Academic Commons

Theses Doctoral

A local relative trace formula for spherical varieties

Filip, Ioan

Let F be a local non-Archimedean field of characteristic zero. We prove a Plancherel formula for the symmetric space GL(2,F)\GL(2,E), where E/F is an unramified quadratic extension. Our method relies on intrinsic geometric and combinatorial properties of spherical varieties and constitutes the local counterpart of the global computation of the Flicker-Rallis period as a residue of periods against Eisenstein series. We also give a novel derivation of the Plancherel formula for the strongly tempered variety T\PGL(2) over F (with maximal split torus T) using a canonical smooth asymptotics morphism and a contour shifting method. In this rank one local setting, our proof is similar to Langlands' proof over global fields describing the spectrum of a reductive group in terms of residues of Eisenstein series. Finally, using both L2-decompositions, we develop a local relative trace formula and outline a comparison result in the setting of the unitary rank one Gan-Gross-Prasad conjecture.

Files

  • thumnail for Filip_columbia_0054D_13544.pdf Filip_columbia_0054D_13544.pdf binary/octet-stream 1.53 MB Download File

More About This Work

Academic Units
Mathematics
Thesis Advisors
Zhang, Wei
Degree
Ph.D., Columbia University
Published Here
September 9, 2016