Academic Commons

Theses Doctoral

The Design, Implementation, and Evaluation of Software and Architectural Support for ARM Virtualization

Dall, Christoffer

The ARM architecture is dominating in the mobile and embedded markets and is making an upwards push into the server and networking markets where virtualization is a key technology. Similar to x86, ARM has added hardware support for virtualization, but there are important differences between the ARM and x86 architectural designs. Given two widely deployed computer architectures with different approaches to hardware virtualization support, we can evaluate, in practice, benefits and drawbacks of different approaches to architectural support for virtualization.
This dissertation explores new approaches to combining software and architectural support for virtualization with a focus on the ARM architecture and shows that it is possible to provide virtualization services an order of magnitude more efficiently than traditional implementations.
First, we investigate why the ARM architecture does not meet the classical requirements for virtualizable architectures and present an early prototype of KVM for ARM, a hypervisor using lightweight paravirtualization to run VMs on ARM systems without hardware virtualization support. Lightweight paravirtualization is a fully automated approach which replaces sensitive instructions with privileged instructions and requires no understanding of the guest OS code.
Second, we introduce split-mode virtualization to support hosted hypervisor designs using ARM's architectural support for virtualization. Different from x86, the ARM virtualization extensions are based on a new hypervisor CPU mode, separate from existing CPU modes. This separate hypervisor CPU mode does not support running existing unmodified OSes, and therefore hosted hypervisor designs, in which the hypervisor runs as part of a host OS, do not work on ARM. Split-mode virtualization splits the execution of the hypervisor such that the host OS with core hypervisor functionality runs in the existing kernel CPU mode, but a small runtime runs in the hypervisor CPU mode and supports switching between the VM and the host OS. Split-mode virtualization was used in KVM/ARM, which was designed from the ground up as an open source project and merged in the mainline Linux kernel, resulting in interesting lessons about translating research ideas into practice.
Third, we present an in-depth performance study of 64-bit ARMv8 virtualization using server hardware and compare against x86. We measure the performance of both standalone and hosted hypervisors on both ARM and x86 and compare their results. We find that ARM hardware support for virtualization can enable faster transitions between the VM and the hypervisor for standalone hypervisors compared to x86, but results in high switching overheads for hosted hypervisors compared to both x86 and to standalone hypervisors on ARM. We identify a key reason for high switching overhead for hosted hypervisors being the need to save and restore kernel mode state between the host OS kernel and the VM kernel. However, standalone hypervisors such as Xen, cannot leverage their performance benefit in practice for real application workloads. Other factors related to hypervisor software design and I/O emulation play a larger role in overall hypervisor performance than low-level interactions between the hypervisor and the hardware.
Fourth, realizing that modern hypervisors rely on running a full OS kernel, the hypervisor OS kernel, to support their hypervisor functionality, we present a new hypervisor design which runs the hypervisor and its hypervisor OS kernel in ARM's separate hypervisor CPU mode and avoids the need to multiplex kernel mode CPU state between the VM and the hypervisor. Our design benefits from new architectural features, the virtualization host extensions (VHE), in ARMv8.1 to avoid modifying the hypervisor OS kernel to run in the hypervisor CPU mode. We show that the hypervisor must be co-designed with the hardware features to take advantage of running in a separate CPU mode and implement our changes to KVM/ARM. We show that running the hypervisor OS kernel in a separate CPU mode from the VM and taking advantage of ARM's ability to quickly switch between the VM and hypervisor results in an order of magnitude reduction in overhead for important virtualization microbenchmarks and reduces the overhead of real application workloads by more than 50%.


  • thumnail for Dall_columbia_0054D_14373.pdf Dall_columbia_0054D_14373.pdf application/pdf 1.78 MB Download File

More About This Work

Academic Units
Computer Science
Thesis Advisors
Nieh, Jason
Ph.D., Columbia University
Published Here
January 19, 2018