanism to succeed. For our
problem, the choice of representation must also be such that the training results can be used to generate databa
gueries. For instance, we cannot use HTML tags as part of the example representation even if there is a combinatiol
of HTML tags that only appears in useful documents, since search engines typically do not allow querying for
HTML tags.

Therefore, we must account for the method of querying that will be used. Since our goal is to dgsigeral
mechanism to query for promising documents, we will produce queries for a vanilla boolean query model, which
is widely supported with clear semantics. For generality, we will not rely on more advanced query features such
as the specification of a desired order among the query words, which would restrict the applicability of our results.
Of course, if such advanced features (or alternative query models) are available, we could apply the same generz
approach that we present in this paper and tailor it to the query interface of choice.

An important decision that must be made is whether to focus our attentioaropletedocuments or rather on
just thelocal contextaround a tuple occurrence. While in some cases considering the content of the whole document
as an example may introduce noise, in others this approach may prove helpful in identifying other potentially useful
documents. Therefore, we experiment with bdticumenandlocal contexts as possible “granularities” of a positive
or negative example. In thdocumenteature set, all terms from a useful document are considered during training.

In thelocal feature set, only the terms in the same line as an extracted tuple —according to the document’s original
formatting— are considered during training. In either case, we eliminate so-stdipdords(e.g., “a” and “the”)

from consideration. Additionally, all tags inserted by the named entity tagger, and all the entities recognized by the
tagger (including the values, of attributes of the extracted tuples) are discarded. In Section 4 we explore the choice
of features to determine which representation works best.



2.3.2 Generation of Queries from Examples

After identifying a set of useful and non-useful documents, we now turn to the generation of simple queries that

would hopefully retrieve most remaining useful documents from the database. The problem of retrieving documents
similar to a given set of “relevant” examples has been studied extensively in both the information retrieval and the

machine learning communities. In this section, we discuss how we adapt well-established solutions from both com-
munities to our (non-standard) problem. Specifically, we first consider query generation as an IR automatic query
expansion problem, using a state-of-the-art term weighting scheme. Then, we consider query generation technique
that exploit the output of two machine-learning text classifiers. Finally, we present a simple query generation tech-
nique that builds queries from the extraction patterns built over the training documents by the information extraction

system of choice.

Okapi: As a first query generation technique, we exploit a state-of-the-art term weighting scheme from IR, from
the Okapiretrieval system [12]. To predict which terms are most likely to retrieve useful documents, we compute
the selection weighfl2] of each term in the training set. The terms with the highest positive weight are most likely
to appear in useful documents and not in non-useful ones.

First, each term; in the document is assigned the Robertson-Spark Jones term wé}émw]:

(r+0.5)/(R—r+0.5)
(n—7r05)/(N—-n—R+7r+0.5)

wz(l) = log

where a document is relevant if it was markesifulby the extraction system,is the number of relevant documents
containingt;, IV is the number of documents in the databdgés the number of relevant documents, ani the

number of documents containirtg Intuitively, this weight is high for terms that tend to occur in many relevant
documents and few non-relevant documents, and is smoothed and normalized to account for potential sparsene:
of relevance information in the training data. Then, we computetieey selection weighttr; of each ternt; as
described in [12] for automatic query expansion:

(1)

w; = tfi s w;

wheret f; is the number of unique useful documents in whigchppears and)gl) is as defined above. The terms
are sorted in descending order by, and finally we define one-word queries consisting of each top-ranked term
individually. Figure 6 shows some of the queries generated by this approach fde#uguarterselation, using

the data for the experiments of Section 5.

Ripper: As a second query generation approach, we exploit a highly-efficient rule-based text document classi-
fier, Ripper [5], developed at AT&T Research Labs. Ripper is trained with a set of useful and non-useful documents,
where each document is represented as a bag of words. Ripper learns concise rulesksasddaSND company
— USEFUL,” which indicates that if a document contains both térasedand termcompany then it should be
declared “useful.”

After Ripper generates classification rules, we sort the rules in descending order of their expected precision,
calculated as the ratio of positive examples to the total examples that match the rule. (This information is part of the
Ripper output.) The topumQueries rules are then translated into conjunctive queries in the syntax accepted by
the search engine. For example, the rule above might be translated td'loaseg AND company.Figure 6 shows
some of the queries generated by this approach foH#squartergelation.

Support Vector Machines (SVMs): As a third query generation approach, we exploit another family of classi-

fiers, SVMs, which have been shown to perform well in text classification [9]. SVMs operate by finding an optimal
hyperplane that separates the positive from the negative examples. To filter out noise, we prune the set of term:

9



used in training by discarding those that occur in fewer than a minimum fraction of training examples. The result
of training the SVM is am-dimensional hyperplane, whereis the number of terms in the pruned feature set.

The learned hyperplane constants are essentially weights assigned to each term. We use a freely-available efficiel
implementation of linear-kernel SVMs [9].

During classification, the score for a document is computed as the sum of the SVM weights of each term in
the document. If the score exceeds a threshold, then the document is classified as useful. Because of the hig
dimensionality of the feature space, converting the resulting feature weights to queries is not trivial. To generate
rules from SVM feature weights, we use an algorithm for extracting minimal rules from SVMs presented in [8]. We
compute allminimal sets of terms that are collectively sufficient to imply a positive classification of a document.
The result of this algorithm is a set of “rules” similar to the Ripper output. We calculate the expected precision of
each rule and generate queries from these rules similarly to the way we process Ripper rules. Figure 6 shows som
of the queries generated by this approach forHeadquartergelation.

Patterns: As a fourth and final query generation approach, we attempt simply to exploit the term®irtme
tion patternsgenerated by the information extraction system over the training documents, if available. For example,
from aSnowballpattern<{<“the”, 0.2> }, LOCATION, {<"-”, 0.5>, <"based”, 0.5> }
ORGANIZATION, {}> for the Headquarterselation we can extract a quetpased”, since this word will have
to appear in any document that matches the extraction pattern. (Note that we do not use stopwords, punctuation
or the named-entity tagsOCATIONand ORGANIZATIONN the queries.) An advantage of this approach is its
simplicity: For each pattern generated by the extraction system, we generate a conjunctive boolean query consistin
of all non-stopword terms in the pattern.

A disadvantage of this approach is that the associated queries might be too broad, as in the example above. Alsc
extraction patterns vary considerably by information extraction system, which makes this approach not that generally
applicable. For example, sophisticated information extraction systems incorporate syntactic information into the
extraction patterns (e.g., parsing information), which typically cannot be used for querying. We have implemented
this approach foSnowballandDIPREpatterns.Snowballpatterns have a confidence estimate associated with them,
while DIPRE patterns do not. We order ttf@nowballpatterns in descending order by confidence, andifRRE
patterns in descending order by frequency of occurrence. Figure 6 shows some of the queries generated by thi
approach for théleadquartergelation, forSnowballas the underlying information extraction system.

2.4 Querying for Promising Documents

We described above how to generate queries that are likely to retrieve more useful documents than non-usefu
documents. These queries are used to extract the final set of promising documents from which the information
extraction system of choice will extract tuples. The size of this document set has a direct impact on the quality of
the extracted relation.

We assume that, for efficiency considerations, we have a predefined upperhoufidialRetrieved for the
number of documents that we are willing to extract. The higher this upper bound, the more complete the extracted
relation is likely to be. We submit the topumQueries queries (generated and ranked as in Section 2.3.2) to the
document database, one at a time. For each query, the database returns the document identifiers (e.g., URLS) of tl
matching documents. We retrieve the previously unseen documents until the maximum number of results per query
mazResults, is reached. (Section 4 explores the choice of valuesdotQueries andmazResults.) We keep the
running total of the documents retrieved so we stop before exceeding the upperrbatiidialRetricved. After
this bound is reached (or there are no more documents to extract using our queries), all retrieved documents ar
returned as the output of thgomising document retrievalomponent. These potentially useful documents are then
input to the information extraction system to extract the final approximation of the target relation.
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3 Experimental Setting

In this section, we first describe the metrics we use to evaluate the alternative methods for querying the databas
(Section 3.1). Then, we describe the training and test databases (Section 3.2) that we used for experiments i
Section 5, as well as the information extraction systems with which we experiment (Section 3.3) and the various
techniques that we compare for document retrieval (Section 3.4). We conclude by describing the two relations that
we use in our experiments (Section 3.5).

3.1 Evaluation Methodology and Metrics

Our goal is to retrieve a promising set of documebt$rom the database, allowing us to extract from these doc-
uments a relatior?, which should hopefully be a close approximation of the relatityy that would have been
extracted had we examined every document in the database. To evaluate our success in this task, we use a numt
of metrics, each measuring a different aspect of the overall system performance:

Usefulness Measures the quality of the retrieved document set. The retrieveD setuld ideally contain only
documents that are useful to the extraction system. Furthermore, we want to ékiratthie most efficient way
possible, i.e., by retrieving few documents. To quantify how efficieis for extractingR, we defindJsefulnesss
the average number of extracted tuples per document retrieved:

Usefulness = — Q)
D]

Fr40q; : Measures tha@bsoluteaccuracy ofR, using theldeal metric presented in [1]. This metric uses a large
sample of known correct tupldg;,.,; that would be extracted for the target relation by an ideal extraction system.
Ri4.q1 is chosen from an external sourBg,; by selecting the tuples iR.,; that actually appear in the database. For
example, to creat®,.,; for the Headquartergelation, we use a large (13,000 tuples), publicly available directory
of organizations provided on the “Hoover’s Online” websitas R.,; and select as th&;4.,; those organization
and location pairs that occur within the same line in some document in the database. Given theRegjatiand

the extracted relatiofi?, we can define thRecallandPrecisionof R with respect taRk4.,; more formally:

RN Rygeq
Recallpjen = B0 Braeat| 00, 2)
| R1deal
C t(RN Rigeq
Precisionjjeq, = Omﬁ%crg i Jd ) - 100% )

An extracted tuple is consideredCorrectif there exists a tuple iR 4., that agrees with on both the key attribute
of ¢t and the remaining attributes. We combine recall and precision into one numbemteasuref R with respect
to the R4.q, fOr easier analysis of the accuracy®f

7 2 - Recalljgeq) - Precisionygeq (@)
Ideal — .
- Recall jgeqr + Precisiongeq

Intersection Defined analogously té',4..;, Intersectionmeasures how closelit approximatesk,;, and is simi-
larly defined as th&-measureof R, as evaluated with respect it),;;.

http://www.hoovers.com
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Figure 7: Estimate error (of number of tuples extracted) for varying sample size.

EUsefulnessEstimatedJsefulnesfficiently. Recall thatUsefulnes®f a document seb is defined with respect

to the extraction system that runs overand extracts tuple sét. Evaluating theJsefulnes®f sets of documents
repeatedly (e.g., during system tuning) may be prohibitively expensive. However, we can define a close approxima-
tion that does not require running the extraction system over differenDsassfollows. First, we run the extraction
system oveall documents in databage,; to establish a set of useful documeibtg;; for each document; € Uy,

store the number of tuples extracted frdgrasn(d;). Then, theestimatechumber of tuplesr’.,; that would be ex-

tracted from an arbitrary subset of documentsn the database i¥.s; = >_4,c prv,, 7(di). Now we can define
EUsefulnessf D as:

Test
EUsefulness D (5)
Since this is an estimate, we do not expect perfect accuracy. The goal is to provide a quick method for comparing the
alternative strategies during system tuning. We ran validation experiments to cobipse@ulnesso Usefulness
and report results in Figure 7.

3.2 Training and Test Databases

Our training database, to which we will refer as NEWS, is a subset of 202,000 1996 documents from the North
American News Text Corpus, available from LZ¥Cand including articles from Los Angeles Times, The Wall
Street Journal, and The New York Times.

Thetestdatabase, to which we will refer as TREC, uses the documents from the TIPSTER Complete Collection
used in the TREC evaluation task, available from the LDC weBsitéis database of 959,000 documents includes
patents, foreign broadcast transcripts, and newspaper articles, comprising the bulk of the TIPSTER collection.

3.3 Underlying Information Extraction Systems

Our main goal is to retrieve a set of documents from which our information extraction system of choice will be able
to extract our target relation. Our approach is general in that we can use any information extraction system as long
as it supports (through a wrapper) the simple interface described in Section 2.

2http:/iwww.ldc.upenn.edu
3http://www.ldc.upenn.edu/Catalog/LDC93T3A.html
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For our experiments, we consider two information extraction systems that are attractive because they require
minimal training:

e DIPRE, as described in [2].
e Snowball an described in [1].

In principle, our document retrieval approach could be used in conjunction with any information extraction system.
For example, we could plug in a manually-trained extraction system such as PET [15], which would require labor-
intensive retraining for each new target relation. We plan to experiment with such an extraction system in future
work.

3.4 Alternative Document Retrieval Methods

We experimentally compare a number of alternatives:

e QXtract The algorithm described in Section 2, with parameter values from the tuning experiments that we
report in Section 4 and a summary in Figure 13.

¢ Baseline-RandomA simple baseline technigue that returns a random document subset of a given size from
the database.

e Baseline-SeedA second baseline technique that uses our seed sampling algorithm of Section 2.2 and returns
the document samplB,,,,,,,;.. This baseline proceeds @stractbut without the final query generation stage.

e Patterns Extraction patterns exported by the information extraction system are used to generate queries to
retrieve a set of promising documents as described in Section 2.3.2. This strategy is expected to produce ¢
good approximation of the promising document set: for a tuple to be extracted from a document, the document
must contain the terms in the pattern. However, the extraction patterns from the information extraction system
may not always be available, or be amenable to conversion to queries (e.g., if patterns consist of HTML tags).

3.5 Target Relations for Extraction
We evaluate system performance on the extraction of two relations:

e Headquartersas defined in Section 2.1.

e Executive(organization, officeryvhere a tuple< o,n > is in the relation ifn is an executive officer such
as the president, CEO, or chair of organizationThe initial set of seed tuples consisted of five CEOs or
presidents of companies such as Microsoft and Intel.

4 Tuning our System

We explored the best parameter values for the document retrieval by running the system on the NEWS training
database. For tuning, we usedowballas the underlying information extraction system. As we will see in Section 5,

the configuration derived witlsnowballgeneralizes to work well witlDIPRE, the other information extraction
system that we consider in this paper. We tune the parameters of each document retrieval component individually,
in order: Seed SamplingSection 4.1)Query Training (Section 4.2), antbocument Retrieval (Section 4.3).

13
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4.1 Seed Sampling

The goal of seed sampling is to generate the best possible training set for query generation (Section 2.2). The
parameters that control the process are:

e k: Number of extracted tuples to add to the seed set.
e maxSeedResultkimit on number of documents to retrieve for each seed tuple.
e maxSamplingRound&laximum number of iterations of seed sampling.

Parameteré and maxSeedResultontrol the breadth and size of the sample set coverage. To find a good combi-
nation of & andmaxSeedResulta/e try different combinations and retrieve a document sample for each. We train
Snowballon the retrieved sample to generate extraction patterns, and then, using these patt&Snewiallover

all of the documents in the NEWS database to extract the final relation.

The extracted relations are evaluated for absolute accuracy usiagthemetric (Figure 8). Thd',.,; surface
represents the quality of tuples extracted for each combinatiéraofimaxSeedResult$he combination ok=75
andmaxSeedResut00 produces the highest,.,; metric; we adopt these values forand maxSeedResulfer
the remaining experiments.

Having fixedk andmaxSeedResult&e now vary thanaxSamplingRoungsarameter to determine when to stop
the seed sampling process. Figure 9 reportsithe, results for the tuples extracted from the NEWS database. We
found that most of the useful documents that contribute to extracting tuples are retrieved by round 5 of the sampling.
Subsequently, the improvements are incremental and disappear completely by the tenth iteration of the sampling
process. Based on these observations, we seh#éxSamplingRounds.

4.2 Query Training

After seed sampling, we use the resulting document sample to generate queries to retrieve additional promising
documents (Section 2.3). Thus, the overall goal is to evaluate the quality of the promising document set retrieved
by each query generation method, and select the best method for our problem. In this step we will find the best
configuration of the query generation component parameters:

e Representation of Training Exampletocuments. local.

e Query Generation Techniqu®kapi, Ripper, and SVM.

14
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Figure 10:EUsefulnes®f documents retrieved by different classifiers and features for query generation.

We compare th&Usefulnes®f the document sets retrieved by generating queries using Okapi, Ripper, and
SVM. Each method was trained using bdtical and documentepresentations of training examples. The results
on the NEWS database are in Figure 10, which shows that Ripper performs bestdoctimenteature set, while
SVM performs better using thiecal features. We conjecture that this is due to the simpler model used by SVM
(i.e., linear kernel), since the dimensionality of tlbeal feature space is likely to be lower than the dimensionality
of thedocumenteature space.

After tuning, we conclude that the best feature set for SVM and Okdpcad, while for Ripper it isdocument
At this point we only know the best representation for each query generation technique. We will know the best
technique overall after the next tuning step, when we actually evaluate the usefulness of documents retrieved by
each technique for a fixed upper bound on the fraction of the database that we are willing to retrieve.

4.3 Document Retrieval

As discussed in Section 2.4, we need to decide which query generation method produces the best documents for
given bound on the size @b, the set of documents retrieved from the database. This bound indicates the number of
documents that we are willing to retrieve during extraction. The parameters for this step are:

e maxSearchResultkimit on number of documents retrieved for each generated query.
e numQueriesNumber of generated queries to use.

We use th€eUsefulnessnetric to evaluate the documents retrieved using thetopQueriegjueries and retrieving
at mostmaxSearchResultesults per query. ParametmumQueries/aries from 5 to 200, whilenaxSearchResults
varies from 100 to 100,000. The upper bounds on search results depend on the size of the test database. While w
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|‘D€l‘l| -100% | SVM | Okapi | Ripper
10 10/1% | 10/1% | 10/1%
25 25/1% | 10/2.5%| 25/1%
50 50/1% | 10/5% | 10/5%
75 15/5% | 25/2.5%| 15/5%

Figure 11: BeshumQuerieAnaxSearchResultsombination for SVM, Okapi, and Ripper on the NEWS database
for different percentages of databaBe
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Figure 12:EUsefulnes®f documents retrieved by each query training method as a function of an upper bound on
the database fraction retrieved.

do not need to know thexactsize of the database, we use an approximate number of documsntdethe bound
on the documents retrieved for each query proportionally.
We bucketize the results for each query generation method by the largest number of documents that could be
retrieved using a particular combinationmafmQueriesndmaxSearchResultgor example, we could retrieve up to
50% of the 202,000 NEWS documents either withriQueries10 andmaxSearchResu#40,000), or with Gum-
Queries50 andmaxSearchResu#t2,000). We estimate the usefulness of the documents retrieved, and pick the best
combination ohumQuerieandmaxSearchResulfer each query generation method for each bucket. The best set-
tings for SVM, Okapi, and Ripper are reported in Figure 11, wheraertheSearchResults reported as percentage
of the documents in the NEWS database (e.g., 1% of the NEWS database corresponds to 2000 documents).
Using the best combinations oimQueriesand maxSearchResulfsr SVM, Okapi, and Ripper, we can now
compare theeUsefulnes®f documents retrieved by the best configuration of each query generation method. This
will determine the best query generation method for a given upper bound on the fraction of the database that we
are willing to retrieve. The results are shown in Figure 12. dsefulneswalue of 0.45 means that, on average,
we should expect to extract a tuple from about every other document retrieved. If we are willing to retrieve 10% of
the NEWS database using Ripper as the query generation method, we should expect to extract approximately 9,50
tuples from the retrieved document set. As we can see from Figure 12, Ripper performs the best for all database
fractions. Figure 13 summarizes the final configuration of our system parameters.

5 Experimental Results

In this section, we first evaluate our techniques fortfeadquartergelation on the training database NEWS (Sec-

tion 5.1). Then, we compare the document retrieval strategies on the completely unseen test database TREC (Se
tion 5.2). Additionally, we report results over the NEWS and TREC databases for a new relation (Section 5.3), to
check the generality of our approach.
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Parameter Value Description
k 75 Size of new seed
maxSeedResults 100 Maximum results returned
for eachq™ or ¢~
maxSamplingRounds 5 Seed sampling rounds
Feature Space document| Example representation
Query Generator Ripper | Query generation method
maxSearchResults | Figure 11| Results retrieved per query
numQueries Figure 11| Queries to submit

Figure 13: Final configuration of our system used for evaluation on the test database.
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5.1 Performance on the Training Database

We evaluate our document retrieval performance against alternative strategies using the configuration defined ir
Figure 13. Figure 14 reports the various evaluation metrics (Section 3.1) fa@X¥tract system and other re-
trieval systems (Section 3.4), over the NEWS database that was used for @iiragtand withSnowballas the
underlying extraction system.

QXtractis consistently one of the best methods. For exan@ktractis able to extract more than 80% of the
valid tuples inR,;; (where the horizontal line in Figure 14(c) represehis..; of Ry;), while retrieving only 25%
of the documents in the database. Ovef@Ktractappears as a robust technique with good performance across all
database fractions retrieved. For example, at any fraction of documents ret@Xdcts documents are as good
as a randomly chosen document set of twice the size. (See resutadeline-Random

Figure 15 summarizes the performance of the document retrieval system when Di®BEeas the underlying
information extraction system. These results are consistent with thoSnéwball The document set retrieved
by QXtractis useful forDIPRE DIPRE manages to extract over 70% &f,;; from only the 25% of the NEWS
database retrieved lyXtract Also, QXtractmanages to extract almost as many of the knealid tuples (derived
from R;4.41), @s are contained iR,; (represented by the horizontal line in Figure 15(c)). In other words, not only
doesQXtractgive a good approximation ag,; while only retrieving 25% of the documents, but also appears to
focus in on documents containinglid tuples.

5.2 Performance on the TREC Database

QXtractis consistently either the best method or a close second for all metrics.

UsefulnessFor example, when up to 10% of the database is retrieved)seéulnesof the set of documents
retrieved usingQXtractis 0.46 (Figure 17(a)). This fraction reflects the fact tBabwballextracted 44571 tuples
from 95900 documents th@Xtractretrieved. By comparison, only 22843 tuples were extracted from the document
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Figure 15:Usefulnesga), Intersection(b), andF4..; () of QXtract Baseline-RandonBaseline-SeedndPatterns
on the NEWS database usiBgPREas the extraction system.

set of the same size retrieved by fBaseline-Randorstrategy. On the other hanBatternswas able to produce a
set of documents that was almost as useful as the one produc@tigct- with Usefulness= 0.44, 42157 tuples
were extracted. Only 23879 tuples were extracted usin@tseline-Seechethod.

Intersection The other aspect of the comparison is how clésapproximatesik,;. On this metric (also for
10% as the upper bound on the fraction of database retrie@ettyact scores 40.99, which is the best among all
of the systems comparedintersectionwas defined as the F-measureRfwith respect taR,;. The Intersection
measure oPatternsis 39.99, meaning that the relatidd extracted from the documents retrieved Pgtternsis
a slightly less accurate approximation 8f; than the one produced Xtract By comparison, the quality of
approximation produced bgaseline-Randoris 22.1, which indicates that an approximationiyfj; produced by
both QXtractandPatternsis significantly closer to the redt,; than that oBaseline-Random

Fr4eq: The third and final metricFr4.4;, €Stimates the accuracy of extracted relatidwith respect to a known
correct set of tuple® ;4eq;. The Fr4.qs Measure foQXtract(at 10% of database retrieved) is 43.19, which is slightly
less than that oPatterns with 45.21. We have sedPatternssometimes performs as well as or slightly better than
QXtract Patternsspecializes in retrieving documents containing text contexts that suggest the occurrence of tuple
for the target relation. Unfortunately, as we discusd$gadternsis not a generally applicable strategy (it relies on
information extraction systems exporting extraction patterns, which might not be always possible). Quératit
appears as a robust technique with good performance across different database fractions retrieved. For example, tl
promising document set created @ytract by retrieving 10% of the database is as good as a randomly chosen
document set of more than twice that size as evaluated using; fhge metric. (See results fa@aseline-Random

DIPRE QXtractwas configured and tuned usiSmowballas the underlying extraction system on the NEWS
database. We demonstrate the generality of our approach by running theQeémaet configuration as before,
but usingDIPRE as the underlying information extraction system. Figure 18 summarizes these results, which are
consistent with the results f@nowball The promising document set retrieved Q¥tractis useful forDIPRE
as shown in Figure 18(bpIPRE manages to extract over 70% 8f,;; from only the 25% of the TREC database
retrieved byQXtract Also, note that)Xtractallows DIPREto extract most of thegalid tuples in the target relation
by retrieving only 5% of the documents in the database. Interestingly, the relation extra@#erig by operating
over the smaller document set (25% of the TREC database) retriev@Xtrgct has a higher value for thE;y..;
metric than the relation th&IPREextracts from examiningll documents in the TREC database. We attribute this
surprising result to the lower level of noise present in the documents retriev@Xtrgictas compared to all of the
documents in the database. Consequently,Aleision;g., Of R produced byQXtractis 68.59%, compared to
Precisionjgeq; Of Ry Of 61.33%. More interestinglyRecallizeq; Of R is slightly higher than that of,;, 30.8%
and 28.98% respectively. Some of the valid tuples produceBIB\RE over theQXtractdocuments, but not over
all the documents in the database as shown in Figure 16.

In summary,QXtract at leastdoublesthe efficiency of information extraction: When using eiti@PRE or
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Organization Location

QXtract (Correct)| Scanning
AETNAINC HARTFORD MINNEAPOLIS
MOTOROLA INC SCHAUMBURG | CHICAGO
NINTENDO OF AMERICA INC | REDMOND us
XEROX CORPORATION STAMFORD us

Figure 16: Some of the tuples correctly extractedl?RE from QXtract retrieved documents but incorrectly
extracted when scanning the entire TREC database.
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Figure 17: Usefulness (@), Intersection (b), andF4.q; (C) ofQXtract Baseline-RandonBaseline-SeedandPat-
ternson the TREC database usigowballas the extraction system.

Snowballas the underlying extraction system, the target relation extracted by @3itrgctis in all casesevaluated
to be as good on th&},.,; metric as, or better than, the relation extracted from the random sample of the database
that ismore than twice as largas the set of documents retrieved@tract

5.3 Results on theExecutiveRelation

To further test the generality of our approach, we evaluated the performai@¥ticfct and the other systems on
an additional relationExecutive described in Section 3.5, over the NEWS databa&&eowballwas used as the
underlying information extraction system, trained on 5 seed tuples only. Some of the extraction patterns produced
by Snowballare shown in Figure 19.

The Usefulnessintersection and F'j4.,; results are shown in Figure 2Q@sefulnesdor QXtractat size of re-
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Figure 18: Usefulness (a), Intersection (b), and Fiz.q (C) of QXtract Baseline-RandomBaseline-Seedand
Patternson the TREC database usiBgPREas the extraction system.
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<{}, PERSON, {<",” 0.48> <"CHAIRMAN" 0.48> <"OF 0.48> T, ORGANIZATION, {}>
<{}, PERSON, {<" 0.27> <"EXECUTIVE” 0.39> <“OF” 0.39> }, ORGANIZATION, {}>
<{}, PERSON, {<*” 0.51> <“HEAD” 0.07> <“OF” 0.51> } , ORGANIZATION, {}>

Figure 19: Some extraction patterns generated and us8adnyballfor extracting theExecutivegelation.
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Figure 20:Usefulnesga), Intersection(b), andF4..; () of QXtract Baseline-RandonBaseline-SeedndPatterns
on the NEWS database aBotecutiverelation usingSnowballas the extraction system.

trieved sample 10% is 0.45, while that B&seline-Randors only 0.11, which means th&nowballwas able to
extract more than four times as many tuples from the promising document set produ@edragt than from the
document set of the same size producedbgeline-RandomFor 10% of the collectionBaseline-Seegerforms
as well axQXtracton both thelntersectionand theUsefulnesgnetric. On the other handPatternsretrieves a sig-
nificantly less useful set of documents: witlsefulnesat 0.26, the document sample producedPagternsresults
in almost half the productivity of tuples per document@Xtractor Baseline-SeedLikewise, performance of our
technique on théntersectionmetric is consistently high, following the performance for the origidaadquarters
relation.

Note the generally low performance of all techniques onfihg,; metric. Unfortunately, extracting this rela-
tion is problematic forSnowballeven when examining the whole database, which resultgjn,; of 33.68. We
conjecture that the reason for this is due to a limitatiorBobwball Snowballcan only extract one executive for
each organization. Similarly, this limitation preversowballfrom performing well on thdntersectionmetric,
since only one executive for each company is kept in the final extracted table.

In Figure 21 we present results for the extraction of Ehescutiverelation from the TREC database using
Snowballas the underlying information extraction system. The performanXafacton theUsefulnessnetric is
high, and thentersectionand F';4.,; Values are consistent with the corresponding values for the NEWS database.

0.35 25 35

03
2 30

0.25
0.2

25
20

0.15 m QXtract 10 | B QXtract 15 m QXtract
0.1 W Baseline-Random M Baseline-Random L 10 W Baseline-Random
0.05 [ Baseline-Seed 5 | O Baseline-Seed 5 [ Baseline-Seed
[ Patterns 0

0 O Patterns [ Patterns

15 —

Usefulness
Intersection (%)
F-measure

10 10 10

DI (%) DI (%) DI (%)
(@) (b) (©)

Figure 21:Usefulnesga), Intersection(b), andF 4., (c) of QXtract Baseline-RandonBaseline-SeedndPatterns
on the TREC database aBatecutiverelation usingSnowballas the extraction system.
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6 Conclusions

In this paper, we developed a query-based technique to identify documents that are potentially useful for the ex-
traction of a target relation. This technique allows existing information extraction systems to scale to much larger
databases than previously possible: information extraction systems can now focus on the promising documents an
not process every document in the database. We demonstrated that our method is general and efficient through
comprehensive experimental evaluation over more than one million real documents. Our new technique could be
used to query a standard web search engine, hence providing a building block for efficient information extraction
over the web at large.
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