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ABSTRACT

Analyzing Hierarchical Data with the
DINA-HC Approach

Jianzhou Zhang

Cognitive Diagnostic Models (CDMs) are a class of models developed in order to diag-

nose the cognitive attributes of examinees. They have received increasing attention in

recent years because of the need of more specific attribute and item related informa-

tion. A particular cognitive diagnostic model, namely, the hierarchical deterministic,

input, noisy ‘and’ gate model with convergent attribute hierarchy (DINA-HC) is pro-

posed to handle situations when the attributes have a convergent hierarchy. Su (2013)

first introduced the model as the deterministic, input, noisy ‘and’ gate with hierar-

chy (DINA-H) and retrofitted The Trends in International Mathematics and Science

Study (TIMSS) data utilizing this model with linear and unstructured hierarchies.

Leighton, Girl, and Hunka (1999) and Kuhn (2001) introduced four forms of hier-

archical structures (Linear, Convergent, Divergent, and Unstructured) by assuming

the interrelated competencies of the cognitive skills. Specifically, the convergent hi-

erarchy is one of the four hierarchies (Leighton, Gierl & Hunka, 2004) and it was

used to describe the attributes that have a convergent structure. One of the features

of this model is that it can incorporate the hierarchical structures of the cognitive

skills in the model estimation process (Su, 2013). The advantage of the DINA-HC

over the Deterministic, input, noisy ‘and’ gate (DINA) model (Junker & Sijtsma,

2001) is that it will reduce the number of parameters as well as the latent classes by



imposing the particular attribute hierarchy. This model follows the specification of

the DINA except that it will pre-specify the attribute profiles by utilizing the con-

vergent attribute hierarchies. Only certain possible attribute pattern will be allowed

depending on the particular convergent hierarchy. Properties regarding the DINA-HC

and DINA are examined and compared through the simulation and empirical study.

Specifically, the attribute profile pattern classification accuracy, the model and item

fit are compared between the DINA-HC and DINA under different conditions when

the attributes have convergent hierarchies. This study indicates that the DINA-HC

provides better model fit, less biased parameter estimates and higher attribute profile

classification accuracy than the DINA when the attributes have a convergent hierar-

chy. The sample size, the number of attributes, and the test length have been shown

to have an effect on the parameter estimates. The DINA model has better model fit

than the DINA-HC when the attributes are not dependent on each other.
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CHAPTER 1. INTRODUCTION 1

Chapter 1

Introduction

The Item Response Theory (IRT) models are conventional tools used to analyze data

sets at the item level, and the Classical Test Theory (CTT) models analyze data

at the test level. Both IRT and CTT assume a single overall score to differentiate

students’ proficiency. Cognitive Diagnostic Models (CDMs) are considered as a pop-

ular modeling method to diagnose the cognitive attributes of examinees. They can

measure the specific knowledge structures and skills that students need in order to

solve test items. CDMs were developed for the purpose of identifying the presence

or absence of the multiple fine-grained skills that are required for examinees to pro-

duce correct responses. These skills also are called attributes, and they have been

described as “Production rules, procedural operations, item types, or, more gener-

ally any cognitive tasks” (Tatsuoka, 1990). The advantage of using CDM is that it

can incorporate cognitive structures in the psychometric model and thereby allow

us to classify examinees into various attribute profiles that indicate their mastery

level (Park & Lee, 2014). To be specific, if a student incorrectly answers an algebra

question, neither CTT or IRT can identify the missing skills that led the student to

the wrong answer. CDM, however, can identify the specific skills that the students
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lack. For instance, Gierl et al. (2009b) suggested that a simple algebra problem from

the SAT test might require multiple attributes such as the conceptual geometric,

quadratic equation and abstract geometric series to correctly respond to it. It would

be impossible to detect the specific attributes that students need in order to respond

to an item correctly by implementing the IRT or CTT methods, so CDMs can po-

tentially provide more detailed information by identifying the presence or absence of

specific skills in students.

It has been suggested that certain basic lower level knowledge may be the prerequi-

site of upper level knowledge (Kuhn, 2001b) and prior knowledge plays an important

role on the performance in mathematical, science and other area study (Hudson &

Rottmann, 1981). Many mathematical knowledge and science concepts as well as

other conceptual domains are not separate segments; there exist certain relationships

among those concepts(Kuhn, 2001a). For instance, the mathematical skills are often

correlated (Sternberg & Ben-Zeev, 1996). In order to make progress, students need to

know how to add two numbers before they master the addition of multiple numbers.

In other words, basic concepts such as numbers, proportion, and measurement should

be mastered before learning upper level concepts such as geometry and calculus. The

strong associations that exist among the concepts would require students to learn

basic concepts before they can master the upper level concepts. It’s usually diffi-

cult to understand complicated network of concepts without prior establishment of

simpler concepts. The conceptual knowledge segments can be divided into different

parts and each part can be related to each other (Vosniadou & Brewer, 1992). Most

of the mathematics and science concepts have connections(Battista, 2004) and they

are sometimes dependent on each other, so there will be certain learning points or

sequences in the process. For instance, in order to understand algebra, it is important

to get an understanding of the concepts of fractions such as decimals and percent-
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age.The hierarchical learning structure is important because it would offer a guide on

the specific learning paths students might have when they study various knowledge

concepts. It is natural to assume that attribute hierarchy exists among the skills and

other concepts, if progress requires the mastery of other attributes.

The popularity of online tests and assessments can provide a large amount of

information on students’ performances in terms of the specific attributes. The DINA

model does not assume an ordering of the attributes and usually there will be no

hierarchies involved with the DINA model, so when the DINA model is applied, the

parameter estimates will not be accurate (Su, 2013). The hierarchical deterministic,

inputs, noisy, “and” gate with convergent hierarchy (DINA-HC) model is a specific

type of CDM that was developed in order to handle the hierarchical structure of

the educational data. It was introduced by Su (2013) as the modified DINA and

DINO with hierarchical configurations (DINA-H and DINO-H) to fit the dependent

attributes data. The DINA and DINO models were chosen to be modified because

of their simplicity and interpretability. Su (2013) then examined the DINA-H and

DINO-H by using two of the four attribute hierarchies (linear and unstructured).

The major benefit of using the DINA-HC model is that it can provide less biased

estimates than the DINA model for the hierarchical structure data because of the

reduced number of parameters and latent class patterns. The hierarchical model with

the specific hierarchy is unique because it considers the existing hierarchical nature of

attributes, and thus it provides more reliable and detailed information on examinees’

learning progressions. However, the study carried out by Su (2013) is limited. The

linear attribute hierarchy is the simplest form. For instance, in the Mental Models

Theory (MMT) of syllogistic reasoning (Leighton et al., 2004b), from the construction

of the initial model to the generation of a conclusion, there are usually a series of steps

involved. (1) interpret quantifiers according to the logical criteria (A1); (2) create 1st
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unique representation of logical quantifiers (A2); (3) create 2nd unique representation

of logical quantifiers (A3) (premised on the 1st representation); (4) create 3rd unique

representation of logical quantifiers (A4) (premised on 2nd representation); Without

the mastering of A1, it is not possible to master the following attributes (A2, A3, and

A4). The unstructured hierarchy is an extreme hierarchical structure and does not

usually exist in the real settings. The unstructured hierarchy describes a situation

where a single attribute (A1) is the prerequisite for all other attributes (A2, A3, A4,

and so on), and there is no connection among all the other attributes.

The convergent attribute hierarchy is a more practical hierarchy with a conver-

gent structure, allowing two different paths to be followed from the first to the last

attribute. Su (2013) investigated the MSE and model fit between the DINA-H and

DINA. In addition, this study further examined the item fit such as the Bias, Abso-

lute Bias Error (a similar alternative to MSE), and the attribute pattern classification

accuracy.

Specifically, the research objective is to modify the DINA with convergent at-

tribute hierarchy as the DINA-HC model and to apply both DINA-HC and DINA

to the hierarchical attributes data. The results from both models were obtained and

compared. In order to achieve this goal, three research questions were prepared:

Question 1: How does the DINA-HC compare with the DINA, in terms of the

model fit under different conditions?

Question 2: How do the item parameter estimates (guessing and slipping) for

DINA-HC and DINA compare under different conditions?

Question 3: How does the attribute pattern classification accuracy compare be-

tween DINA-HC and DINA under different conditions?

The evaluation criteria are discussed in Chapter 3 and the three research questions

are addressed through simulation and empirical studies.
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This study is an important addition to the existing studies that cover only lin-

ear and unstructured attribute hierarchy when estimating the item parameters. Su

(2013) investigates the DINA and DINO model with the linear and unstructured

attribute hierarchy and suggests that the DINA and DINO model with linear and

unstructured attribute hierarchy are preferable when the skills are ordered hierarchi-

cally. A confirmatory hypothesis testing (ANOVA) is carried out in the analysis to

provide definite answers to the research questions and to help us understand the bias

differences between DINA-HC and DINA models.

Furthermore, this study investigates the performance of the DINA-HC and DINA

models when the attributes are not dependent on each other. This would provide

additional insights into not only the strength of DINA-HC but also the weakness

when the data are independent. Another contribution of this paper is to set DINA-

HC model as an example, so that the method can be generalized in an equation that

can handle different types of attribute hierarchies. Specifically, the alpha matrix (the

mastery status of the kth skill by the ith skill pattern) is constrained and pre-specified

in the DINA equation. It also is important to note that the bias, the absolute bias

over all items, the absolute bias error, and the attribute profile pattern classification

accuracy are introduced in the analysis to help us understand the differences between

the DINA-HC and the DINA model. Lastly, the The Examination for Certificate

of Proficiency in English (ECPE) data are used for the empirical study to examine

the performance of DINA with linear hierarchy. Linear hierarchy is one of the four

hierarchies and it provides additional insights into the topic of hierarchical DINA.

It is been suggested that the Examination for Certificate of Proficiency in English

(ECPE) test yields linear attribute hierarchical data (Templin & Bradshaw, 2014).

It is used to examine the situation when small number of attributes are present. It is

administered yearly and used as a measure of English skills for non-native speakers.
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This dissertation includes five chapters. Chapter 2 contains more detailed infor-

mation on CDMs including their advantages and limitations, the nature of knowledge

structures, and the specific hierarchies. Chapter 3 explains the methods involved in

this study. Chapter 4 presents the results of simulation and empirical data analyses.

Chapter 5 summarizes the results, explain the limitations, and point outs the future

research objectives.
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Chapter 2

Literature Review

The DINA-HC model is based on the DINA model, which is the most parsimonious

and interpretable CDM used to examine the mastery level of the cognitive skills that

examinees possess. The central idea of the DINA-HC model is to utilize the DINA

model with skill hierarchies. This chapter includes three sections. The first section

introduces cognitive diagnostic models and the Q-matrix in greater detail; three pop-

ular Cognitive Diagnostics Models (DINA, DINO and GDM) based on attributes and

the Q-matrix are described. The second section introduces the hierarchies that exist

among various attributes and discuss in detail the four specific attribute hierarchies.

The third section reviews the methods for estimating CDMs with attribute hierarchy.

2.1 The Introduction of the Cognitive Diagnostic

Models

Cognitive Diagnostic Models (CDMs) intend to assess in detail whether the examinees

have mastered the specific skills required to respond to the item. They are superior

to the traditional psychometric approaches such as Item Response Theory (IRT) and
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Classical Testing Theory (CTT) when it comes to skill assessments (Henson et al.,

2009). IRT normally concentrates on the item-level and CTT on the test-level analy-

sis. However, CDMs examine students’ mastery of skills on the attribute level, which

provides more detailed information about students’ specific strengths or weakness

(Huebner, 2010). Thus it will be easier for instructors to assess the knowledge level

of students and the specific areas that need more attention. Most CDMs are usu-

ally developed for the purpose of discovering the latent attributes that examinees

possess based on the test items (DeCarlo, 2010). There are several similar models

for CDMs in the existing literature including cognitive diagnosis models (Tatsuoka,

1995; de la Torre, 2009a), latent response models (Maris, 1995) and structured item

response models (Rupp & Mislevy, 2007). These models have different specific em-

phases, assumptions, and requirements as compared to the common CDMs. They

have different parameters and degree of complexity, but the common purpose of the

CDMs is to provide examinees with detailed information and feedback regarding their

understanding of the specific skills (attributes). In most cases the specific skills are

binary, that is, the examinees either know the attribute or they do not. Knowing of

an attribute is usually represented by 1 and not knowing by 0.

Different CDMs may have different assumptions, and thus there will be different

ways to categorize those CDMs. One of the most popular methods is to divide them

into disjunctive and conjunctive categories (Roussos et al., 2007; Huebner, 2010).

Conjunctive models such as DINA (Junker & Sijtsma, 2001), the reduced RUM (Di-

Bello et al., 2006), and the NIDA model (Junker & Sijtsma, 2001) assume that it is

necessary to possess all the required attributes to correctly respond to an item unless

the examinees respond by guessing. It also assumes that it is not possible to incor-

rectly respond to an item if all the attributes of this item have been mastered, unless

the examinee makes a mistake by slipping. On the other hand, disjunctive models
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such as the DINO model (Templin et al., 2007) and the General Diagnostic Model

(von Davier, 2005) assume that a deficiency in one of the required attributes will be

compensated for if the examinees are able to possess other attributes. Without any

constraints on the latent class patterns, there will be a maximum of 2k existing latent

class patterns and 2k − 1 possible parameters involved. It will be very difficult to

estimate all the parameters as the k (skills) increase.

2.1.1 The Deterministic, Input, Noisy ‘And’ Gate Model

CDMs were developed so that they can be used to examine the cognitive attributes of

examinees. They assume that each single item measures a subgroup of the attributes

on the test. The Deterministic, input, noisy ‘and’ gate (DINA) model (Junker &

Sijtsma, 2001) is the most parsimonious and interpretable CDM used to determine

the mastery level of the cognitive skills that examinees possess. It lays a foundation

for most other models in cognitive diagnostic tests (Tatsuoka, 1995, 2002). The

probability of correctly responding to an item depends on three factors: the guessing

parameter, the slipping parameter, and the latent response variable. The parameter

for guessing gj is the probability of responding to the jth item correctly even if the

examinee does not possess all the required attributes. The slipping parameter sj

is the probability of responding to the jth item incorrectly with all the attributes

required for the item. The latent response variable ξij is a dichotomous variable. If

the examinee possesses all the needed attributes to respond correctly and the latent

response variable was scored as 1, and if the examinee lacks at least one of the

needed attributes and responds incorrectly, then it was scored as 0. The mathematical
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representations of the guessing and slipping parameters are as follows:

sj = P (Xij = 0|ξij = 1) (2.1)

gj = P (Xij = 1|ξij = 0) (2.2)

where ξ matrix is a binary matrix that indicates whether the examinee i has all the

needed attributes for the item j, which can be represented as follows:

ξij =
n∏
k=1

α
qjk
ik (2.3)

where αik is the mastery status of the kth skill by the ith skill pattern and qjk is the

matrix that expresses whether the jth item needs the kth skill to respond correctly.

The final DINA equation can then be represented mathematically as follows:

Pj(αi) = P (Xij = 1|αi) = g
1−ξij
j (1− sj)ξij (2.4)

According to this equation, it is necessary to have all the needed skills and not slip

in order to correctly respond to an item, and an examinee who lacks at least one

of the needed attributes can still respond correctly by guessing. There are 2k total

possible attribute profiles in the DINA model, where k refers to the number of skills

that the test measures. The attribute profiles also are known as latent classes. The

DINA model categorizes examinees into two classes: one in which the examinees

have mastered all the attributes, and the other one in which the examinees lack

mastery of at least one of the attributes required by the item. The DINA model is

a non-compensatory (conjunctive) model, because it assumes that it is necessary to
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master all the required skills for an item in order to respond correctly to it unless the

examinees respond by guessing. It is important to note that if an examinee is missing

one required attribute, this is equivalent to the examinee missing all the attributes.

The DINA also assumes that it is not possible to get an item incorrect if the examinee

possesses all the required attributes unless it is a mistake made by slipping. As the

DINA model is the most parsimonious CDM model, it has only two parameters to

be estimated per item: guessing and slipping. However, there are many different

CDMs depending upon the model assumptions. Some of the CDMs are Rule Space

model (Tatsuoka, 1985, 1990, 2009); the DINA and NIDA models (de la Torre, 2011;

Junker & Sijtsma, 2001; Templin, 2006); the DINO and NIDO models (Templin, 2006;

Templin & Henson, 2006); the Attribute Hierarchy Method model (Gierl, 2007; Gierl

et al., 2009; Leighton et al., 2004a); and the reparameterized unified/fusion model

(RUM) (Hartz, 2002).

2.1.2 The Deterministic, Input “Or” Gate Model

The deterministic, input “or” gate (DINO) (Templin, 2006) model is defined in a

similar way as DINA and is considered to be the counterpart of the DINA model.

Similarly, the probability of correctly responding to an item depends on three factors:

the guessing parameter gj, the slipping parameter sj, and the latent response vari-

able ω. The guessing parameter for the DINO model is the probability of correctly

responding to the item j when the examinee has not mastered any of the needed

attributes. The slipping parameter is the probability of responding to the item in-

correctly when the examinee has mastered at least one of the needed attributes. The

latent class variable ω is a dichotomous variable that is divided into two latent classes.

(1) the examinees have mastered at least one of the needed attributes. (2) the exam-
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inees have mastered none of the needed attributes specified in the Q-matrix. One of

the major differences between DINA and DINO is that it is possible for the DINO

model to correctly respond to an item as long as the examinee has mastered at least

one of the needed skills. It is important to note that the number of skills and the

type of skills are no longer necessary. The mathematical representations of the DINO

parameters and the final item response function are as follows:

sj = P (Xij = 0|ωij = 1) (2.5)

gj = P (Xij = 1|ωij = 0) (2.6)

Pj(ωij) = P (Xij = 1|ωij) = g
1−ωij

j (1− sj)ωij (2.7)

where the latent class variable ωij is a binary disjunctive model and id defined as

follows:

Pj(ωij) = P (Xij = 1|ωij) = g
1−ωij

j (1− sj)ωij (2.8)

The DINA and DINO models both have only two parameters, guessing and slip-

ping, and the latent class responses are divided into two categories: mastery of the

skills and non-mastery of the skills. The DINA and DINO models are the simplest

CDMs.
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2.1.3 The Hierarchical Deterministic, Input, Noisy ‘And’ Gate

Model

The Hierarchical Deterministic, Input, Noisy ‘And’ Gate Model is a specific type of

CDM that was introduced by Su (2013) as the DINA-H to fit hierarchical attributes.

Su (2013) investigated the DINA with linear hierarchy (DINA-HL) and unstructured

hierarchy (DINA-HU) and concluded that both DINA-HL and DINA-HU outperform

the DINA model when the attributes are hierarchical. In terms of attribute hier-

archies, there are four basic types: linear, convergent, divergent and unstructured

(Leighton et al., 2004b). Those will be discussed in detail in the last section of this

chapter. If the DINA model is applied to the hierarchical attribute data without any

constraint on the attribute hierarchies, the parameter estimates will not be accurate

because of the hierarchical nature of the attributes. The DINA-HC model can reduce

the number of possible attribute profiles and decrease the sample size requirements.

The study carried out by Su (2013) suggests that the DINA-H model with linear

and unstructured hierarchy should be considered instead of the DINA model when

the attributes are hierarchical. The DINA-HC model used here applied not only to

the hierarchical attributes data but also the non-hierarchical attributes data in the

simulation study. The DINA-HC model assumes that the attributes are dependent

in a certain way. In other words, some lower level attributes could be the necessary

requirements for more complicated attributes (Kuhn, 2001b). When the hierarchical

dependence among attributes is pre-specified, the number of possible attribute pro-

files will be smaller than 2k (Templin et al., 2010), where 2k is the number of possible

attribute profiles when there are no constraints imposed on the latent classes and k

is the number of attributes (skills) that examinees possess.
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2.1.4 The General Diagnostic Model

The General Diagnostic Model (von Davier, 2005) is used to define a general class

of models for cognitive diagnosis based on a series of models including the Rasch

model, item response theory models, skill profile models, and the extension of la-

tent class models. Most of these approaches utilize the Markov Chain Monte Carlo

(MCMC) estimation methods, because the maximum likelihood estimations (MLE)

are not feasible. The GDMs suggested by von Davier (2005) would outline the param-

eter estimations by using the MLEs. The concept behind diagnostic models is that

various items will have various sets of skills and that experienced professionals are

able to build a Q-matrix to solve the items in an assessment. An important feature

of GDMs is that they extend the applicability of skill profile models to polytomous

items and to skills having more than two proficiency levels (von Davier, 2005). The

diagnostic models can be developed and refined based on the GDM framework, which

is considered as an item response model, and the probability of the response x, given

the respondents v on the item i is shown as follows:

P (X = x|i, v) =
exp(f(λxi, θv))

1 +
∑mi

y=1 exp(f(λxi, θv))
(2.9)

where item responses range from 0 to mi, the respondents ranges from 1 to N, and

item i ranges from 1 to I. The item parameters λxi = (βix, qi, γxi) and a skill vector

θv = (αv1, ..., αvk), with continuous, ordinal or binary skill variable αk.

Equation 2.9 is the general form. In the case of the binary data, von Davier (2005,

2008) developed the following linear GMD:
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P (X = x|i, v) =
exp(βix +

∑k
k=1 γixkb(qik, ak))

1 +
∑mi

y=1 exp(βix +
∑k

k=1 γixkb(qik, ak))
(2.10)

where αk is the skill vector and b(q,α) =qα for the parsimony.

Equation 2.9 can be used to define both compensatory and non-compensatory

models. It has been shown by von Davier (2013) that the DINA (non-compensatory)

model can be represented equivalently as a special case of a more general compen-

satory family of diagnostic models, and the equivalency will hold for all the DINA

models with any construction of the Q-matrix. There is no additional structure that

is introduced for both DINA and GDM. The equivalency is established by utilizing

a mapping of DINA skill space onto an alternative skill space of a DINA-equivalent

GDM (von Davier, 2014). The GDM can be seen as a model family that consists of

different CDMs where certain restrictions are placed on the parameters. It is worth

noting that the family of GDMs can use many kinds of data including not only the

binary and polytomous data but also the ordinal and mixed format data.

2.2 The Details of Q-matrix

The Q-matrix is the essential input used during a diagnostic analysis of most CDMs.

The proper construction and specification of the Q-matrix will increase the diagnostic

power of the CDMs, and the proper specification of a Q-matrix is necessary in order

to implement the CDMs (Tatsuoka, 1995). Normally it would be assumed that each

item of a test requires some subset of attributes (skills) in order to correctly respond.

The particular attributes required by the test items are described by a binary matrix,

which is known as the Q-matrix (Tatsuoka, 1983). The columns of the matrix are
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the attributes (skills), and the rows are the items. When an item requires a certain

attribute, the corresponding spot in the column is assigned a 1; otherwise, it is 0.

Thus, the responses would only be discrete binary values (1 or 0). The J x K Q-

matrix was specified in such a way that K represents the number of skills and J

represents the number of items in a given assessment (Tatsuoka, 1995). A detailed

Q-matrix can be constructed based on Table 1 drawn from DeCarlo (2010) and taking

items 1, 2, 3, 4, 5, and 6 as the examples. There are eight attributes in the table and

they are labeled A1, A2 and so on. The Q-matrix is shown in Table 2.1.

Item A1 A2 A3 A4 A5 A6 A7 A8
5
3
− 3

4
0 0 0 1 0 1 1 0

3
4
− 3

8
0 0 0 1 0 0 1 0

5
6
− 1

9
0 0 0 1 0 0 1 0

3(1
2
)− 2(3

2
) 0 1 1 0 1 0 1 0

4(3
5
)− 3( 4

10
) 0 1 0 1 0 0 1 1

6
7
− 4

7
0 0 0 0 0 0 1 0

Table 2.1: A 6 items to 8 attributes Q-matrix

The Q-matrix presented here includes eight attributes (skills) as follows: (1) con-

vert a whole number; (2) separate a whole number from a fraction; (3) simplify before

subtracting; (4) find a common denominator; (5) borrow from whole number part; (6)

column borrow to subtract the second numerator from the first; (7) subtract numer-

ators; and (8) reduce answers to the simplest form (Tatsuoka, 1995; DeCarlo, 2010).

It is easy to see that mastery of attributes 4, 6, and 7 is required in order to solve

item 1; mastery of attributes 4 and 7 is required to solve item 2; and so on. And yet

the attributes are not dependent on each other.
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2.3 The Cognitive Attribute Hierarchies

The attribute hierarchy method (AHM) utilizes the hierarchies that exist among the

attributes and four types of popular hierarchies: linear, convergent, divergent and

unstructured were introduced (Leighton et al., 2004a,b; Gierl, 2007; Gierl et al., 2009).

This can be a new approach to dealing with hierarchically ordered attributes. If the

attributes are hierarchically dependent, then those hierarchies of the attributes can be

combined to form more complicated forms of cognitive skills (Kim, 2001). There are

four types of popular cognitive attribute hierarchies: linear, convergent, divergent and

unstructured (Leighton et al., 2004b). Linear, convergent, and divergent hierarchies

are structured. When combining two or more of the four types of hierarchies, the

result is even more complex networks of hierarchies (Kim, 2001).

2.3.1 Linear Attribute Hierarchy

In all hierarchies, the first attribute (A1) may be considered hypothetical because it

represents all the initial competencies that are prerequisites to the ensuing attributes

(Leighton et al., 2004b). In the linear attribute hierarchy, attribute 1 (A1) is a

prerequisite for attribute 2 (A2); attribute 2 (A2) is the prerequisite for attribute

3 (A3); and so on. In other words, the examinee cannot master attribute 2 (A2)

without mastering attribute 1 (A1), and furthermore the examinee cannot master

attribute 6 (A6) without mastering all the previous attributes. Thus There is only

one path for reaching a given skill level.

In this study, the linear attribute hierarchies should satisfy the following compo-

nents.

Component 1 : For all the linear attribute hierarchies, there will be a starting

point. This starting point will be represented as attribute one (A1).
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Component 2 : For all the linear attribute hierarchies, there will be an ending

point. This ending point will be represented as attribute N (AN), where N equals the

number of all possible attributes.

Component 3 : The attributes between the starting point and ending point should

exhibit a linear relationship, and the mastery of each attribute should require the

mastery of all the previous attributes.

The linear attribute hierarchy is the simplest hierarchy. For instance, in the

Mental Models Theory (MMT) of syllogistic reasoning (Leighton et al., 2004b), from

the construction of the initial model to the generation of a conclusion, there are usually

a series of steps involved. (1) interpret quantifiers according to the logical criteria

(A1); (2) create 1st unique representation of logical quantifiers (A2); (3) create 2nd

unique representation of logical quantifiers (A3) (premised on the 1st representation);

(4) create 3rd unique representation of logical quantifiers (A4) (premised on 2nd

representation); Without the mastering of A1, it is not possible to master the following

attributes (A2, A3, and A4). The hypothetical hierarchy with six attributes can be

illustrated in Figure 2.1.

2.3.2 Convergent Attribute Hierarchy

In the convergent attribute hierarchy, the examinee can master attribute 6 (A6)

by mastering either attribute 4 (A4), attribute 5 (A5), or both. It also is noted

that in order for examinees to master attribute 4 (A4) or 5 (A5), they must also

master attribute 1 (A1), attribute 2 (A2), and attribute 3 (A3). In other words, the

examinee can reach a given point from multiple paths. In the example illustrated by

the following figure, the examinee can reach attribute 6 (A6) either through attribute

4 (A4), attribute 5 (A5), or both.
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A1

A2

A3

A4

A5

A6

Figure 2.1: A linear hierarchy with 6 attributes

In this study, the convergent attribute hierarchies should satisfy the following

components:

Component 1 : For all the convergent attribute hierarchies, there will be a starting

point. This starting point will be represented as attribute one (A1).

Component 2 : For all the convergent attribute hierarchies, there will be a ending

point. This ending point will be represented as attribute N (AN), where N equals the

number of all possible attributes.

Component 3 : The convergence happens when at least two possible paths exist

in which one can reach a single point (the convergent attribute).

Component 4 : There should be at least one convergence in a particular hierarchy.

This convergent hierarchy can be used to describe the condition wherein different
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cognitive competencies lead to a single correct end state where the outcome is clear,

for example, a multiple choice test that measures the addition of fractions (Leighton

et al., 2004b). In order to solve 5
6

+ 7
9
, finding the common multiple is the key. This

can be done either by finding the lowest common multiple and using it as the new

denominator (A2) or by multiplying the denominator of each fraction and using the

multiply as the new denominator (A3). In the case of A2 the lowest common multiple

is 18, and we will have 15
18

+ 14
18

; In the case of A3, the multiplication of the denominator

of each fraction will result in 54 and we will have 45
54

+ 42
54

. Attribute 4 (A4) is defined

as the addition of the fraction. Either through A2, A3, or both, we will get the final

answer 29
18

. Here we can say that A2 and A3 converged into A4. The convergent

hierarchy with 6 attributes can be shown as follows:

A1

A2

A3

A5A4

A6

Figure 2.2: A convergent hierarchy with 6 attributes
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2.3.3 Divergent Attribute Hierarchy

In terms of the divergent attribute hierarchy, the examinees can master certain level

attributes without mastering some of the lower skill level attributes. For instance, the

examinee can master attribute 6 (A6) by mastering attribute 4 (A4) and attribute

1 (A1). A1 is the prerequisite of attribute 4 (A4). Similarly, the prerequisites for

attribute 5 (A5) are only attribute 1 (A1) and attribute 4 (A4).

In this study, the divergent attribute hierarchies are shown to be able to satisfy

the following components:

Component 1 : For all the divergent attribute hierarchies, there will be a starting

point. This starting point will be represented as attribute one (A1).

Component 2 : For all the divergent attribute hierarchies, there will be multiple

ending points.

Component 3 : The divergence happens when there are at least two possible paths

originating from a single point.

Component 4 : There should be at least one divergence within a particular hier-

archy.

The divergent attribute hierarchy normally is used when there is no absolutely

correct answer for an open-ended question and when all the answers taken together

can be described as the pool of possible solutions. For instance, students might be

asked the reasons that caused the first World War. There might not be an absolutely

correct answer, it can be explained from multiple perspectives such as territorial

causes, economic conflicts, or political factors. It also is interpreted as the entire

ordering of cognitive abilities that are necessary to correctly respond to the problems

within a specific domain (Leighton et al., 2004b). Thus there will be different paths

diverging from the same point. The divergent hierarchy can be illustrated as shown
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below.

A1

A3

A6

A2

A5A4

Figure 2.3: A divergent hierarchy with 6 attributes

2.3.4 Unstructured Attribute Hierarchy

In the unstructured attribute hierarchy, attribute 1 (A1) is considered the prerequi-

site for all the other attributes but there is no specific order among the rest of the

attributes. As long as the examinee possesses attribute 1 (A1), the examinee can

possess all the other attributes.

In this study, the unstructured attribute hierarchies are shown to be able to satisfy

the following components:

Component 1 : For all the unstructured attribute hierarchies, there will be a start-

ing point. This starting point will be represented as attribute one (A1).

Component 2 : For all the unstructured attribute hierarchies, there will be multiple

ending points.

Component 3: All other attributes require only A1 and they are not related with

each other .

This hierarchy can be used to describe the case in which many independent out-

comes can arise from a single cause. For instance, a low employment rate (A1) can
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cause a rise in the crime rate (A2), the building of a bridge (A3) and higher inflation

(A4). An example of an unstructured hierarchy is illustrated in Figure 2.4.

A1

A6A5A4A3A2

Figure 2.4: An unstructured hierarchy with 6 attributes

It is important to note that for the unstructured, divergent, and convergent at-

tribute hierarchies, there are many different combinations of mastering paths depend-

ing upon the number of attributes. In an assessment test there can be various types

of attribute hierarchies, and the number of attribute profiles will be different for each

assessment (Leighton et al., 2004b).

2.4 Methods for Estimating CDMs with Attribute

Hierarchy

The goal is to propose a specific hierarchical structure DINA model that will be able

to reduce the number of attribute profiles and make the estimation of parameters

and attribute profiles using CDM more efficient by use of the joint MLE and while

using the expectation-maximization (EM) algorithms. Gierl et al. (2007) introduced

a method (AHM) that utilized the skill hierarchies in the item development stage in

order to reduce the number of latent classes. Su (2013) used the EM algorithms in

the DINA model estimation conducted by de la Torre (2009) to estimate the item

parameters and latent classes. The details are as follows.
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The expected number of examinees with attribute profile αl can be calculated

from

Il =
N∑
i=1

p(αl|Xi) (2.11)

The prior p(αl) is the probability of attribute profile vector αl, and it can be

estimated as follows:

p(αl) =
Il
N

(2.12)

The expected number of examinees with the attribute profile αl getting item j

correct is as follows:

Rjl =
L∑
l=1

p(αl|Xi)Xij (2.13)

where p(αl|Xi)is the posterior probability that the student i has the attribute profile

αl and l is the number ranging from 1 to L, where L is the number of possible

attribute profiles. In the case of DINA, L= 2k, and in the case of DINA-HC, L is

equal to all possible attribute profiles pre-specified for each unique hierarchy.

R
(x)
j is the sum of Rjl, where l is in the range of 1 to L and can be expressed as

follows:

R
(x)
j =

∑
l:ηj(αl)=x

Rjl (2.14)
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I
(x)
j is the sum of Il and can be expressed as follows:

I
(x)
j =

∑
l:ηj(αl)=x

Il (2.15)

When x=0, we have the following guessing estimators:

ĝj =
R

(0)
j

I
(0)
j

(2.16)

When x=1, we have the following slipping estimators:

ŝj =
I
(1)
j −R

(1)
j

I
(1)
j

(2.17)

where I
(0)
j is the expected number of examinees lacking at least one of the required

attributes for item j. R
(0)
j is the expected number of examinees among I

(0)
j that

respond to item j correctly. I
(1)
j is the expected number of examinees that master the

required attributes for item j, and R
(1)
j is the expected number of examinees among

I
(1)
j that have not mastered the required attribute for item j. I

(0)
j +I

(1)
j = Il for all

items j.
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Chapter 3

Methods

This chapter has three sections. The first section introduces the proposed model,

the second section presents three research questions, and the third and final section

describes the data analysis.

3.1 The HIDINA Model with Attribute Hierarchy

Unlike DINA, the hierarchical DINA will utilize a particular attribute hierarchy to

pre-specify the attribute profiles. In the DINA model the number of maximum at-

tribute profiles will be A=2k, where k is the number of diagnosed attributes for a

given assessment. For instance, let us assume that the number of attributes k is 5,

and then the number of maximum attribute profiles A will be equal to 32. However,

in the HIDINA model the number of attribute profiles will be less because of the

constraints imposed by the specific attribute hierarchy. For instance, in the linear

attribute hierarchy the number of maximum attribute profiles is only six if there are

five attributes.

The attribute profile pattern is illustrated by means of the following table; note
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that there are only six attribute profile patterns (00000,10000,11000,11100,11110,11111).

Attribute Profile Pattern A1 A2 A3 A4 A5
1 0 0 0 0 0
2 1 0 0 0 0
3 1 1 0 0 0
4 1 1 1 0 0
5 1 1 1 1 0
6 1 1 1 1 1

Table 3.1: Linear hierarchy attribute profile pattern with 5 attributes

It is important to note that the number of maximum attribute profiles in the hier-

archical DINA model depends on the specific attribute hierarchy. Different attribute

hierarchies will result in different numbers of attribute profiles. The probability of

examinee i getting a correct response on a specific item j on a particular attribute

hierarchy is as follows:

Pj(constrained-αi) = P (Xij = 1|constrained-αi) = g
1−ξij
j (1− sj)ξij (3.1)

The ξ matrix is changed accordingly:

ξij =
n∏
k=1

α
qjk
ik (3.2)

where constrained-αi is the specific skills vector. Let the constrained-αi = αik be

the examinees’ binary skills vector. The mastery of particular skill k by examinee i

will be represented by 1 and non-mastery of the particular skill will be represented

by 0.
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3.2 The Use of Convergent Attribute Hierarchy

The study utilizes the convergent attribute hierarchy in this analysis to examine

the DINA-HC model. Studies related to divergent hierarchy can also be examined

in future research. The divergent attribute hierarchy describes the situation where

multiple paths originate from a single attribute, whereas the convergent attribute

hierarchy is the situation where an attribute is a requirement for certain other at-

tributes. In order to reach a certain level of skill attainment, there may be different

paths from the beginning to the end point. It’s important to note that the convergent

hierarchy has never before been studied with DINA.

It is worth mentioning that for the linear attribute hierarchy, each upper level

attribute requires the mastery of the previous lower level attribute. If attribute A1

is not present in a particular hierarchy, then all the ensuing attributes will not be

mastered by the examinee either. This is the most ideal situation to detect the exact

attribute that students do not possess when responding to an item incorrectly. The

divergent hierarchy can be used to describe a situation where the answer can consist

of multiple components (Leighton et al., 2004b); For instance, for a test item that

seeks the reasons for certain events, it will be possible to propose a few reasons that

cause certain events. Both convergent and divergent hierarchies have many possible

hierarchical structures depending on the specific relationship among the attributes as

well as the number of attributes. The unstructured attribute hierarchy refers to the

case in which a single attribute can lead to multiple other attributes and when there

is no dependent relationship among those attributes. The unstructured attribute

hierarchy has the highest number of possible attribute profile patterns as compared

to the other three hierarchical structures, under the same condition in which the

number of attributes is constant.
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Specifically, for a particular attribute hierarchy, the linear attribute hierarchy

is usually considered to be the most limited of the four types of hierarchies. It

also has the minimum number of attribute profiles, and thus it is considered as the

simplest hierarchy to fit the model. The unstructured attribute hierarchy is the

least constrained among the four types of hierarchies, so it has the largest number of

attribute profiles among the four hierarchies under the condition whereby the number

of attributes is the same. Both the linear and the unstructured hierarchies have been

studied and evaluated against the DINA model by Su (2013).

In the study, the convergent attribute hierarchy can be used to describe the situ-

ation that will result in a single correct end point; for instance, a multiple choice test

that measures the subtraction of fractions (Leighton et al., 2004b). The following

table illustrates a convergent attribute hierarchy with five attributes:

Attribute Profile Pattern A1 A2 A3 A4 A5
1 0 0 0 0 0
2 1 0 0 0 0
3 1 1 0 0 0
4 1 1 1 0 0
5 1 1 0 1 0
6 1 1 1 0 1
7 1 1 0 1 1
8 1 1 1 1 1

Table 3.2: Convergent hierarchy attribute profile pattern with 5 attributes

In this case of a convergent attribute hierarchy with five attributes, the mastery

of attribute four can be achieved by mastering either attribute 2 or 3. The number of

possible attribute profiles for this specific convergent attribute hierarchy is eight and

is listed as follows, where the class profiles are 00000, 10000, 11000, 11100, 11010,

11101, 11011, and 11111.
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3.3 The Research Questions

The research goal is to compare and contrast the performance of the DINA-HC model

in relation to the DINA model when the attributes are independent or hierarchically

ordered.

In order to achieve this goal, the following questions are addressed.

1. How does the DINA-HC compare with DINA in terms of the model fit under

different conditions?

2. How do the item parameter estimates (guessing and slipping) for DINA-HC

and DINA compare under different conditions?

3. How does the attribute pattern classification accuracy compare between DINA-

HC and DINA under different conditions?

The evaluation criteria are discussed in the following section. A “parameter recov-

ery” study (French & Dodd, 1998) is carried out, because it is necessary to calibrate

the data under different conditions (e.g., number of attributes, number of items, es-

timating model, and sample size). The CDM parameters from the calibration are

compared to the known parameters that were originally generated. If they are close

enough, this indicates that they recover the true parameters and that thus the esti-

mation is accurate.

3.4 The Simulation Study

3.4.1 The Simulation Design

The simulation has a 4-factor design for both the hierarchical and the non-hierarchical

attributes. Thus it has a 3 (sample size) × 2 (estimating model) × 3 (number of

attributes) × 2 (number of test items) design.
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Factor One: Sample sizes are set at 500, 2000 and 5000. The sample size values

usually are 500 for the small size, and 10000 for a large size in a given assessment

(Rupp & Templin, 2008b). It is useful to examine DINA-HC under the most com-

monly used sample size conditions as well as under small size conditions. There is no

specific requirement for the choice of sample size, so it is reasonable to choose 500

for the small sample size, 2000 for the medium sample size, and 5000 for the large

sample size.

Factor Two: The estimating models are set as DINA and DINA-HC with 4, 6, and

7 attribute hierarchies as shown in Figure 3.1. The comparison is between DINA-HC

and the DINA model.

Factor Three: The number of attributes are set as 4, 6, and 7. It has been noted

that most application examples in the various studies of CDMs use 4 to 8 attributes

(Rupp & Templin, 2008a). Nevertheless there is no specific requirement for number

of attributes. A particular convergent hierarchy with 4 attributes will result in 8

attribute profiles as compared to 16 for the constrained hierarchy. The attribute

profile for a particular convergent hierarchy having 6 attributes is 10, as compared to

64 for the unconstrained hierarchy and the attribute profile for a particular convergent

hierarchy having 7 attributes is 26 as compared to 128 for the unconstrained hierarchy,

all of which may be seen in Figure 3.1. The differences are large enough that the

complexity will increase dramatically as the number of attributes increases.
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A1

A2

A3

A5A4

A6

A1

A3A2

A4

A1

A3

A4

A6A5

A2

A7

Figure 3.1: Convergent hierarchies with 6, 4, and 7 attributes

The number of attribute profiles are 8, 10, and 26 for the 4, 6, and 7 attributes

respectively. Taking the convergent attribute hierarchy with 4 attributes as our ex-
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ample, the attribute profile patterns break down thus:

Attribute Profile Pattern A1 A2 A3 A4
1 0 0 0 0
2 1 0 0 0
3 1 1 0 0
4 1 0 1 0
5 1 1 1 0
6 1 1 0 1
7 1 0 1 1
8 1 1 1 1

Table 3.3: Possible attribute profiles for 4 attributes

Factor Four : In terms of number of items, there are 20 items and 40 items. The

fraction subtraction data of K. K. Tatsuoka (1990) is one of the most widely analyzed

CDM datasets. De la Torre (2008, 2009b) suggested using either 15 or 30 items of

the fraction subtraction data, while DeCarlo (2011) uses the full set of 20 items to

carry out his study. It would be reasonable to choose 20 and 40 for the test length.

The simulated Q-matrices with 20 and 40 items can be seen in the appendix.

Before the simulation, CDMs require the establishment of the fixed relationships

between attributes and items, so specification of the Q-matrices will be necessary. For

the details of the Q-matrices, see the appendix. The default values of both guessing

and slipping parameters are set at 0.2, so it would be reasonable to simulate a value

close to the default value; in this case, the parameter values are sampled from a

uniform distribution on the interval [0.05, 0.35]. The number of possible attribute

profiles will no longer be 2K ; instead, it will be pre-specified based on the specific

attribute hierarchy.
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3.4.2 The Estimating Method

The goal of this simulation study is to examine whether the estimating model fits the

simulated data under different conditions.The R package (Team, 2012) was employed

to fit the model by using the EM-algorithm to estimate the guessing and slipping pa-

rameters. The package “CDM” (Robitzsch et al., 2014) was used. The EM-algorithm

procedures based on de la Torre (2009) were followed.

If the skill vectors are known, then it is straightforward to estimate the model

parameters. However, the skill vectors are normally not known, and using the joint

MLE can lead to an inconsistent estimation (de la Torre, 2009a).

In the DINA model, Xij is the response of student i on the item j. Let α1, α2,...

αL denote the allowable attribute patterns in the skill space defined by the specific

hierarchy, where L is the number of possible attribute profiles. Taking the convergent

attribute hierarchy with the number of 6 attributes based on Figure 2.2 in Chapter

2, we have all the attribute profiles:

Attribute Profile Pattern A1 A2 A3 A4 A5 A6
1 0 0 0 0 0 0
2 1 0 0 0 0 0
3 1 1 0 0 0 0
4 1 1 1 0 0 0
5 1 1 1 1 0 0
6 1 1 1 0 1 0
7 1 1 1 1 1 0
8 1 1 1 1 0 1
9 1 1 1 0 1 1
10 1 1 1 1 1 1

Table 3.4: Possible attribute profiles for 6 attributes

Assuming the observed data X and the attribute profiles α, and that the α will
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be the only difference as compared to the procedures utilized by de la Torre (2009),

the Marginalized Maximum Likelihood for the response vector of student i can be

expressed as:

Likelihood(X) =
I∏
i=1

Likelihood(Xi) =
I∏
i=1

L∑
l=1

Likelihood(Xi|αl)p(αl) (3.3)

where p(αl)is the prior probability for the constrained αl. A guessing and slipping

parameter estimation based on the marginalized likelihood can be implemented by

using the EM algorithm from section 2.4. Instead of taking the weighted sum of

conditional likelihood across all 2K attribute profiles (de la Torre, 2009b), only the

allowable attribute profiles l were used, where l is much smaller than 2K and depends

on the particular attribute hierarchy. The parameter estimation used here is exactly

the same as the EM algorithm used by de la Torre (2009), except for the constrained

αl.

3.4.3 The Evaluation Methods and Parameter Recovery

In order to address Research Question 1, model fit was checked to see if the two

different models fit the different simulated data sets. The model fit can be assessed

by using information criteria such as Akaike Information criteria (AIC)(Akaike, 1974)

and Bayesian Information criteria (BIC) (Schwarz et al., 1978). The information

criteria were defined as follows:

AIC = −2 ln(l) + 2d (3.4)

BIC = −2 ln(l) + d ln(n) (3.5)
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where l is the maximized likelihood value for the estimated model, d is the number

of estimable parameters in the model, and n is the sample size.

The model with a lower value of AIC will be preferred. Similarly, the model with

a lower BIC will be preferred, and BIC will penalize free parameters more strongly

than does the AIC (Shepherd, 2005). Over the replications, the proportion that each

criterion correctly identifies the correct model was calculated.

In order to address Research Question 2, item fit statistics were calculated and

compared between the DINA-HC approach and the DINA model.

The bias was used as a measure to evaluate item parameter fit. It is considered to

be the difference between the estimator’s true value and the estimated value across

replications and is expressed as follows.

For the guessing parameter:

Bias(g) =

∑R
i=1 (ĝi − g)

R
(3.6)

where ĝj is the estimate of the guessing parameter, g is the given true guessing

parameter, and R is the number of replications equal to 100 in this case.

For the slipping parameter:

Bias(s) =

∑R
i=1 (ŝi − s)

R
(3.7)

where ŝj is the estimate of the guessing parameter and s is the given true guessing

parameter.

The biases for both the guessing and the slipping parameters of the items are

calculated over replications for all possible conditions. The smaller values for the

bias of the item parameter estimates indicate more accurate parameter estimates.
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The values of bias for both the guessing and the slipping parameters of all the items

were compared between the DINA-HC approach and the DINA model under different

conditions.

The root mean square error (RMSE) is a measure of precision. It has been used

as a standard statistics metric to measure model performance (Chai & Draxler, 2014)

and it is defined as follows:

For the guessing parameter:

RMSE(g) =

√∑R
i=1 (ĝi − g)2

R
(3.8)

For the slipping parameter:

RMSE(s) =

√∑R
i=1 (ŝi − s)2

R
(3.9)

The RMSE is considered a quadratic scoring guide to measure the average mag-

nitude of the error. It is used to evaluate the models by summarizing the differences

between estimated and true values.

The Absolute Bias Error (ABE) is a measure of bias variation over all possible

items J . It provides a single value as an indicator of item fit. It is used as an

alternative to the Mean Square Error (MSE), because the absolute value will be

larger than the square value when the bias is between 0 and 1. The ABE also will be

easier to present in a graph and it is defined as follows.

For the guessing parameter:

ABE(g) =

∑J
j=1(

∑R
i=1|ĝij−g|

R
)

J
(3.10)
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For the slipping parameter:

ABE(s) =

∑J
j=1(

∑R
i=1|ŝij−s|

R
)

J
(3.11)

In order to address Research Question 3, the attribute profiles classification ac-

curacy values were calculated and compared between the DINA-HC and the DINA

model under different conditions. The generated attribute profiles were matched

with the estimated attribute profiles. A larger value of classification accuracy means

a better model choice.

3.5 Application to Real Data

In addition to the simulation study, it is important to fit the hierarchical DINA to

real data and to compare the performance of the two models. The simulated data

have great advantages, such as that the generating values (true values) are known and

the model complexity can be controlled. The simulated data are artificial, however,

so the impact of model assumptions on model data fit can be investigated only under

ideal situation. It can be useful to examine the hierarchical model using real data.

The model fit and item fit were compared between the hierarchical DINA with linear

hierarchy (DINA-HL) and the DINA model.

3.5.1 The ECPE Data

The Examination for Certificate of Proficiency in English (ECPE) is a test that was

developed and scored by the English Language Institute of the University of Michigan

and was introduced by Templin and Hoffman (2013) as a tutorial to specify CDMs

in Mplus. Administered and scored on a yearly basis, the test is used to measure
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the advanced English skills of those whose native language is not English. A dataset

of 2922 students from a single year’s administration was used to analyze a 2003 to

2004 dataset that consists only of a grammar section. The average age of the ex-

aminees was 23 years old. Half of the examinees first language is Portuguese (Liu

et al., 2009). Three grammar attributes, knowledge of morphosyntactic rules, co-

hesive rules, and lexical rules, are measured by the ECPE dataset (Templin, 2006).

There are 28 ECPE items that represent the three attributes. A Q-matrix has already

been proposed (Buck & Tatsuoka, 1998) and is applied to this study. The 28 items

were used to measure the three attributes. There are eight items that measure only

one attribute, seven items that measure only two attributes, and zero items measure

all three attributes. There are 13 items that measure attribute one, that 6 attributes

that measure attribute two, and 8 items that measure attribute three. An example

of item (Liu et al., 2009) is as follows:

Which of the following is correct?

- I have always ( ) snow.

A); to enjoy

B); enjoyed

C); enjoying

D); to enjoyed

The ECPE data is a linear attribute hierarchical dataset (Templin & Bradshaw,

2014), so the examinees have to master each attribute before proceeding to the next

higher level of attribute. In this particular case lexical rules are supposed to be mas-

tered first, followed by mastery of the cohesive rules; the highest level of attribute is

the morphosyntactic rules. In the ECPE example, the three attributes would result
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in 8 attribute profiles (23), but since it is a linear attribute hierarchy, there are 4

possible mastery profiles:

Profiles Morphosyntactic Rules Cohesive Rules Lexical Rules

Profile 1 0 0 0
Profile 2 0 0 1
Profile 3 0 1 1
Profile 4 1 1 1

Table 3.5: The attribute profiles for the ECPE data

Both the DINA-HL and DINA models were used to fit the ECPE data. The Model

fit and item fit were compared. The Q-matrix describes the mastery status of the

attributes by the items. In the case of the ECPE data, there are three attributes

(lexical rules, cohesive rules, & morphosyntactic rules) and 28 items in the Q-matrix.

The Q-matrix of the ECPE data is shown on the next page.
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Item Morphosyntactic Rules Cohesive Rules Lexical Rules

Item 1 1 1 0
Item 2 0 1 0
Item 3 1 0 1
Item 4 0 0 1
Item 5 0 0 1
Item 6 0 0 1
Item 7 1 0 1
Item 8 0 1 0
Item 9 0 0 1
Item 10 1 0 0
Item 11 1 0 1
Item 12 1 0 1
Item 13 1 0 0
Item 14 1 0 0
Item 15 0 0 1
Item 16 1 0 1
Item 17 0 1 1
Item 18 0 0 1
Item 19 0 0 1
Item 20 1 0 1
Item 21 1 0 1
Item 22 0 0 1
Item 23 0 1 0
Item 24 0 1 0
Item 25 1 0 0
Item 26 0 0 1
Item 27 1 0 0
Item 28 0 0 1

Table 3.6: The ECPE Q-matrix
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3.6 Summary of the Methods

This chapter has explained the proposed approach using mathematical equations to

analyze all hierarchical attributes data. The central idea is to use a specific hierarchy

to pre-specify the attribute profiles; thus the number of maximum attribute profiles

was greatly reduced and more accurate parameter estimates were obtained. This

simulation study uses the convergent attribute hierarchy as one of the four types of

attribute hierarchies as it seeks to examine the DINA-HC. This can be an important

addition to the existing study. The convergent attribute hierarchy has been chosen

because it is not the simplest hierarchy and it has never been studied. The primary

goal of this study is to compare the DINA-HC to the DINA model when the at-

tributes are hierarchical. The secondary goal is to compare the the DINA-HC and

the DINA model when the attributes are non-hierarchical. Both a simulation study

and real data study were used to understand the differences between hierarchical

DINA and DINA. The simulation study has a four-factor design (estimating model,

number of attributes, sample size, and number of test items) for both hierarchical

and non-hierarchical data, and it was studied by using the Expectation Maximiza-

tion algorithm. The model fit, item fit, and attribute profiles classification accuracy

were used as evaluation criteria to examine the performance of the DINA-HC and

DINA model under different conditions.
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Chapter 4

Results

4.1 Simulation Study Results

This chapter presents the simulation study results. There are a total of 36 conditions

for the hierarchical attributes data and non-hierarchical data. The estimation was

replicated 100 times. The DINA with the convergent attribute hierarchy (DINA-HC)

was compared with the DINA model.

4.1.1 Model Fit for Hierarchical Data

In terms of model fit for the hierarchical attributes using the DINA-HC and DINA

model, the average value of AIC and BIC over 100 replications was calculated. BIC

tends to penalize parameters more than AIC does, but both criteria were used as the

measure of model fit. The number of parameters for each condition is listed in Table

4.1.

AIC and BIC correctly selected the DINA-HC over the DINA in 100% of the

replications across all conditions. This indicates that DINA-HC should be preferred

when the attributes are convergent. The average values of AIC and BIC over 100
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replications for the DINA-HC model are smaller than the DINA model for all condi-

tions according to Table 4.2 and 4.3 and smaller values indicate better model fit, so

the DINA-HC model has better model fit than the DINA model when the attribute

hierarchy is convergent. Table 4.2 and 4.3 summarize all 36 conditions with both the

AIC and BIC values.

DINA DINA-HC DINA DINA-HC
J=20 J=40 J=20 J=40

K=4 55 95 47 87
K=6 103 143 49 89
K=7 167 207 65 105

Table 4.1: Number of parameters for each condition

Model Fit (AIC)
DINA-HC DINA DINA-HC DINA DINA-HC DINA

K=4 K=4 K=6 K=6 K=7 K=7

N=500
J=20 10526 10540 11926 12018 12229 12410
J=40 21376 21390 21165 21266 22258 22449

N=2000
J=20 44746 44760 46131 46225 48735 48916
J=40 85711 85725 84150 84248 89402 89591

N=5000
J=20 107445 107459 114312 114415 113381 113566
J=40 219874 219889 207517 207619 216386 216574

Table 4.2: Model fit (AIC) for all conditions: hierarchical data

Model Fit (BIC)
DINA-HC DINA DINA-HC DINA DINA-HC DINA

K=4 K=4 K=6 K=6 K=7 K=7

N=500
J=20 10725 10772 12133 12452 12503 13114
J=40 21743 21791 21540 21868 22701 23321

N=2000
J=20 45009 45068 46405 46802 49099 49851
J=40 86198 86257 84648 85049 89990 90750

N=5000
J=20 107751 107817 114631 115086 113805 114654
J=40 220441 220508 208097 208551 217070 217923

Table 4.3: Model fit (BIC) for all conditions: hierarchical data
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4.1.2 Model Fit for Non-hierarchical Data

In terms of model fit for the DINA-HC and DINA model for attributes that are

not dependent on each other, the average value of AIC and BIC over 100 replica-

tions is calculated. Similarly, AIC and BIC correctly selected the DINA-HC over the

DINA in 100% of the replications across all conditions., except that the condition

of 7 attributes, 500 sample size, and 20 items favors the DINA-HC model in all 100

replications.

The average values of AIC and BIC over 100 replications for DINA are smaller

than the DINA-HC model for all conditions except the condition of 7 attributes, 500

sample size, and 20 items according to Table 4.4 and 4.5, and smaller values indicate

better model fit. The DINA model performs better than the DINA-HC model when

the attributes are non-hierarchical. Table 4.4 and 4.5 summarize all 36 conditions

along with the AIC and BIC values.

Model Fit (AIC)
DINA-HC DINA DINA-HC DINA DINA-HC DINA

K=4 K=4 K=6 K=6 K=7 K=7

N=500
J=20 12260 11973 50073 48941 12638 12529
J=40 23160 21892 24219 22560 24213 22937

N=2000
J=20 48912 47756 50073 48941 50391 49581
J=40 92458 87239 96657 89847 96602 91202

N=5000
J=20 122253 119296 125084 122193 125912 123712
J=40 231019 217962 241583 224598 241287 227622

Table 4.4: Model fit (AIC) for all conditions: non-hierarchical attributes
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Model Fit (BIC)
DINA-HC DINA DINA-HC DINA DINA-HC DINA

K=4 K=4 K=6 K=6 K=7 K=7

N=500
J=20 12458 12205 50347 49518 12912 13233
J=40 23527 22292 24594 23163 24656 23809

N=2000
J=20 49175 48064 50347 49518 50756 50516
J=40 92945 87771 97156 90648 97190 92361

N=5000
J=20 122560 119655 125404 122864 126336 124800
J=40 231586 218581 242163 225530 241972 228971

Table 4.5: Model fit (BIC) for all conditions: non-hierarchical attributes

4.1.3 Parameter Estimates

For both the guessing and the slipping parameters, the 108000 bias values based on

all the items from 100 replications under 36 conditions are calculated. An ANOVA

test is conducted to investigate the performance of four factors (test length, number

of attributes, sample size, and estimating model) on the bias and absolute bias under

all conditions. The results show that the DINA-HC model provides smaller bias

and absolute bias error for the slipping parameter estimates than does the DINA

model. In terms of the guessing parameter, the DINA-HC and DINA model also are

significantly different.

Guessing Parameter

Specifically, for the guessing parameter, in terms of the main effects, the results

show that the sample size is the only significant effect on the bias at 0.05 level. The

main effect of the sample size on the bias is statistically significant, given that (F(2,

107980)=11.88, p<0.001). The main effect of the test lengths on the bias is not

statistically significant, given that (F(1, 107980)=1.12, p=0.290). The main effect of

the number of attributes on the bias is not statistically significant such that (F(2,

107980)=0.73, p=0.482). The main effect of the estimating model on the bias is not
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statistically significant, given that (F(1, 107980)=2.62, p=0.106).

In terms of the interaction effects, there was significant interaction between the

sample size and test lengths, (F(2, 107980)=12.53, p<0.001). There was an significant

interaction between the number of attributes and sample size, (F(4, 107980)=3.59,

p<0.001). There was a significant interaction between the number of attributes and

the estimating model, F(2, 107980)=7.66, p<0.001). There was no significant in-

teraction between the estimation model and the sample size, (F(2, 107980)=2.30,

p=0.101). There was no significant interaction between the test lengths and the

number of attributes, (F(2, 107980)=2.13, p=0.119). There was no significant in-

teraction between the test lengths and the estimation model, (F(1, 107980)=0.02,

p=0.886).

A Tukey post hoc test was conducted to further investigate the differences among

the conditions and to compare the three different sample sizes for the main effect.

The results show that the sample sizes 2000 and 500 differ significantly with adjusted

p<0.001; sample sizes 5000 and 2000 differ significantly with adjusted p=0.020; sam-

ple size 5000 is not significantly different from sample size 500 with adjusted p=0.072.

All other comparisons were not significant at the 0.05 level of significance.

The absolute bias makes more sense in this case, because the bias can be positive

or negative. An ANOVA test also was conducted to examine the effects of four factors

on absolute bias. The results are presented in Table 4.6.

The main and interaction effects of the four factors on the absolute bias are all

statistically significant. Specifically, the main effect of the estimating model on the

absolute bias is statistically significant such that (F(1, 107980)=284.51, p<0.001).

There was a significant interaction between the sample size and the estimation model,

(F(2, 107980)=8.53, p<0.001). There was a significant interaction between the test

lengths and the estimation model, (F(1, 107980)=391.75, p<0.001). There was a
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Df Sum Sq Mean Sq F value Pr(>F)
SampleSize 2 6.44 3.219 5462.745 <.001
TestLength 1 0.66 0,656 1113.056 <.001
NumOfAtt 2 0.79 0.395 670.801 <.001
EstModel 1 0.17 0.168 284.507 <.001
SampleSize:TestLength 2 0.02 0.011 19.407 <.001
SampleSize:NumOfAtt 4 0.25 0.062 104.760 <.001
SampleSize:EstModel 2 0.01 0.005 8.533 <.001
TestLength:NumOfAtt 2 0.28 0.138 234.848 <.001
TestLength:EstModel 1 0.23 0.231 391.747 <.001
NumOfAtt:EstModel 2 0.08 0.038 64.214 <.001
Residuals 107980 63.62 0.001

Table 4.6: ANOVA Table of Absolute Bias for Guessing Parameter

significant interaction between the number of attributes and the estimation model,

(F(2, 107980)=64.21, p<0.001).

Taken together, these results suggest that the two different estimation models

(DINA-HC and DINA), the number of attributes, and the test lengths have no effect

on the bias value for the guessing parameter. However, the sample size does have

an effect on the bias value. All four factors, including the estimation model, have an

effect on the absolute bias value of the guessing parameter. The Tukey post hoc test

shows that the DINA-HC model differed significantly from the DINA model at 0.05

level of significance; all other comparisons were significant. The DINA-HC model

provides smaller absolute bias than does the DINA model.

Slipping Parameter

Similarly, for the slipping parameter, an ANOVA test was conducted on the bias

and the absolute bias to examine the effects of all four factors.

In terms of the main effects, there are statistically significant differences of all

four factors on the bias at the 0.05 level of significance, with the sample size (F(2,

107993)=19.59, p<0.001), test length (F(1, 107993)=11.81, p=0.001), number of at-
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tributes (F(2, 107993)=3.92, p=0.020), and estimating model (F(1, 107993)=5.75,

p=0.016) respectively.

In terms of the interaction effects, there was a significant interaction between the

sample size and test length: (F(2, 107980)=22.14, p<0.001). There was a significant

interaction between the number of attributes and sample size: (F(4, 107980)=3.45,

p=0.008). There was a significant interaction between the number of attributes and

the estimating model: (F(2, 107980)=3.12, p=0.044). There was a significant in-

teraction between the estimation model and the sample size: (F(2, 107980)=6.65,

p=0.001). There was a significant interaction between test length and number of at-

tributes: (F(2, 107980)=13.89, p<0.001). There was a significant interaction between

test length and the estimation model: (F(1, 107980)=4.83, p=0.028).

A Tukey post hoc test was conducted to further investigate the difference among

the conditions, and the results show that the DINA-HC model differed significantly

from the DINA model at a 0.05 level of significance; the number of attributes 4 and

7 differed significantly with adjusted p = 0.030. However the number of attributes

4 and 6, 6 and 7 did not significantly differ, with adjusted p=0.964 and p=0.578

respectively. Most of the interaction comparisons were not significant.

Use of the absolute bias makes more sense here, because the bias will be trans-

formed into a positive absolute value. An ANOVA test also was conducted to examine

the effects of four factors on the absolute bias. The results are presented in Table 4.7.

The main and interaction effects of the four factors on the absolute bias are all

statistically significant. Specifically, the main effect of the estimating model on the

absolute bias is statistically significant, such that (F(1, 107980)=7.69, p=0.006). At

the 0.05 level of significance there was a significant interaction between the sample

size and the estimation model: (F(2, 107980)=3.54, p=0.029). There was a signifi-

cant interaction between test length and the estimation model: (F(1, 107980)=10.74,
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Df Sum Sq Mean Sq F value Pr(>F)
SampleSize 2 5.39 2.694 14284.22 <.001
TestLength 1 0.12 0.120 636.76 <.001
NumOfAtt 2 0.01 0.007 37.68 <.001
EstModel 1 0.00 0.001 7.69 0.0056
SampleSize:TestLength 2 0.06 0.031 162.84 <.001
SampleSize:NumOfAtt 4 0.01 0.003 17.32 <.001
SampleSize:EstModel 2 0.00 0.001 3.54 0.0289
TestLength:NumOfAtt 2 0.06 0.028 146.72 <.001
TestLength:EstModel 1 0.00 0.002 10.74 0.0010
NumOfAtt:EstModel 2 0.00 0.001 4.09 0.0167
Residuals 107980 20.36 0.000

Table 4.7: ANOVA Table of Absolute Bias for Slipping Parameter

p=0.001). There was a significant interaction between number of attributes and the

estimation model: (F(2, 107980)=4.09, p=0.017).

Taken together, these results suggest that the two different estimation models

(DINA-HC and DINA), the sample size, the number of attributes, and the test lengths

have effects on the bias value for the slipping parameter. All four factors, including

the estimation model, have their effects on the absolute bias value for the slipping

parameter. The Tukey post hoc test shows that the DINA-HC model differed signifi-

cantly from the DINA model, with an adjusted p=0.006; all other comparisons were

significant. The DINA-HC model provides smaller absolute bias than does the DINA

model.

To summarize: the DINA-HC model provides smaller absolute bias value than

does the DINA model for both the guessing and the slipping parameters. As the

sample size increases, the absolute bias decreases; as the test length increases from

20 to 40, the absolute bias decreases; as the number of attributes increases from 4

to 6, the absolute bias decreases, the number of attributes increases from 6 to 7,

the absolute bias increases. When switching from the DINA model to the DINA-HC
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model, the absolute bias will decrease as well.

Absolute Bias Error

Another important measure used to examine the DINA-HC model over the DINA

model is the Absolute Bias Error (ABE). This is an alternative to the Mean Square

Error (MSE). The absolute bias error over all the items for guessing parameter and

under all conditions is calculated, summarized and plotted in the ensuing sections.

ABE for guessing parameter when J=20

In terms of the absolute bias error over 20 items for the guessing parameter as

shown in Figure 4.1, the vertical axis value is set between 0 and 0.025. The horizontal

axis represents the three sample sizes 500, 2000, and 5000) in an ascending order. It is

clear that the DINA-HC model has smaller ABE than does the DINA model for K=4,

K=6, and K=7. It seems that as the number of attributes increases, the absolute

bias error increases as well. It also seems that the bias over all items increases as the

sample size decreases for the DINA-HC model. It seems there is, however, a specific

pattern for the DINA model.

Absolute Bias Error
K=4 K=6 K=7

N=500
DINA-HC 0.00116 0.00464 0.00425

DINA 0.00244 0.01457 0.02131

N=2000
DINA-HC 0.00114 0.00566 0.00406

DINA 0.00222 0.01965 0.00869

N=5000
DINA-HC 0.00094 0.00215 0.00296

DINA 0.00128 0.01576 0.00933

Table 4.8: Absolute bias error value of guessing parameter for J=20

ABE for guessing parameter when J=40

In terms of the absolute bias error over 40 items for the guessing parameter as
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seen in Figure 4.1, the vertical axis value is set between 0 and 0.006. The horizontal

axis represents the three sample sizes 500, 2000, and 50 in an ascending order. It also

is clear that the DINA-HC model has smaller ABE than does the DINA model for

K=4, K=6, and K=7. The absolute bias error for K=4 is the smallest in this case,

but the absolute bias errors for K=6 and K=7 are not very different. It also seems

that the bias over all items increases as the sample size decreases. As the number of

items increases, the bias for the guessing parameter decreases.

Absolute Bias Error
K=4 K=6 K=7

N=500
DINA-HC 0.00251 0.00314 0.00286

DINA 0.00221 0.00455 0.00573

N=2000
DINA-HC 0.00099 0.00112 0.00137

DINA 0.00114 0.00178 0.00237

N=5000
DINA-HC 0.00059 0.00124 0.00082

DINA 0.00070 0.00182 0.00135

Table 4.9: Absolute bias error value of guessing parameter for J=40

ABE for slipping parameter when J=20

In terms of the absolute bias error over 20 items for the slipping parameter as

seen in Figure 4.2, the vertical axis value are is between 0 and 0.012. The slipping

parameter has a smaller ABE than the guessing parameter in general. The horizontal

axis represents the three sample sizes 500, 2000, and 5000 in an ascending order. It

also is clear that the DINA-HC model has a smaller bias than does the DINA model

for K=4, K=6, and K=7. The absolute bias error will increase as the number of at-

tributes increases for both models. It also seems that the bias over all items decreases

as the sample size increases.
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Absolute Bias Error
K=4 K=6 K=7

N=500
DINA-HC 0.00278 0.00217 0.00401

DINA 0.00288 0.00355 0.01098

N=2000
DINA-HC 0.00123 0.00121 0.00186

DINA 0.00131 0.00156 0.00319

N=5000
DINA-HC 0.00079 0.00085 0.00081

DINA 0.00074 0.00197 0.00189

Table 4.10: Absolute bias error value of slipping parameter for J=20

ABE for slipping parameter when J=40

In terms of the absolute bias error over 40 items for the slipping parameter as seen

in Figure 4.2, the vertical axis value is set between 0.0005 and 0.0025. The slipping

parameter has a much smaller ABE than does the guessing parameter in this case,

as compared to the absolute bias error over 20 items. The horizontal axis represents

the three sample sizes 500, 2000, and 5000 in an ascending order. It seems that the

DINA-HC model has a smaller bias than does the DINA model for K=4, K=6, and

K=7. For the DINA model, the absolute bias error will increase as the number of

attributes increases; for the DINA-HC model, there is no clear pattern. It also is

clear that the bias over all items increases as the sample size decreases.

Absolute Bias Error
K=4 K=6 K=7

N=500
DINA-HC 0.00204 0.00213 0.00197

DINA 0.00196 0.00212 0.00241

N=2000
DINA-HC 0.00145 0.00114 0.00114

DINA 0.00149 0.00115 0.00126

N=5000
DINA-HC 0.00072 0.00070 0.00067

DINA 0.00073 0.00076 0.00080

Table 4.11: Absolute bias error value of slipping parameter for J=40
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Figure 4.1: Absolute bias error for the guessing parameter

Both Figure 4.1 and 4.2 consist of two sub-figures that are plotting the absolute

error values over all the items. These figures are presented in the same page for the

convenience of comparing the two.

To summarize: for the ABE, for the guessing parameter, the condition of 5000

sample size, 4 attributes, and 40 items when estimated by the DINA-HC model has

the lowest absolute bias error value, 0.00059. The condition of 500 sample size, 7

attributes, and 20 items when estimated by the DINA model has the largest absolute

bias error value, 0.0213086. For the slipping parameter, the condition of 5000 sample

size, 7 attributes, and 40 items when estimated by the DINA-HC has the lowest

absolute bias error value, 0.00067, and the condition of 500 sample size, 7 attributes,

and 20 items when estimated by the DINA model has the largest absolute bias error

value, 0.01098.

In general, the DINA-HC model has a smaller absolute bias error for the param-
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Figure 4.2: Absolute bias error for the slipping parameter

eters than does the DINA model. For the DINA-HC model, the bias will increase

as the sample size decreases, thus sample size matters when it comes to the bias;

also, the larger the sample size, the smaller the absolute bias error. As the number

of attributes increases from 4 to 7, the absolute bias error will decrease. Also, the

number of items has an effect on the absolute bias error: it will decrease as the num-

ber of items increase from J=20 to J=40. For the DINA model, the absolute bias

error is always larger than it is for the DINA-HC model. The absolute bias error will

increase as the sample size increases. The absolute bias error increases as the number

of attributes increases and number of items decreases, so they both have effects on

the value of absolute bias error. The absolute bias error for the slipping parameter

normally is smaller than the guessing parameter.

To summarize: for the parameter estimates, the DINA-HC should be preferred

over the DINA model when the attributes are convergent for the following reasons:
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the absolute bias value is smaller for both the guessing and the slipping parameter;

the DINA-HC model has a smaller ABE than does the DINA model for both the

guessing and the slipping parameters.

4.1.4 The Classification Accuracy

An ANOVA test is conducted to investigate the performance of four factors (number

of items, number of attributes, sample size, and the estimating model) in the relation

to classification accuracy under all conditions. The results are presented in Table

4.12.

Df Sum Sq Mean Sq F value Pr(>F)
NumOfAtt 2 25.14 12.57 29344.6 <.001
TestLength 1 24.76 24.76 57804.5 <.001
SampleSize 2 0.24 0.12 281.7 <.001
EstModel 1 13.73 13.73 32037.7 <.001
NumOfAtt:TestLength 2 5.33 2.66 6216.6 <.001
NumOfAtt:SampleSize 4 0.75 0.19 436.6 <.001
NumOfAtt:EstModel 2 2.03 1.02 2374.9 <.001
TestLength:SampleSize 2 0.22 0.11 255.8 <.001
TestLength:EstModel 1 0.79 0.79 1842.0 <.001
SampleSize:EstModel 2 0.01 0.01 14.6 <.001
Residuals 3580 20.36 0.000

Table 4.12: ANOVA Table of Classification Accuracy

In terms of the main effects, the results show that there are significant effects of

four factors on the classification accuracy rate at a 0.05 level. The main effect of

the number of attributes on classification accuracy is statistically significant, such

that as the number of attributes increase, the classification accuracy decreases: (F(2,

3580)=29344.6, p<0.001). The main effect of test length on classification accuracy is

statistically significant, such that as the test length increase from 20 to 40 the classifi-

cation accuracy increases: (F(1, 3580)=57804.5, p<0.001). The main effect of sample
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size on classification accuracy is statistically significant such that as the sample size

increases, the classification accuracy will also increase: (F(2, 3580)=281.7, p<0.001).

The main effect of the estimating model on the classification accuracy is statistically

significant, such that as the DINA switches to DINA-HC, the classification accuracy

increases: (F(1, 3580)=32037.7, p<0.001).

In terms of the interaction effects, there was a significant interaction between the

number of attributes, and the test length: (F(2, 3580)=6216.6, p<0.001). There was

a significant interaction between the number of attributes and sample size: (F(4,

3580)=436.6, p<0.001). There was a significant interaction between the number of

attributes and the estimating model: (F(2, 3580)=2374.9, p<0.001). There was a

significant interaction between the test length and sample size: (F(2, 3580)=255.8,

p<0.001). There was a significant interaction between the test length and the es-

timating model: (F(1, 3580)=1842, p<0.001). There was a significant interaction

between the estimating model and the sample size: (F(2, 3580)=14.6, p<0.001).

To further investigate differences among the conditions, a Tukey post hoc test

was conducted. The results show that when the attribute is 4, there is no interac-

tion between the sample sizes 500 and 2000 with an adjusted p=0.602. There is no

interaction between the sample sizes 2000 and 5000 with an adjusted p=0.108 nei-

ther. When the items J=40, there is no interaction between the sample sizes 500 and

5000 with an adjusted p=0.982. When the estimating model is DINA-HC, there is

no interaction between the sample sizes 2000 and 5000 with an adjusted p=0.966.

All other comparisons show that there are statistically significant differences, with an

adjusted p<0.001.

The attribute profile pattern classification accuracy is calculated and computed as

the average value over 100 replications for all the conditions as may be seen in Table

4.13 and 4.14. The R plot is presented in the Figure 4.3. In terms of the attribute
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Classification Accuracy
K=4 K=6 K=7

N=500
DINA-HC 0.892900 0.76116 0.56528

DINA 0.80760 0.53830 0.40608

N=2000
DINA-HC 0.857980 0.80511 0.62081

DINA 0.79254 0.54124 0.47072

N=5000
DINA-HC 0.874212 0.77638 0.66485

DINA 0.80286 0.56218 0.51921

Table 4.13: Attribute profile pattern classification accuracy for J=20

Classification Accuracy
K=4 K=6 K=7

N=500
DINA-HC 0.910100 0.92978 0.83076

DINA 0.854380 0.80406 0.73416

N=2000
DINA-HC 0.942315 0.93050 0.82730

DINA 0.883365 0.80111 0.72917

N=5000
DINA-HC 0.934862 0.88665 0.85283

DINA 0.880818 0.75305 0.76004

Table 4.14: Attribute profile pattern classification accuracy for J=40

profile pattern classification accuracy for J=20 and J=40, the DINA-HC model has

higher classification accuracy value than does the DINA model for K=4, K=6, and

K=7. The classification accuracy value will decrease as the number of attributes

increases from K=4 to K=7. It seems the classification accuracy is invariant of sample

size. The largest classification accuracy value is 0.942315 when the sample size is 2000,

the number of attributes is 4, the number of items is 40, and the estimating model is

DINA-HC. The smallest classification accuracy value is 0.53830 when the sample size

is 500, the number of attributes is 6, the number of items is 20, and the estimating

model is DINA.

In sum, the DINA-HC model achieves a higher classification accuracy rate than

does the DINA model when the attributes display a convergent hierarchy.
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Figure 4.3: Attribute profile pattern classification accuracy

4.2 Real Data Results

This section presents the results gained from the ECPE data. The Examination for

Certificate of Proficiency in English (ECPE) is a test whose attributes display a linear

hierarchy. It was used to examine both the DINA-HL and the DINA model.

4.2.1 The ECPE Data Results

Both AIC and BIC were used as the model fit criterion. The log-likelihood value is

-42853 for the DINA-HL approach and -42841 for the DINA model. The number of

parameters is 59 for the DINA-HL approach and 63 for the DINA model. The AIC

value for the DINA-HL approach is slightly larger than the value for the DINA model,

and the BIC value for the DINA-HL approach is slightly smaller than the value for

DINA model as the following table shows.
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Model Fit DINA-HL DINA
AIC 85823 85809
BIC 86176 86186

Table 4.15: Model fit statistics

A likelihood-ratio test was conducted to determine whether the DINA-HL model is

significantly differently from the DINA model. The DINA-HL (the null model) is a

special case of the DINA (the alternative model). The number of skill class parameters

for the DINA is 7 and the number of skill class parameters for the DINA-HL is 3.

The alpha level was set at 0.05. The DINA-HL model is significantly different from

the DINA model: χ2 (2, N=2922)= 18.733, p<0.001. The DINA model should be

preferred when the attributes have a linear hierarchy.

The item parameter estimates derived from the two models are shown in the

following table. The guessing estimates from both models are rather large for almost

all of the items except for items 12, 20, 22, 24, and 27. The problem sets are multiple

choice, and the items in the multiple choice problem are linearly dependent, so the

guessing parameter estimates are larger than the usual range. The slipping parameter

estimates fall within the usual range.
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Items DINA(g) DINA-HL(g) DINA(s) DINA-HL(s))
Item 1 0.70553 0.71194 0.078620 0.095823
Item 2 0.73776 0.74690 0.095239 0.107830
Item 3 0.43799 0.43873 0.265659 0.262771
Item 4 0.47876 0.47573 0.163020 0.163388
Item 5 0.76203 0.76114 0.040589 0.041234
Item 6 0.71600 0.71464 0.066903 0.067392
Item 7 0.54410 0.54621 0.085002 0.082712
Item 8 0.81608 0.82388 0.035982 0.046914
Item 9 0.53354 0.53392 0.200121 0.201889
Item 10 0.48586 0.49736 0.163093 0.160804
Item 11 0.55599 0.55858 0.098747 0.097322
Item 12 0.19437 0.19928 0.304976 0.304203
Item 13 0.63476 0.64349 0.121453 0.120693
Item 14 0.51864 0.52598 0.211604 0.208163
Item 15 0.74756 0.74580 0.040323 0.040560
Item 16 0.54898 0.55132 0.125487 0.124029
Item 17 0.81845 0.81366 0.054602 0.060795
Item 18 0.72820 0.72591 0.086387 0.086164
Item 19 0.47072 0.46922 0.150805 0.152159
Item 20 0.23859 0.24211 0.295337 0.293436
Item 21 0.62161 0.62348 0.096767 0.095338
Item 22 0.31860 0.31685 0.188670 0.190546
Item 23 0.66138 0.66790 0.067075 0.081358
Item 24 0.33987 0.35366 0.307981 0.330462
Item 25 0.51352 0.51743 0.271748 0.266840
Item 26 0.55391 0.55267 0.211364 0.212029
Item 27 0.26813 0.27911 0.368851 0.365456
Item 28 0.65729 0.65578 0.086418 0.087054

Table 4.16: The item parameter estimates
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Chapter 5

Discussion

5.1 Summary of the Findings

This study utilized a convergent attribute hierarchy in the DINA model to analyze

data having hierarchical attributes. The model fit, item fit, bias, absolute bias, ab-

solute bias error, and attribute profile pattern classification accuracy of two different

models (DINA-HC and DINA) were examined and compared across 100 replications

under 36 conditions based upon the simulated data. The results indicate that the

DINA-HC model has smaller AIC and BIC values for all 36 conditions than the DINA

model, where smaller values indicate a better model fit. In terms of the bias for the

guessing parameter, there is a significant effect of sample size on the bias. In terms

of the absolute bias there are significant effects of sample size, test length, number

of attributes, and the estimating models. There also are significant effects of all four

factors on the bias and absolute bias of the slipping parameter. As the sample size

or test length increases, the absolute bias will decrease. As the number of attributes

increases, the absolute bias will increase as well. When the estimating model is DINA-

HC, the absolute bias will be smaller than when it is the DINA. The results from the
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attribute profile pattern classification accuracy show that there are significant effects

of all four factors on the classification accuracy. As the number of attributes and

the sample size increase, the classification accuracy rate also will increase. When the

estimating model is DINA-HC, the classification accuracy rate is significantly higher

than it is with the DINA model.

Based on the results gained from the ECPE data, there is a statistically significant

difference between the DINA-HL and DINA model. Most of the guessing parameter

estimates are higher than expected. It seems the results are sensitive to the number

of attributes and the types of attribute hierarches present.

In sum, the DINA having convergent attribute hierarchy (DINA-HC) is a bet-

ter model choice, has less biased parameter estimates and does higher classification

accuracy than the DINA model, and thus it should be used when the hierarchical

attributes are present. When the attributes are non-hierarchical, the DINA model

has a better model fit than does the DINA-HL.

5.2 Implications of the Findings

In practice, there will be situations when the attributes are hierarchical. Specifically,

in the Mathematics, Science, and English areas, the mastery of higher level attributes

sometimes requires the mastery of certain lower level attributes. The DINA-HC model

can be applied to situations where cognitive skills are hierarchical. More importantly,

it offers more diagnostic power and can potentially provide more detailed information

on the mastery level of students. By designing items based on a particular hierarchy,

the diagnostic information of the items can help instructors and thus to locate the

learning stage of the students and thereby design more efficient curricula based on

that stage. Another practical outcome of this finding is that the DINA-HC model
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can improve computing efficiency by reducing the size of the skill space.

This study has examined the performance of DINA-HC and the DINA model un-

der different conditions. It represents an important addition to the study carried out

by Su(2013) for using the convergent attribute hierarchy as its example. This study

also is an addition to the DINA mode (Junker & Sijtsma, 2001). Although some

previous studies (Templin et al., 2010, Leighton et al., 2004b) involved attribute hi-

erarchies, none of them examined the performance of the DINA-HC model under

different conditions. More detailed analysis of the tests could provide valuable in-

formation for instructors and policy makers on the topic of the learning progressions

of students, and help them to understand not just the existence of certain attribute

hierarchies within the Mathematics and Science domain, but also other concepts. It

is believed that the method and analysis used in this study can be used to inter-

pret many other subjects’ data. In the future, if a test can be developed based on

a specific hierarchical structure, there will be more information on students’ learn-

ing paths and stages. Instructors can then design specific curricula to target their

students’ particular needs.

5.3 Limitations of the Findings

The Q-matrix of the ECPE data might be misspecified, because generally it is sub-

jective to construct a Q-matrix. The attribute hierarchies also can be constructed in

multiple ways, because different students approach the problems by different paths,

thus there is no such thing as an absolute correct Q-matrix or attribute hierarchy.

Although the focus of this study has not been on the construction of Q-matrix, it is

possible that its parameter estimates have been affected by the Q-matrix. In addition

there are only three attributes for the real data, so the number of attribute profiles
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has been reduced to 4 from the original 8, which is not a big difference. Unlike the

simulation results, the DINA performs better than the DINA with a linear hierarchy

(DINA-HL) for the real data. If there were more attributes in the data, the results

might provide better diagnostic information.

Another limitation is the number of conditions in the simulation study. It is

ideal to include as many conditions as possible, so that more information regarding

other factors will be extracted. Different hierarchical structures probably would have

different estimation results, so the results of this study can not be generalized to

all possible hierarchical structures. The study uses only the convergent attribute

hierarchy. Similar results also are found in Su (2013) for the linear and unstructured

attribute hierarchies. The coverage of attribute hierarchies may not be enough to

provide a comprehensive understanding of the behaviors of different hierarchies under

different situations. The advantage of the DINA-HC may not be utilized when the

number of attributes is small.

5.4 Future Research Suggestions

As mentioned in the previous section, this study uses only the convergent attribute

hierarchy in simulation analysis. More reliable results would be provided if all four

types of attribute hierarchies were included, examined, and compared. The conver-

gent attribute hierarchy has many different types of structures. Depending on certain

items, a specific hierarchical structure can be developed to analyze the data. Other

models such as the GDM, NIDA, and NIDO having particular attribute hierarches

can also be investigated in the future. As the popularity of online assessment in-

creases, the amount of data also will increase. It will be more informative if more

attributes are defined in a test. This study has used the EM-algorithm to estimate



CHAPTER 5. DISCUSSION 66

the guessing and slipping parameters; the procedure is based on de la Torre (2009) in

which the parameters are optimized in a maximum likelihood fashion. The Markov

chain Monte Carlo (MCMC), as an alternative method, can also be used in the future.

The default values for the guessing and slipping parameters have been set at 0.2, but

it would be interesting to see what results were obtained if other default values were

set and compared with this study.
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Appendix A

Appendices

A.1 Q-matrix from Simulation Study

Item skill 1 skill 2 skill 3 skill 4

Item 1 1 0 0 0
Item 2 0 1 0 0
Item 3 0 0 1 0
Item 4 0 0 0 1
Item 5 1 1 0 0
Item 6 1 0 1 0
Item 7 1 0 0 1
Item 8 0 1 1 0
Item 9 0 1 0 1
Item 10 0 0 1 1
Item 11 1 1 1 0
Item 12 1 0 1 1
Item 13 1 1 0 1
Item 14 0 1 1 1
Item 15 1 1 1 1
Item 16 1 0 0 0
Item 17 0 1 0 0
Item 18 0 0 1 0
Item 19 0 0 0 1
Item 20 1 1 0 0

Table A.1: The Q-matrix with 20 items and 4 skills
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Item skill 1 skill 2 skill 3 skill 4 skill 5 skill 6

Item 1 1 0 0 0 0 0
Item 2 0 1 0 0 0 0
Item 3 0 0 1 0 0 0
Item 4 0 0 0 1 0 0
Item 5 0 0 0 0 1 0
Item 6 0 0 0 0 0 1
Item 7 1 1 0 0 0 0
Item 8 1 0 1 0 0 0
Item 9 1 0 0 1 0 0
Item 10 1 0 0 0 1 0
Item 11 1 0 0 0 0 1
Item 12 0 0 1 1 0 0
Item 13 0 0 1 0 1 0
Item 14 0 0 1 0 0 1
Item 15 0 0 0 1 1 0
Item 16 0 0 0 1 0 1
Item 17 1 1 1 0 0 0
Item 18 1 1 0 1 0 0
Item 19 1 1 0 0 1 0
Item 20 0 0 1 1 0 1

Table A.2: The Q-matrix with 20 items and 6 skills
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Item skill 1 skill 2 skill 3 skill 4 skill 5 skill 6 skill 7

Item 1 1 0 0 0 0 0 0
Item 2 0 1 0 0 0 0 0
Item 3 0 0 1 0 0 0 0
Item 4 0 0 0 1 0 0 0
Item 5 0 0 0 0 1 0 0
Item 6 0 0 0 0 0 1 0
Item 7 0 0 0 0 0 0 1
Item 8 1 1 0 0 0 0 0
Item 9 1 0 1 0 0 0 0
Item 10 1 0 0 1 0 0 0
Item 11 1 0 0 0 1 0 0
Item 12 1 0 0 0 0 1 0
Item 13 1 0 0 0 0 0 1
Item 14 0 0 1 1 0 0 0
Item 15 0 0 0 1 1 0 0
Item 16 0 0 0 1 0 1 0
Item 17 1 1 0 1 0 0 0
Item 18 1 1 0 0 1 0 0
Item 19 0 0 1 1 0 1 0
Item 20 0 0 1 0 0 1 1

Table A.3: The Q-matrix with 20 items and 7 skills
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Item skill 1 skill 2 skill 3 skill 4

Item 1 1 0 0 0
Item 2 0 1 0 0
Item 3 0 0 1 0
Item 4 0 0 0 1
Item 5 1 1 0 0
Item 6 1 0 1 0
Item 7 1 0 0 1
Item 8 0 1 1 0
Item 9 0 1 0 1
Item 10 0 0 1 1
Item 11 1 1 1 0
Item 12 1 0 1 1
Item 13 1 1 0 1
Item 14 0 1 1 1
Item 15 1 1 1 1
Item 16 1 0 0 0
Item 17 0 1 0 0
Item 18 0 0 1 0
Item 19 0 0 0 1
Item 20 1 1 0 0
Item 21 1 0 1 0
Item 22 1 0 0 1
Item 23 0 1 1 0
Item 24 0 1 0 1
Item 25 0 0 1 1
Item 26 1 1 1 0
Item 27 1 0 1 1
Item 28 1 1 0 1
Item 29 0 1 1 1
Item 30 1 1 1 1
Item 31 1 0 0 0
Item 32 0 1 0 0
Item 33 0 0 1 0
Item 34 0 0 0 1
Item 35 1 1 0 0
Item 36 1 0 1 0
Item 37 1 0 0 1
Item 38 0 1 1 0
Item 39 0 1 0 1
Item 40 0 0 1 1

Table A.4: The Q-matrix with 40 items and 4 skills



APPENDIX A. APPENDICES 77

Item skill 1 skill 2 skill 3 skill 4 skill 5 skill 6

Item 1 1 0 0 0 0 0
Item 2 0 1 0 0 0 0
Item 3 0 0 1 0 0 0
Item 4 0 0 0 1 0 0
Item 5 0 0 0 0 1 0
Item 6 0 0 0 0 0 1
Item 7 1 1 0 0 0 0
Item 8 1 0 1 0 0 0
Item 9 1 0 0 1 0 0
Item 10 1 0 0 0 1 0
Item 11 1 0 0 0 0 1
Item 12 0 0 1 1 0 0
Item 13 0 0 1 0 1 0
Item 14 0 0 1 0 0 1
Item 15 0 0 0 1 1 0
Item 16 0 0 0 1 0 1
Item 17 1 1 1 0 0 0
Item 18 1 1 0 1 0 0
Item 19 1 1 0 0 1 0
Item 20 0 0 1 1 0 1
Item 21 1 0 0 0 0 0
Item 22 0 1 0 0 0 0
Item 23 0 0 1 0 0 0
Item 24 0 0 0 1 0 0
Item 25 0 0 0 0 1 0
Item 26 0 0 0 0 0 1
Item 27 1 1 0 0 0 0
Item 28 1 0 1 0 0 0
Item 29 1 0 0 1 0 0
Item 30 1 0 0 0 1 0
Item 31 1 0 0 0 0 1
Item 32 0 0 1 1 0 0
Item 33 0 0 1 0 1 0
Item 34 0 0 1 0 0 1
Item 35 0 0 0 1 1 0
Item 36 0 0 0 1 0 1
Item 37 1 1 1 0 0 0
Item 38 1 1 0 1 0 0
Item 39 1 1 0 0 1 0
Item 40 0 0 1 1 0 1

Table A.5: The Q-matrix with 40 items and 6 skills
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Item skill 1 skill 2 skill 3 skill 4 skill 5 skill 6 skill 7

Item 1 1 0 0 0 0 0 0
Item 2 0 1 0 0 0 0 0
Item 3 0 0 1 0 0 0 0
Item 4 0 0 0 1 0 0 0
Item 5 0 0 0 0 1 0 0
Item 6 0 0 0 0 0 1 0
Item 7 0 0 0 0 0 0 1
Item 8 1 1 0 0 0 0 0
Item 9 1 0 1 0 0 0 0
Item 10 1 0 0 1 0 0 0
Item 11 1 0 0 0 1 0 0
Item 12 1 0 0 0 0 1 0
Item 13 1 0 0 0 0 0 1
Item 14 0 0 1 1 0 0 0
Item 15 0 0 0 1 1 0 0
Item 16 0 0 0 1 0 1 0
Item 17 1 1 0 1 0 0 0
Item 18 1 1 0 0 1 0 0
Item 19 0 0 1 1 0 1 0
Item 20 0 0 1 0 0 1 1
Item 21 1 0 0 0 0 0 0
Item 22 0 1 0 0 0 0 0
Item 23 0 0 1 0 0 0 0
Item 24 0 0 0 1 0 0 0
Item 25 0 0 0 0 1 0 0
Item 26 0 0 0 0 0 1 0
Item 27 0 0 0 0 0 0 1
Item 28 1 1 0 0 0 0 0
Item 29 1 0 1 0 0 0 0
Item 30 1 0 0 1 0 0 0
Item 31 1 0 0 0 1 0 0
Item 32 1 0 0 0 0 1 0
Item 33 1 0 0 0 0 0 1
Item 34 0 0 1 1 0 0 0
Item 35 0 0 0 1 1 0 0
Item 36 0 0 0 1 0 1 0
Item 37 1 1 0 1 0 0 0
Item 38 1 1 0 0 1 0 0
Item 39 0 0 1 1 0 1 0
Item 40 0 0 1 0 0 1 1

Table A.6: The Q-matrix with 40 items and 7 skills



APPENDIX B. APPENDICES 79

Appendix B

Appendices

B.1 Convergent attribute profile pattern for the 4,

6 and 7 attributes

Attribute Profile Pattern A1 A2 A3 A4
1 0 0 0 0
2 1 0 0 0
3 1 1 0 0
4 1 0 1 0
5 1 1 1 0
6 1 1 0 1
7 1 0 1 1
8 1 1 1 1

Table B.1: Possible attribute profiles for 4 attributes
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Attribute Profile Pattern A1 A2 A3 A4 A5 A6
1 0 0 0 0 0 0
2 1 0 0 0 0 0
3 1 1 0 0 0 0
4 1 1 1 0 0 0
5 1 1 1 1 0 0
6 1 1 1 0 1 0
7 1 1 1 1 1 0
8 1 1 1 1 0 1
9 1 1 1 0 1 1
10 1 1 1 1 1 1

Table B.2: Possible attribute profiles for 6 attributes
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Attribute Profile Pattern A1 A2 A3 A4 A5 A6 A7
1 0 0 0 0 0 0 0
2 1 0 0 0 0 0 0
3 1 1 0 0 0 0 0
4 1 0 1 0 0 0 0
5 1 1 1 0 0 0 0
6 1 1 0 1 0 0 0
7 1 0 1 1 0 0 0
8 1 1 1 1 0 0 0
9 1 1 0 1 1 0 0
10 1 0 1 1 1 0 0
11 1 1 1 1 1 0 0
12 1 1 0 1 0 1 0
13 1 0 1 1 0 1 0
14 1 1 1 1 0 1 0
15 1 1 0 1 1 1 0
16 1 0 1 1 1 1 0
17 1 1 1 1 1 1 0
18 1 1 0 1 1 0 1
19 1 0 1 1 1 0 1
20 1 1 1 1 1 0 1
21 1 1 0 1 0 1 1
22 1 0 1 1 0 1 1
23 1 1 1 1 0 1 1
24 1 1 0 1 1 1 1
25 1 0 1 1 1 1 1
26 1 1 1 1 1 1 1

Table B.3: Possible attribute profiles for 7 attributes
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