Academic Commons


On the surface impact of Arctic stratospheric ozone extremes

Calvo, N.; Polvani, Lorenzo M.; Solomon, S.

A comprehensive stratosphere-resolving atmospheric model, with interactive stratospheric ozone chemistry, coupled to ocean, sea ice and land components is used to explore the tropospheric and surface impacts of large springtime ozone anomalies in the Arctic stratosphere. Coupling between the Antarctic ozone hole and Southern Hemisphere climate has been identified in numerous studies, but connections of Arctic ozone loss to surface climate have been more difficult to elucidate. Analyzing an ensemble of historical integrations with all known natural and anthropogenic forcings specified over the period 1955–2005, we find that extremely low stratospheric ozone changes are able to produce large and robust anomalies in tropospheric wind, temperature and precipitation in April and May over large portions of the Northern Hemisphere (most notably over the North Atlantic and Eurasia). Further, these ozone-induced surface anomalies are obtained only in the last two decades of the 20th century, when high concentrations of ozone depleting substances generate sufficiently strong stratospheric temperature anomalies to impact the surface climate. Our findings suggest that coupling between chemistry and dynamics is essential for a complete representation of surface climate variability and climate change not only in Antarctica but also in the Arctic.


Also Published In

Environmental Research Letters

More About This Work

Academic Units
Applied Physics and Applied Mathematics
Lamont-Doherty Earth Observatory
Earth and Environmental Sciences
IOP Publishing
Published Here
February 24, 2016
Academic Commons provides global access to research and scholarship produced at Columbia University, Barnard College, Teachers College, Union Theological Seminary and Jewish Theological Seminary. Academic Commons is managed by the Columbia University Libraries.