
Pertormanee Estimates tor the DADO Maehlnea 
A Comparison ot TREAT and RETE 

Daniel P. Miranker 

Department of Computer Science 
Columbia University 

New York City, N. Y. 10027 
April 9,1984 

Abstraet 

CUCS-1l8-84 

DADO is a highly p&rallel, VLSI-based, tree structured computer, intended (or the rapid execution 
o( production system programs. In this paper we describe a new match algorithm (or executing 
production systems on DADO that is capable o( handling both temporally redundant and 
nontemporally redundant production systems. We argue that the new algorithm is (aster than the 
original DADO algorithm intended for nontemporally redundant systems. We also show that the 
new algorithm executed on parallel h&rdwue is faster and more space erricient than parallel 
implementations o( the RETE match algorithm, which is appropriate (or temporally redundant. 
systems. 

This research is supported cooperatively by: Defense Advanced Rese&rch Projects Agency under 
contract. NOOO30-82-C-0427, New York State Science and Technology Foundation, Intel 
Corporation, Digital Equipment Corporation, Valid Logic Systems Inc., Hewlett-Packard, Bell 
Laboratoriell and International BUlliness Machines Corporation. 



1 

1 IntroduetioD 

DADO is & highly parallel, VLSI based computer comprising a large number of processing elements 

(PE's) interconnected in a complete binary tree. Adjacent to the root of the DADO tree is & 

conventional coprocessor which acts a.s a file server and performs the usual activities of a host. 

Thus, DADO may be viewed as a peripheral device of a conventional machine. Communication 

may occur between PE's in the DADO machine along the tree edges. In addition a.ny PE in the 

DADO machine may broadcast data to all of its (logically) connected descendants in the tree, or 

ma.y be instructed to report a value to all of its ancestors. 

In the DADO 1 prototype, now operational at Columbia, there are 15 PE's each composed of an 8 

bit processor, a ROM resident operating system, 8K bytes of RAM, and an I/O section. The 

DADO 2 prototype presently under construction utilizes 16K bytes of RAM at each of 1023 PE's. 

Under the control of son.ware, a PE may operate in one of two modes: ma~ter or ,'avt. In master 

mode the PE runs a computer program stored in its local memory. However, instructions 

embedded within the master's program may be broadcast to descendant PE's operating in slave 

mode for immediate exe-cution. Each of the slave PE's execute the instruction on dirrerent data 

stored in there local RAM in a manner similu to an array processor, or the D..LIAC IV (Lowrie. 

1975). This type of parallelism is known as single instruction stream mUltiple data stream (SIMD) 

execution. Furthermore, the machine can be arbitrarily partitioned into a number of independent 

subtrees. The root of such a subtree logically disconnects itself from its parent and becomes the 

master of the PE's logically connected below. This type of machine has become known as a 

multiple SIMD (MSIMD) architecture (Flynn, 1972). 

The DADO machine haa been designed aa a special purpose processor capable of achieving 

significant performance improvements in the e)(ecution of production system programs. 

A production system (PS) (Newell, 1973) is defined by a set of rules, (or productions). and a 

collection of dynamically changing facts, caUed the working memory (WM). A rule in a production 

system consists of a len. hand side (LHS) and a right hand side (RHS). The LHS is a collection of 

condition elements to be matched against the contents of the WM. The RHS contains actions 

errecting changes in the WM. A production system repeatedly executes the following cycle of 

operations: 

1. Match: For each rule, compare the LHS against the current WM. Determine if the WM satisfies 

the LHS. 

2. Select: The set of satisfied rules is called the conflict .d. Some subset of the connict set is 

chosen according to some predefined criteria. 



2 

3. Act: Add to or delete elements rrom the WM aa specified by the RHS or the selected rules. 

An example rule using the OPS5 production system language (a.saumed to be ramiliar to the reader) 

(Forgy, 1081) is shown in figure 1. The pair or WM-elements matching the condition elements is 

called an instantiation or the rule. 

(p categorize-job-sizes 
(message 'job <x> 'size <y> 'status new) 

(class-definition 'size <y> 'class-name medium) 
_.> 
(make job 'job-name <x> 'clasa medium) 
) 

This rule says ir 

; rule name 
; condition element, 
; <x>.<y> 
; are pattern variables 
; condition element 

there is a WM-element in the system representing a message about a new job, 
and the job's size matches the class definition ror medium size jobs, 

then 
create a new WM-element tagging the job with the clasa name medium. 

FIgure II An Example Production Rule. 

1.1 Temporal Redundane), 

A distinguishing property or production systems is temporal redundane),. A PS is considered 

temporally redundant ir on each cycle rew changes to WM are made. RI/XSEL, which 

incrementally builds a solution to the VAX configuration problem (see (McDermott, 1982)), is 

typical or temporally redundant PS's. Systems which search through large databases, such as ACE 

(Stolro and Vesonder, 1982). or sensor based systems as would be round in a robot, tend to be 

nontemporally redundant. 

: The Original DADO A1aorlthm 

The approach to the parallel execution or PS's on the DADO computer is to logically divide the tree 

into three distinct components. One or these components consists or all PE's at a particular level 

within the tree, called the PM~level. The PM-level delimits an upper and lower portion or the tree 

(see figure 2). 

A line grain DADO computer would be one with perhaps a hundred thousand very simple PE's, 

each having I to 2K bytes or memory. For a fine grain DADO the original DADO algorithm 

(Stolro and Shaw, 1082) suggested each PE at the PM·level be used to store a single production. 

The portion or working memory relevant to the rule contained in the PM-level PE is distributed , 
unirormly in the subtree below. A working memory element is considered relevant if it satisfies the 



3 

FIgure %: Functional Divisions of the DADO Tree. 

-PM~I: 

rTWI::ft. deNmlne ref .... ance 
, iMtantler. 

constants and the intra-condition (Forgy, 1982) restrictions of any condition element in the rule. 

The subtrees formed by the PM-level are to be considered as a collection of independent parallel 

associative processors (Foster, 19i6) providing parallel access to the WM-elements. 

The upper portion of the tree is used for synchronization and selection. The details of the original 

algorithm are described in the following abstract algorithm. 

During the act portion or the production system cycle, additions to WM are performed by 

broadcasting the WM-element to all the PE's in the tree. The PM-level PE's determine if the 

WM-element is relevant to their rule. If so, the WM-element is stored in an available PE. 

Deletions from WM are processed by broadcasting the WM-element to all PE's in the tree. The 

PE's then compare the broadcast element to the element in their local store. If it is the same the 

PE marks itselr as free. 

During the match phase, each PM-level PE enters master mode and broadcasts to its slave PE's the 

first condition element or the rule. The slave PE's compare the pattern against the working 

memory elements and report to the PM-level master, the success or the match and the bindings or 

any variables in the condition element. Each variable binding is then substituted in the remaining 

condition elements, and the match routine is called recursively for the remaining condition 

elements. 

Since no state is saved between cycles, and the algorithm exploits massive parallelism during the 

match phase, the original algorithm is considered to be best suited for nontemporally redundant 

production systems where many changes to WM occur on each cycle or execution. 



4 

1. lniti&!ize: Distribute a match routine and a partitioned subset of rules to each PM-level 
PE. Set CHANGES to the initi&! WM elements. 

2. Repeat the following: 
3. Act.: For each WM-change in CHANGES do; 

a. Broadcast WM-change to the PM-level PE's and an instruction to match. 

b. The mat.ch phase is initiated in ea.ch PM-level PE: 
i. Each PM-level PE determines ir WM-change is relevant to ita local set or 

rules by a parti&! match routine. H so, ita WM-subtree is updated 
accordingly. IH this is a deletion, an associative probe is perrormed on the 
element (relational selection) and any matching instances are deleted. Ir this 
is an addition, a (ree WM-subtree PE is identified. and the element is 
addedJ. 

ii. Each condition element or the rules stored at a PM-level PE is broadcast to 
the WM-subtree below (or matching. Any variable bindings that occur are 
reported sequentially to the PM-level PE ror matching or subsequent 
condition elements (relation&! equi-join). 

iii. A local connict set or rules is rormed and stored along with a priority rating 
in a distributed manner within the WM-subtree. 

c. end do; 
4. Upon termination or the match operation, the PM-Inel PE's synchronize with the upper 

tree. 
5. Select: The max-~SOLVE circuit is used to identiry t.he maximally rated connict. set 

instance. 
6. Report the instantiated RHS or the winning instance to the root or DADO. 
7. Set. CHANGES to t.he reported action specifications. 
8. end Repeat; 

FIgure 3& Original DADO Algorithm. 

3 The RETE Match 

A medium gnin implementation or DADO as opposed to a line grain implementation would 

comprise on the order or tens or thousands PE's, each made up or a state or the art processor 

circuit with about 10K bytes or local memory. A medium grain DADO permits a parallel 

implementation or the RETE match. 

The RETE algorithm compiles the lert hand sides or the production rules into a discrimination 

network. Changes to Working Memory serve as the input to the network. The network in turn 

reports changes to the connict set. There are two primary categories or nodes in the match 

network; test. nodes and memory nodes. When a working memory change enters the network a 

"plus" or a "minus" sign is appended to the working memory element indicat.ing whether t.he 

element is to be added or deleted rrom memory. A pointer to the change, called a token, is then 

replicated and passed to a number or entry pointa into the network. 

The RETE algorit.hm first compiles into the net.work sequences or tests which perform partia.l 

matches of condit.ion elements. These t.esta are ca.lled single input. tests since t.hey consider only one 

attribute or a condition element and one token at a time. Thus each node has only a single are 

entering and lea.ving t.he node. The match network ror the rule in figure 1 is shown in figure 4. 



5 

C I ... -clef 1 nt I on 

FIgure 41 RETE Match Network for the Rule in Figure 1. 

Subsequently the RETE algorithm generates intercondition test nodes, called two input nodes. 

Within two input nodes pattern variables are bound between two condition elements. Associated 

with each input arc of a two input test node is a token memory. "Plus" tokens that have satisfied 

the one input tests and are proceeding on to a two input test are added to a memory node called an 

alpha-memory. Note that. the alpha-memories contain precisely those WM-elements that are 

relevant to a particular condition element. Minus tokens have reached an alpha-memory node have 

a corresponding plus token already present in the alpha-memory. The corresponding plus token is 

removed. 

When a token ent.ers a two input. node it is compared against the tokens in the memory on the 

opposite arc. Any tokens which have consistent variable bindings are paired with the first token, to 

form a new token that propagates through the network. Token memories that store paired sets of 

tokens are called beta-memories. Tokens that propagate from the last two input nodes renect 

changes to the connict set. 



of The TREAT Algorithm 

The original DADO algorithm does not save any state across production system cycles. In a 

temporaJly redundant PS, where few WM cbanges are made on each cycle, the original algorithm 

must recompute many comparisons of WM. The oPP08ite is true of the RETE algorithm. The 

RETE algorithm saves sufficient state in the match network to guarantee that no comparison of 

two working memory elements is recalculated at a later cycle. If large changes to working memory 

are made, a large overhead is incurred maintaining the state information. 

The Temporally REdundant Associative Tree algorithm (TREAT) for production systems on 

DADO attempt..! to synergistically merge the advantages of the two aforementioned algorithms. 

The approach of the TREAT algorithm exploit..! the observation that most of the state saving 

effects of the RETE match is achieved by partially matching the condition element..! and retaining 

the conruct set between cycles. In other words it is important to construct the alpha-memories and 

to remember the conflict set between cycles, but the beta-memories are or little use. We will argue 

below that state saved by the construction of beta-memories is less beneficial than the overhead 

involved in their mainteaance. 

Further, though TREAT ma, have to recompute some comparisons, there are many processors 

available to do the computation and the delay required for the computation may be negligible. In 8. 

VLSI machine based on an intelligent memory paradigm, the tradeoff between having memory to 

store all the contents of the beta-memories or having sufficient processors to recompute them 

quickly could lean towards the latter. 

The first observation that lead to the development of TREAT is that. when a new element is added 

to WM any new rule instantiations entering the conflict set must necessarily contain the new WM­

element. Therefore, the new WM-element may be used as a seed which acts as a constraint when 

building new rule instantiations. By constructing the alpha-memories we can quickly compute the 

set or condition elements which match the new WM-element. When the match proceeds with the 

remaining condition elements, only the subset of WM that has partially sat.isfied each condition 

element is considered. 

By similar reasoning, if a WM-element is removed from WM, than any rule instantia.t.ions removed 

rrom the conflict set must also contain the WM-element. The TREAT algorithm stores the conflict 

set in a distributed fashion in the DADO tree. When a WM-element is deleted, the conflict set is 

examined in a parallel ~eiative manner and all conflict set element..! containing the WM-element 

are removed rrom the conflict set concurrently. 

Jr rules contained only positive condition element..!, the two actions above would be sufficient. 



7 

When a WM-element partially matches a negated condition element, the algorithm is slightly more 

complicated. It the actioD or a RHS adds & WM-element that matches a negated condition element 

then some rule ill!tantiatioDs in the connict set may have to be removed. Unlike the removal of a 

WM-element that matches a positive conditioD element, the negated conditioD does not appeu 

explicitly in the connict set. To determine which connict set elements must be removed the 

condition element is temporarily considered to be positive and the new WM-element is used as a 

seed to build rule instantiations. These rule instantiations are then compared against the connict 

set. Any instantiation appearing in the connict set is removed. 

The fourth case is when a WM-element is r~moved, and it partially matches a negated condition 

element. In this CMe removing the element may permit rule instantiations to enter the connict set. 

These new rule instantiations are precisely those that would enter if the condition element were 

positive and the WM-element had just been added. 

There may. however, be another WM-element similar to the removed element which prevents these 

new instantiations from entering the connict set. Such an element would necessarily satisfy the 

negated condition element precisely the same way as the removed element, i.e. have all the same 

constant and variable values as the removed element. Before building the new rule instantiatioll5 

WM is quickly scanned for such an element. 

There is a pathological case where there may not be a single similar WM-element that prevents & 

rule from becoming instantiated but a pair of elements that do. This situation occurs when the 

same pattern variable appears in two negated condition elements of a single rule. The algorithm 

may be expanded to handle this circumstance, but in practice rules of this form are not found* . 

For pedagogical reasons we have restricted ourselves to the simple case. The interested reader may 

refer to (Miranker, 1984). 

Ii ComparIson of TREAT and RETE 

Both TREAT and RETE may be easily explained by considering the terminology of relational 

database theory. It the entire WM is considered to be tuples in a relational database, then the 

partial match of TREAT and single input tests of RETE may be considered as a sequence of select 

operations. The alpha-memories contain the resulting relationships. It two condition elements have 

a common variable, the act. of finding pairs of WM-elements with consistent variable bindings may 

be viewed as a join of the corresponding a.lpha-memories. 

-Four OPS5 expert systems have been examined and no rules of this type have been found. 



8 

In RETE when & tuple enters from one a.rc of a two input node it is compared a.gainst all the tuples 

stored in the memory aaaoeiated with the other a.rc. Succeaaful pairs of tuples a.re placed in the 

beta-memory. The two input. test nodes of RETE incrementally build the partial join resul~ and 

thus, the beta-memories contain pa.rtial join results of the query. 

In this context, during the act cycle, the TREAT algorithm places changes to WM in "new" alpha.­

memories. The match cycle is performed by doing a join reduction with each new alpha-memory 

and the old alpha-memories corresponding to the remaining condition elements or the same rule. 

After the reduction the new alpha-memory is concatenated with the old. 

The join reduction may be done in any order. It haa been shown in relational database systems 

(Zloof, 1977) that the best way to procesa 8. query of this type is to order the join operations by 

increasing cardinality of the relations. It is 8. byproduct of this optimization that permita TREAT 

to perform well for both temporally redundant and nontemporally redundant systems. If changes 

to the WM a.re few on each cycle the new alpha-memories will contain 1 or 2 tuples. The 

optimization will then use t.he new alpha-memory aa the seed of ita query. If however there &re 

large changes to WM the query will still be performed in optimum order rather than sequencing 

through the changes. 

We note that TREAT must perform a sea.rch when WM-elementa a.re added or deleted. If more 

than half the working memory changes per cycle the original DADO algorithm may still prove to be 

better. 

To maintain consistent beta-memories RETE must perform the joins in a fixed order. The order is 

determined at compile time when no information is available about. the constituent relations. 

Indeed it is not posaible to statically determine the characteristics of the relations (Stolfo, 1984). 

Thus, it is unlikely that RETE performs the join in optimal order. 

Ii.l Implementlns TREAT and RETE on a Medium Grain DADO 

The rollowing is common to both algorithms. It has been noted that. in many OPS5 programs the 

production lnel parallelism is between 20 a.nd 30. That is, no more than 30 dirrerent rule!! may be 

satisfied at & ginn time. The PM-level is selected at the firth level or the tree with 32 PE's 

available. The rules a.re partitioned among the PM-level PE's. It is assumed that there is a good 

p&rtitioning algorithm that prevents two rules that may be satisfied simultaneously rrom being 

placed in the same pa.rtition. (See (Ishida a.nd Stolfo, 1984) for example.) 

Within each partition the condition elements and associated alpha-memories are numbered 

uniquely. The select operations ror each condition element are distributed among the PE's in the 



9 

WM-subtree. During the act cycle changes to working memory are broadcast to all PE's which in 

parallel perform their local select tests. Any successful selection is reported to the PM-level 

processor and the WM is stored in the appropriate alpha-memory. 

II 

1 

Figure 5r Working Memory Elements Indexed by Condition Element Number. 

The alpha-memories are stored in a distributed fashion in a subtree, indexed by preassigned number 

(see fig. 5). An effort is made to place at most one WM-element per alpha-memory in a single PE. 

If this is impossible the (jisparity in the number of elements in different PE's is never greater than 

1. In the TREAT algorithm a distinct partition exists for the new elements. In the RETE match 

the beta-memories are also numbered and stored in a fashion similar to the alpha-memories. 

A join step is performed by broadcasting one tuple of one relation to every PE in a subtree. The 

PE's then compare the broadcast tuple to any tuples of the second relation stored in their local 

memory. In TREAT, if the comparison is successful, the second tuple is reported to the PM-level 

PE and the query continues in depth first fashion. In RETE the second tuple is reported, but the 

pair of tuples must also be assembled and stored in a beta-memory. We summarize TREAT by the 

abstract algorithm in figure 6. 

5.2 Partltlonlng Algorithms 

The TREAT algorithm provides a. simple way to detect active rules and provide information for 

partitioning algorithms. 

In the TREAT algorithm it is easy to maintain a running count of the size of each of the alpha­

memories. For a particular rule if any of the alpha-memories corresponding to its condition 

elements are empty, then the rule can not contribute to the connict set, and no work is performed 

for that rule. The rule is considered to be nonactive. The overhead for recognizing active rules is 

small. When updating the size of an alpha.-memory we need only test for transitions from zero to 

one and from one to zero. Upon this transition a test must be made of the other alpha-memories 

for a rule. If they are nonempty then the rule is added or removed from an active list. 



10 

1 Initialize' Distribute the match routine and a partitioned subset ot rules to each PM-
• lnel PE: Load t.he partial match tests tor each condition element in a PE below the 

PM-level PE containing the IWOciated rule. Set CHANGES to the initial WM elements. 
2. Repeat the (ollowing. 
3. Act: For each WM change in CHANGES do; 

a. Broadcast the WM change to all PE's. 

b. Each PE pertorms the partial match tests stored in its local memory. 

c. For each successful partial match test, place the change in the corresponding 
"new" alpha.-memory. Each PM-level PE does this independently ot the others. 

d. end do; 
4. Match: Process deletes. 

a. For each nonempty "new" alpha-memory do; 

b. Associatively probe the old alpha-memory tor elements appearing in the new 
alpha-memory. Remove them. 

c. Case: lr the alpha-memory corresponds to a positive or a negative condition 
element. 

i. Positive: Associatively probe the connict set tor elements containing 
elements ot the new alpha-memory. Remove them. 

ii. Negative: 

d. end do. 

1. Associatively probe the old alpha-memory tor elements with the same 
variable bindings u any in the new alpha-memory. It tound remove 
tne element. trom the new alpha.-memory. 

2. Pertorm a join reduction, in optimal order, or the new alpha-memory 
and the old alpha-memories or the same rule. 

3. Add these new instantiations to the connict set. 

5. Match: Process adds. 
a. For each nonempty "new" alpha-memory do; 

b. Perform a join reduction, in optimal order, or the new alpha-memory and the old 
alpha-memories ot the same rule. 

c. Case: It the alpha-memory corresponds to a positive or a negative condition 
element. 

i. Positive: Add these new instantiations to the connict set. 

ii. Negative: Associatively probe the connict set tor each ot these new 
instantiations and remove it round. 

d. end do. 

FIgure ft, Abstract Algorithm lllustrating TREAT. 

It is this test that provides a mechanism tor developing adaptive partitioning algorithms. A good 

partition algorithm would keep the number ot active rules in dirrerent partitions the same. It the 

production system monitor discovers two rules in a partition are active at the same time, the 

monitor may then pa.s.s this inrormation to the partitioning algorithm. The partitioning algorithm 

may then be caretul not to place these two rules in the same partition tor the next run. 



11 

6 Expected Performance of TREAT for OPS5 

Using statistics generated by studying OPS5 production systems, Gupta (gupta, 1983) has detailed 

performance estimates for a fine grain DADO employing the original DADO algorithm as well as 

performance estimates of a medium grain DADO employing the RETE match. In this section we 

make performance estimates of the TREAT algorithm on OPSS by elaborating on this study. It 

should be noted that the study was based on OPSS whose semantics is targeted for a sequential 

implementation of the RETE match. The study is not indicative of the performance or a DADO 

machine employing a less restrictive language that has the ability to express more parallelism in the 

problem. On going research aims towards the eventual implementation of a production system 

formalism we have come to call HerbAl (in honor of Herbert Simon and Allen Newell). HerbAl will 

permit the expression of parallel constructs not presently capable of OPS style systems. 

To make use of the data from the OPS5 study we must first determine how many more 

comparisons does TREAT require than RETE as a result of eliminating beta-memories. Since 

DADO has many processors matching a broadcast data against their local store in parallel, the 

basic unit that should be- counted is the required number of parallel matches. 

FIgure 7: RETE Network Representing an Average Rule. 

Since the performance of these algorithms is statistical in nature we can only make a qualitative 

statement based on the expected performance of an average case. The average rule in an OPSS 

system has four condition elements. The RETE match network representing the memories and two 



12 

input. test nodes for sucb & rule is illuat.r&t.ed in figure 7. Let's lLMume that each alpb .... memory 

contains n WM-elementa &nd that. there is uniform probability p tbat any 2 tuples match. Then 

beta-relations BI, and B2 will contain n2p, n3p2 tuples. It & WM-element p&rtially matching Cl is 

added to the system it will be comp&red against n tuples in alph~, np of them can be expected to 

match. These in turn muat be compared to t.he n tuples of alpha.a. This step requires n'np 

comparisons and can be expected to produce n2p2 resulta. These resulta in turn must be compared 

to the n tuples in alpha.. The total number of comp&risons for an element entering CI is then n + 
n2p + n3p2. It the element partially matches C2 the number of comp&risons is the same. If we 

add one more WM-element with even probability to the four condition elementa and do a similar 

analysis for elementa p&rtially matching C3 and C4 the average expected number of comparisons 

will be: 

n + O.5n2p + O.75n3p2 

The analysis for an element partially matching CI did not make use of the results stored in the 

bet .... memories. Since lobe TREAT algorithm retains no beta-memories, the number of comparisons 

required (or the THEA T- algorithm for a new element partially matching any or Ct tbrougb C4 is 

the same as the RETE algorithm (or an element partially matching Ct. Note that half or lobe time, 

when a new element partially matches Ct or C2, the number of comparisons ror tbe two algorithms 

is identical. The number or comp&risons for TREAT is: 

These equations renect the number or individual comparisons. Since we are interested in the 

number or parallel matches and we lLMume there is no more than one tuple or a relation in a 

processor we must divide t.he equations by n. Resulting in: 

Parallel Matcbes RETE ~ 1 + O.5np + O.75n2p2 
Parallel Matches TREAT ... 1 + np + n2p2 

The TREAT algoritbm is only slightly wone. Asymptotically the two algoritbms perform very 

mucb the ume. The average values (or nand p derived rrom six large production systems (Gupta. 

1984) is n- 25.6 and p - O.~g. In tbis ease the expected number of parallel matcbes is 2.23 and 

2.98 ror RETE and TREAT respectively. 

However, this is an "unrealistically" average ease. Indeed, ror the Rl program Gupta reporta &n 

average of S6 WM-elements per alpha-memory with a standard deviation of 61. Ir we remove the 

assumption tbat all alpha-memories contain the same number or tokens, what. is the likelihood that 

the RETE match has compiled the rour joins in the optimal order! The compilation is done by the 

lexical order of the condition terms. Therefore it is fairly likely that the optimal order is not used. 



13 

Since TREAT will optimize the order of the joins on every cycle it is a fair assumption that despite 

the lack of beta-memories the number of p&rallel match operations performed by TREAT is on 

average the same aa RETE. We conclude that the beta-memories do not reduce the average 

number of p&rallel matches, therefore it is no~ worthwhile to expend the time and space required to 

construct and maintain the beta-memories. 

0.1 Pertormanee Estimates tor TREAT on • Medium Gratn DADO 

The parallel implementation of RETE includes the parallel aasociative look up of connict set 

elements to be removed when a WM-element is deleted. With the exception of the construction of 

the beta-memories the &ctivities of the two algorithms are almost identical. Gupta estimates for 

RETE that the average cost of adding a WM-element to be 3750 instructions. Of these 940 

instruction are needed to construct the beta-memories. A detailed expl&nation of this may be found 

in (Miranker, 1984). The estimate for the cost of deleting a WM-element is 1800 instructions. or 

these 330 instructions are required to process the beta-memories. On average there are 2.5 changes 

in WM per cycle. Rule selection and right hand side evaluation is assumed to take 500. instructions. 

The total number of instructions per cycle is then: 

1.25 ((3750-940)+(1800-330)) + 500 - 5850 instructions. 

These instruction counts are baged on a DADO PE constructed out or an 8 bit 1 address processor 

running at an instruction rate or 2msec per instruction. Where Gupta hag predicted perrormance 

for the DADO 2 prototype using the RETE ma.tch to be 61 production cycles per second. the 

TREAT algorithm is ca.pable or 85 production cycles per second. Furthermore, it hag been noted 

tha.t the size or the beta-memories is orten expansive (gupta, 1983). Thus TREAT is more space 

efficient ag well. 

Similar a.rguments modifying the original DADO algorithm for a fine grain DADO have been able 

to show an improvement from 11 production cycles per second to 105 production cycles per second. 

Space does not permit a complete analysis here. The reader is encouraged to see (Miranker. 1984) 

for details. 

We note with interest that the above analysis was performed for the current DADO prototypes 

whose constituent processor technology is five years old. This technology Wag chosen to expedite 

prototyping within the limits or a university environment. With suitable changes to current 

processor technology, (1 MIP, 32 bit proceS!Ors), future DADO machines will run 8 to 16 times 

faster than the estimates detailed above. 



14 

7 Coneiu!llonl 

The TREAT algorithm onrcomes dis&dvantages or the original DADO algorithm by saving state 

across production system cycles. However, the internal structures or TREAT are simpler than 

those or the RETE match. ~ a result TREAT may dynamically optimize t.he order or mat.ch 

operations on the WM and thus efficient.ly execute both temporally redundant and nontemporally 

redundant product.ion systems. 

Using the expanded abilities or TREAT and DADO .. new more powerrul production system 

language, HerbAl, is being designed to capture more parallelism than is possible to express in OPS. 

We note that Gupta reports that a V AX· 780 running the rastest OPS interpreter to date, OPS83 

(Forgy 83 , 1983), is capable or only 30 to 50 production cycles per second (gupta, 1983). A DADO 

machine, using similar processor technology, is expected to perform 85 production cycles per second 

on OPS style systems. Yet such a DADO machine is considerably simpler and less expensive than a 

VAX·780. 



15 

References 

Flynn M. J. Some Computer Organizations and Their Errectiveness. The Institute of Electrical and 
Electronic Engineers Transactions on Computers, September 1912, , . 

Forgy C. L. OPS5 User's Manual. Technical Report CMU-CS-81-135, Department of Computer 
Science, Carnegie-Mellon University, July 1981. 

Forgy C. L. Rete: A Fast Algorithm ror the Many Pattern/Many Object Pattern Matching 
Problem. Artificial Intelligence, 1982, 19, 11-31. 

Forgy, C. L. OPS8S. Technical Report, Carnegie-Mellon University, 1983. unpublished manuscript. 

Foster, Caxton C. Content Addressable Parallel Processors.: Van Nostrand Reinhold 1916. 

Gupta, A. Implementing OPS5 Production Systems on DADO. Technical Report, Department or 
Computer Science, Carnegie-Mellon University, 1983. 

Gupta,Anoop. Implementing OPS5 Production Systems on DADO. Technical Report, Carnegie­
Mellon University, 3 1984. 

Ishida T., and S. J. Stolfo. Simultaneous Firing of Production Rules on Tree-structured Machines. 
Technical Report, Department of Computer Science, Columbia University, 1984. (Submitted 
to AAAI 1984). 

Lowrie,D.D.,T. Layman, D. Daer and J.M. Randal. A Programming Language ror Illiac IV. Comm. 
ACM, 1975, 18 S, , 

McDermott J. Rl: A Rule Based Configurer or Computer Systems. Artificial Intelligence, 
September 1982, 19(1),39-88. 

Miranker, D.P. The Performane Analysis of TREAT.' A DADO Production System Algorithm. 
Technical Report, Columbia University, 1984. in preperation. 

Newell. A. Production Systems: Models of Control Structures. In W. Chase (Ed.), Visual 
Information Processing,: Academic Press, 1913. 

Stolfo S. Learning control or production systems. Cognition and Brain Theory, 1984, , . 

Stolfo S. J., and D. E. Shaw. DADO: A Tree-structured Machine Architecture for Production 
Systems. Proceedings National Conference on Artiricial Intelligence, Carnegie-Mellon 
University, August, 1982. 

Stolfo S. J., and G. Vesonder. ACE: An Expert System Supporting Analysis and Management 
Decision Making. Technical Report, Department of Computer Science, Columbia University, 
1982. (To appear in the Bell System Technical Journal). 

Zloof, M. M. Query-by-example: a data base language. IBM System J., 1971, 16:4,324-343. 


