Theses Doctoral

Cross-Layer Platform for Dynamic, Energy-Efficient Optical Networks

Lai, Caroline Phooi-Mun

The design of the next-generation Internet infrastructure is driven by the need to sustain the massive growth in bandwidth demands. Novel, energy-efficient, optical networking technologies and architectures are required to effectively meet the stringent performance requirements with low cost and ultrahigh energy efficiencies. In this thesis, a cross-layer communications platform is proposed to enable greater intelligence and functionality on the physical layer. Providing the optical layer with advanced networking capabilities will facilitate the dynamic management and optimization of optical switching based on performance monitoring measurements and higher-layer attributes. The cross-layer platform aims to create a new framework for networks to incorporate packet-scale measurement subsystems and techniques for monitoring the health of the optical channel. This will allow for quality-of-service- and energy-aware routing schemes, as well as an enhanced awareness of the optical data signals. This thesis first presents the design and development of an optical packet switching fabric. Leveraging a networking test-bed environment to validate networking hypotheses, advanced switching functionalities are demonstrated, including the support for quality-of-service based routing and packet multicasting. The investigated cross-layering is based on emerging optical technologies, enabling packet protection techniques and packet-rate switching fabric reconfiguration. Coupled with fast performance monitoring, the platform will achieve significant performance gains within the endeavor of all-optical switching. Allowing for a more intelligent, programmable optical layer aims to support greater flexibility with respect to bandwidth allocation and potentially a significant reduction in the network's energy consumption. The ultimate deliverable of this work is a high-performance, cross-layer enabled optical network node. The experimental demonstration of an initial prototype creates a dynamic network element with distributed control plane management, featuring fast packet-rate optical switching capabilities and embedded physical-layer performance monitoring modules. The cross-layer box enables an intelligent traffic delivery system that can dynamically manipulate optical switching on a packet-granular scale. With the goal of achieving advanced multi-layer routing and control algorithms, the network node requires an intelligent co-optimization across all the layers. The proposed cross-layer design should drive optical technologies and architectures in an innovative way, in order to fulfill the void between the design of basic photonic devices and the networking protocols that use them. The performance of the entire network -- from the optical components, to the routing algorithms and user applications -- should be optimized in concert. This contribution to the area of cross-layer network design creates an adaptable optical pipe that is extremely flexible and intelligent aware of both the physical optical signals and higher-layer requirements. The impact of this work will be seen in the realization of dynamic, energy-efficient optical communication links in future networking infrastructures.


  • thumnail for Lai_columbia_0054D_10183.pdf Lai_columbia_0054D_10183.pdf application/pdf 33.2 MB Download File

More About This Work

Academic Units
Electrical Engineering
Thesis Advisors
Bergman, Keren
Ph.D., Columbia University
Published Here
June 6, 2013