Group Ratio Round-Robin:
An O(1) Proportional Share Scheduler

Wong Chun Chan and Jason Nieh
{wc164, nieh}@cs.columbia.edu
Department of Computer Science

Columbia University
Technical Report CUCS-012-03
April 2003

Abstract

Proportional share resource management provides
a flexible and useful abstraction for multiplexing time-
shared resources. However, previous proportional share
mechanisms have either weak proportional sharing accu-
racy or high scheduling overhead. We present Group Ra-
tio Round-Robin (GR?), a proportional share scheduler
that can provide high proportional sharing accuracy with
O(1) scheduling overhead. Unlike many other schedulers,
a low-overhead GR® implementation is easy to build us-
ing simple data structures. We have implemented GR? in
Linux and measured its performance against other sched-
ulers commonly used in research and practice, includ-
ing the standard Linux scheduler, Weighted Fair Queue-
ing, Virtual-Time Round-Robin, and Smoothed Round-
Robin. Our experimental results demonstrate that GR?
can provide much lower scheduling overhead and bet-
ter scheduling accuracy in practice than these other ap-
proaches for large numbers of clients.

1 Introduction

Proportional share resource management provides a
flexible and useful abstraction for multiplexing scarce re-
sources among users and applications. Because of its use-
fulness, many proportional share scheduling mechanisms
have been developed [2, 5, 6, 8, 11, 12, 15, 17, 20, 22, 23].
In addition, higher-level abstractions have been developed
on top of these proportional share mechanisms to support
flexible, modular resource management policies [20, 22].

Proportional share scheduling mechanisms were first
developed decades ago with the introduction of weighted
round-robin scheduling [18]. Starting in the late 1980s,
fair queueing algorithms were developed [2, 5, 8, 15, 17,
20, 22, 23], first for network packet scheduling and later
for CPU scheduling. These algorithms provided better
proportional sharing accuracy. However, the time to se-
lect a client for execution using these algorithms grows
with the number of clients. Most implementations re-
quire linear time to select a client for execution, though

more complex logarithmic time implementations are pos- 1

sible. More recently, proportional share mechanisms with
constant time scheduling overhead [3, 14] have been de-
veloped, but these algorithms need to sacrifice scheduling
accuracy to reduce scheduling overhead.

We introduce GR®, a Group Ratio Round-Robin
scheduler, for proportional share resource management.
GR? combines the benefits of low overhead round-robin
execution with a novel ratio-based scheduling algorithm
and client grouping strategy. It provides accurate con-
trol over client computation rates, and it can schedule
clients for execution in O(1) time. The constant schedul-
ing overhead makes GR? particularly suitable for server
systems and software routers that must manage large
numbers of clients. GR?® is simple to implement and
can be easily incorporated into existing scheduling frame-
works in commercial operating systems. We have imple-
mented a prototype GR?> CPU scheduler in Linux, and
compared our GR? Linux prototype against schedulers
commonly used in practice and research, including the
standard Linux scheduler [1], Weighted Fair Queueing [5],
Virtual-Time Round-Robin [14], and Smoothed Round-
Robin [3]. We have conducted extensive simulation stud-
ies and kernel measurements on micro-benchmarks and
real applications. Our results show that GR® can pro-
vide more than an order of magnitude better proportional
sharing accuracy than these other schedulers for skewed
share distributions. Furthermore, our results show that
GR? achieves this accuracy with lower scheduling over-
head that is more than an order of magnitude less than
the standard Linux scheduler and typical Weighted Fair
Queueing implementations. These results demonstrate
that GR2 can in practice deliver better proportional share
control with lower scheduling overhead than these other
approaches.

This paper presents the design and implementa-
tion of GR3. Section 2 provides some background on
proportional fairness. Section 3 discusses related work.
Section 4 presents the GR® scheduling algorithm. Sec-
tion 5 presents performance results from both simulation
studies and real kernel measurements that compare GR>
against other well-known scheduling algorithms. Finally,
we present some concluding remarks and directions for

future work.

2 Proportional Fairness

Proportional share scheduling has a clear colloquial
meaning: given a set of clients with associated weights, a
proportional share scheduler should allocate resources to
each client in proportion to its respective weight. In this
paper, we use the term share and weight interchangeably.
Without loss of generality, we can model the process of
scheduling a time-multiplexed resource among a set of
clients in two steps: 1) the scheduler orders the clients in
a queue, 2) the scheduler runs the first client in the queue
for its time quantum, which is the maximum time interval
the client is allowed to run before another scheduling de-
cision is made. Note that the time quantum is typically
expressed in time units of constant size determined by
the hardware. As a result, we refer to the units of time
quanta as time units (tu) in this paper rather than an
absolute time measure such as seconds.

Based on the above scheduler model, a scheduler
can achieve proportional sharing in one of two ways. One
way is to adjust the frequency that a client is selected to
run by adjusting the position of the client in the queue so
that it ends up at the front of the queue more or less often.
The other way is to adjust the size of the time quantum
of a client so that it runs longer for a given allocation.
The manner in which a scheduler determines how often a
client runs and how long a client runs directly affects the
accuracy and scheduling overhead of the scheduler.

A proportional share scheduler is more accurate if it
allocates resources in a manner that is more proportion-
ally fair. We can formalize this notion of proportional
fairness in more technical terms. The definition we use
is a simple one that suffices for our discussion; more ex-
tended definitions are presented in [7, 10, 16, 21]. Our
definition draws heavily from the ideal sharing mecha-
nism GPS [13]. To simplify the discussion, we assume
that clients do not sleep or block and can consume what-
ever resources they are allocated.

We first define perfect fairness, an ideal state in
which each client has received service exactly proportional
to its share. We denote the proportional share of client
A as S4, and the amount of service received by client A
during the time interval (¢1,t2) as Wa(t1,t2). Formally,
a proportional sharing algorithm achieves perfect fairness
for time interval (¢1,t2) if, for any client A,

Sa
Ez’ Si

If we had an ideal system in which all clients could
consume their resource allocations simultaneously, then
an ideal proportional share scheduler could maintain the
above relationship for all time intervals. However, in
scheduling a time-multiplexed resource in time units of

Wal(ti,t2) = (t2 —t1) (1)

finite size, it is not possible for a scheduler to be per- 9

fectly proportionally fair as defined by Equation 1 for all
intervals.

Although no real-world scheduling algorithm can
maintain perfect fairness, some algorithms stay closer to
perfect fairness than others. To evaluate the fairness per-
formance of a proportional sharing mechanism, we must
quantify how close an algorithm gets to perfect fairness.
We can use a variation of Equation 1 to define the service
time error E4(t1,t2) for client A over interval (¢1,%s).
The error is the difference between the amount of time
allocated to the client during interval (t;,t2) under the
given algorithm, and the amount of time that would have
been allocated under an ideal scheme that maintains per-
fect fairness for all clients over all intervals. Service time
error is computed as:

S
Ealty, ts) = Wa(ty, t2) — (t2 — tl)ﬁ

A positive service time error indicates that a client
has received more than its ideal share over an interval; a
negative error indicates that a client has received less. To
be precise, the error £ 4 measures how much time client
A has received beyond its ideal allocation. The goal of
a proportional share scheduler should be to minimize the
allocation error between clients with minimal scheduling
overhead.

2)

3 Related Work

One of the oldest, simplest and most widely used
proportional share scheduling algorithms is round-robin.
Clients are placed in a queue and allowed to execute in
turn. When all client shares are equal, each client is
assigned the same size time quantum. In the weighted
round-robin case, each client is assigned a time quantum
equal to its share. Weighted round-robin (WRR) provides
proportional sharing by running all clients with the same
frequency but adjusting the size of their time quanta.
A more recent variant called deficit round-robin [17] has
been developed for network packet scheduling with sim-
ilar behavior to a weighted round-robin CPU scheduler.
WRR is simple to implement and schedules clients in O(1)
time. However, it has a relatively weak proportional fair-
ness guarantee as its service ratio error can be quite large.
Consider an example in which 3 clients A, B, and C, have
shares 3, 2, and 1, respectively. WRR will execute these
clients in the following order of time units: A, A, A, B,
B, C. The error in this example gets as low as —1 tu and
as high as +1.5 tu. The real trouble comes with large
share values: if the shares in the previous example are
changed to 3000, 2000, and 1000, the error ranges instead
from —1000 to +1500 tu. A large error range like this il-
lustrates the major drawback of round-robin scheduling;:
each client gets all service due to it all at once, while other
clients get no service.

Fair-share schedulers [6, 11, 12] arose as a result of
a need to provide proportional sharing among users in
a way compatible with a UNIX-style time-sharing frame-
work. In UNIX time-sharing, scheduling is done based on
multi-level feedback with a set of priority queues. Each
client has a priority which is adjusted as it executes. The
scheduler executes the client with the highest priority.
The idea of fair-share was to provide proportional shar-
ing among clients by adjusting the priorities of clients in
a suitable way. The priority adjustments were generally
computed in O(1) time, though in some cases, the sched-
ulers needed to do an expensive periodic re-adjustment of
all client priorities, which required O(N) time, where N is
the number of clients. Fair-share schedulers were compat-
ible with UNIX scheduling frameworks and relatively easy
to deploy in existing UNIX environments. However, the
approaches were often ad-hoc and it is difficult to formal-
ize the proportional fairness guarantees they provided.
Empirical measurements show that these approaches only
provide reasonable proportional fairness over relatively
large time intervals [6]. It is almost certainly the case
that the allocation errors in these approaches can be very
large.

Lottery scheduling [22] provides a less ad-hoc pro-
portional sharing approach than fair-share schedulers.
Each client is given a number of tickets proportional to its
share. A lottery scheduler then randomly selects a ticket
and schedules the client that owns the selected ticket to
run for a time quantum. Lottery scheduling provides
proportional sharing by running clients at different fre-
quencies by adjusting the position at which each client is
inserted back into the queue; the same size time quan-
tum is typically used for all clients. Lottery scheduling
requires O(N) time for a linear list of clients and at least
O(log N) time for tree structures, where N is the number
of clients. Because lottery scheduling relies on the law
of large numbers for providing proportional fairness, its
allocation errors can be very large, typically much worse
than WRR for smaller share values.

Fair queueing was first proposed by Demers et. al.
for network packet scheduling as Weighted Fair Queue-
ing (WFQ) [5], with a more extensive analysis pro-
vided by Parekh and Gallager [15], and later applied
by Waldspurger and Weihl to CPU scheduling as stride
scheduling [22]. Other variants of WFQ such as Virtual-
clock [23], SFQ [9], FFQ, SPFQ [19], and Time-shift
FQ [4] have also been proposed. WFQ introduced the
idea of a virtual finishing time (VFT) to do proportional
sharing scheduling. To explain what a VFT is, we first
explain the notion of virtual time. The virtual time of a
client is a measure of the degree to which a client has re-
ceived its proportional allocation relative to other clients.
When a client executes, its virtual time advances at a
rate inversely proportional to the client’s share. Given
a client’s virtual time, the client’s virtual finishing time
(VFT) is defined as the virtual time the client would have

after executing for one time quantum. WFQ then sched- 3

ules clients by selecting the client with the smallest VF'T,
which requires keeping an ordered list of clients sorted by
VFT. This requires O(N) time for a linear list of clients
and at least O(log N) time for tree structures, where N
is the number of clients. Fair queueing provides propor-
tional sharing by running clients at different frequencies
by adjusting the position in at which each client is in-
serted back into the queue; the same size time quantum
is used for all clients.

To illustrate how this works, consider again the ex-
ample in which 3 clients A, B, and C, have shares 3, 2,
and 1, respectively. Their initial VFTs are then 1/3,1/2,
and 1, respectively. WFQ would then execute the clients
in the following order of time units: A, B, A, B, C, A.
In contrast to WRR, WFQ’s service time error ranges
from —5/6 to +1 tu in this example, which is less than
the allocation error of —1 to +1.5 tu for WRR. The dif-
ference between WFQ and WRR is greatly exaggerated
if larger share values are chosen: if we make the shares
3000, 2000, and 1000 instead of 3, 2, and 1, WFQ has the
same service time error range while WRR’s error range
balloons to —1000 to +1500 tu. It has been shown that
WEFQ guarantees that the service time error for any client
never falls below —1, which means that a client can never
fall behind its ideal allocation by more than a single time
quantum [15]. However, WFQ can allow a client to get
far ahead of its ideal allocation and accumulate a large
positive service time error especially in the presence of
skewed share distributions. For example, given a client A
with share 100 and 100 clients each with share 1, WFQ
will run client A for 100 time quanta before running any
of the other clients resulting in a service time error of +50
tu.

Several approaches have been proposed for reducing
this service time error in the presence of skewed share dis-
tributions. One approach is to use a hierarchical schedul-
ing approach by grouping clients in a balanced binary
tree of groups and recursively applying the basic fair
queueing algorithm, thereby reducing service time error
to O(log N), where N is the number of clients [22]. More
recent fair queueing algorithms [2, 20] such as Worst-
Case Weighted Fair Queueing [2] introduce eligible virtual
times and can guarantee both a lower and upper bound
on error of —1 and +1, respectively, which means that
a client can never fall behind or get ahead of its ideal
allocation by more than a single time quantum. These
algorithms provide stronger proportional fairness guar-
antees than other approaches. Unfortunately, they are
more difficult to implement, and the time required to se-
lect a client to execute is at least O(log N) time, where
N is the number of clients.

More recently, novel round-robin scheduling vari-
ants such as Virtual-Time Round-Robin (VIRR) [14]
and Smoothed Round Robin (SRR) [3] have been devel-
oped that combine the benefits of constant-time schedul-
ing overhead like round-robin with scheduling accuracy
that approximates fair queueing. These mechanisms pro-

vide proportional sharing by going round-robin through
clients in special ways that run clients at different frequen-
cies without having to reorder clients on each schedule.
Unlike WRR, they can provide lower service time errors
because they do not need to adjust the size of their time
quanta to achieve proportional sharing. VTRR combines
round-robin scheduling with VFTs used in fair queue-
ing. It maintains a list of clients from largest to smallest
share that does not change on each schedule, runs each
client in turn for a time quantum until it reaches a client
whose VFT indicates that it has received more than its
fair allocation, then returns to the beginning of the list.
SRR introduces a Weight Matrix and Weight Spread Se-
quence (WSS). The Weight Matrix consists of binary vec-
tors coded from the shares of the clients. SRR then scans
the elements of the Weight Matrix in a fixed order speci-
fied by WSS and selects the client to execute whose share
corresponds to the matrix element selected. Both VTRR
and SRR provide proportional sharing with O(1) time
complexity for selecting a client to run, though insert-
ing and removing clients from the run queue incur higher
overhead but are typically less frequent. VITRR requires
at least O(log N) time to insert into the run queue, where
N is the number of clients. SRR requires at least O(k)
time to insert into the run queue, where k& = log S;,q, and
Smae 18 the maximum client share allowed. However like
WFQ, both algorithms suffer from large service time er-
rors especially in the case of skewed share distributions.
Revisiting the example of 101 clients with one client A
with share 100 and 100 clients each with share 1, the ser-
vice time error for client A can range from —49.5 to 0.99
tu for VTRR and can range from —25 to 25 tu for SRR.

4 GR? Scheduling

GR? is a proportional share scheduler that sched-
ules with O(1) time complexity like recent round-robin
scheduling variants but with much lower service time er-
rors in practice. In designing GR3, we observed that accu-
rate, low-overhead proportional sharing is easy to achieve
when all clients have equal shares, but is harder to do
when clients have skewed share distributions. Based on
this observation, GR? uses a novel client grouping strat-
egy to organize clients into groups of similar share values
which can be more easily scheduled. GR? then combines
two scheduling algorithms: (1) an intergroup scheduling
algorithm to select a group from which to select a client
to execute, and (2) an intragroup scheduling algorithm
to select a client from within the selected group to exe-
cute. At a high-level, the GR? scheduling algorithm can
be briefly described in three parts:

1. Client grouping strategy: Clients are separated
into groups of clients with similar share values. Each
group k is assigned clients with share values between

2k to 2k+1 — 1, where k > 0. 4

2. Intergroup scheduling: Groups are ordered in a
list from largest to smallest group shares, where the
group share of a group is the sum of the shares of
all clients in the group. Groups are selected in a
round-robin manner based on the ratio of their group
shares. If a group has already been selected more
than its proportional share of the time, skip the re-
maining groups in the group list and start selecting
groups from the beginning of the group list again.
Since the groups with larger share values are placed
first in the list, this allows them to get more service
than the lower-share groups at the end of the list.

Intragroup scheduling: Once a group has been
selected, a client within the group is selected to
run in a round-robin manner that skips over clients
which have already received their desired propor-
tional share resource allocation.

Using this client grouping strategy, GR® separates
scheduling in such a way that reduces the need to sched-
ule entities with skewed share distributions. The client
grouping strategy limits the number of groups that need
to be scheduled since the number of groups grows at worst
logarithmically with the largest client share value. Even
a very large 32-bit client share would limit the number
of groups to no more than 32. As a result, the inter-
group scheduler never needs to schedule a large number of
groups which limits the impact of skewed share distribu-
tions on groups. For example, while it would be possible
to have one group with share 100 and a few groups each
with share 1 to schedule, it would not be possible to have
the example in Section 3 with a group with share 100 and
100 groups with share 1 to schedule. The client grouping
strategy also limits the share distributions that the intra-
group scheduler needs to consider since the range of share
values within a group is less than a factor of two. As a
result, the intragroup scheduler never needs to schedule
clients with skewed share distributions since the clients
within a group must have relatively similar share values.
Note that GR2 groups are simple lists that do not need to
be balanced; they do not require any use of more complex
balanced tree structures.

4.1 GR? Definitions

To provide a more in depth description of GR2,
we first define more precisely the state GR? associates
with each client and group, and then describe in detail
how GR? uses that state to schedule clients. In GR3, a
client has three values associated with its execution state:
share, counter, and run state. A client’s share defines its
resource rights. Each client receives a resource alloca-
tion that is directly proportional to its share. A client’s
counter tracks the number of time quanta the client has
recently received. A client’s run state is an indication of
whether or not the client can be executed. A client is
runnable if it can be executed. For example for a CPU

scheduler, a client would not be runnable if it is blocked
waiting for I/O and cannot execute.

A group in GR? has a similar set of values associated
with it: group share, group counter, last group counter,
group number, group ratio, and current client. The group
share and group counter are defined as the sum of the
corresponding attributes of the clients in the group run
queue. The last group counter is the value of the group
counter at the beginning of the group, and is described in
more detail below. The group number uniquely identifies
a group in the group list and determines the clients that
are in the group. A group with group number k contains
clients with share values between 2¥ to 2¥*! — 1. The
group ratio is the ratio between the group share of the
group and the next group in the group list. The current
client is the most recently scheduled client in the group’s
run queue.

In addition to the per client and per group state
described, GR® maintains the following scheduler state:
time quantum, group list, total share, total counter and
current group. As discussed in Section 2, the time quan-
tum is the duration of a standard time slice assigned to
a client to execute. The group list is a sorted list of all
groups containing runnable clients ordered from largest
to smallest group share. If two groups have the same
group shares, the group number is used to break the tie
in ordering the groups on the group list. The total share
is the sum of the shares of all runnable clients. The total
counter is the sum of the counters of all runnable clients.
The current group is the most recently selected group in
the group list.

4.2 Basic GR? Algorithm

We will initially only consider runnable clients in
our discussion of the basic GR? scheduling algorithm. We
will discuss dynamic changes in a client’s run state in Sec-
tion 4.3. We first focus on the development of the GR?
intergroup scheduling algorithm and then discuss the de-
velopment of the GR? intragroup scheduling algorithm.

First, we define a scheduling cycle as a sequence of
allocations whose length is equal to the sum of all client
shares. For example, for a system of three clients with
shares 3, 2, and 1, a scheduling cycle is a sequence of 6 al-
locations. In the context of a scheduling cycle, we can ex-
plain the role of the counters in GR3. At the beginning of
each scheduling cycle, the client counters, group counters
and total counter are reset to the respective client shares,
group shares, and total shares. Every time a client is
run, the client’s counter, the group counter of the client’s
group, and the total counter are decremented. GR? uses
the counters to ensure that perfect fairness is attained at
the end of every scheduling cycle. At the end of the cycle,
every client counter will be zero, meaning that for each
client A, the number of quanta received during the cy-
cle is exactly equal to the client share S4. Clearly, then,
each client has received service proportional to its share

5

during the cycle.

The GR? intergroup scheduling algorithm uses the
group ratios between groups to determine which group to
select. Initially, at the beginning of a scheduling cycle,
the group ratio of each group is set equal to the ratio of
its group share to the group share of the next group in
the group list. The group ratio of the last group in the
group list is defined to be one. Since the group list is
sorted from largest to smallest group share, this ratio of
group shares is always greater than or equal to one. If we
denote the group share of a group G as Sg and the group

share of the next group in the group list as Sg,,,,, the
group ratio Rg for group G is simply:
Sa
Rg = 3
SChcar)

The GR? intergroup scheduler initially sets the cur-
rent group to be the first group in the group list, which
is the group with the largest group share. Once a group
is selected as the current group, the intragroup sched-
uler schedules the current client from the current group’s
run queue to run for one time quantum. Once the cur-
rent client has completed its time quantum, the current
group counter, current client counter, and total counter
are decremented by one. The current group ratio is also
decremented by one. If the current group ratio becomes
less than one, then the current group ratio Reyrrent iS

incremented from its previous value R4, . . as follows:
R _ Rold Scurrent 4
current = Lloyrpent S ()

Gncxt

where Scyrrent 1S the group share of the current group
and Sg,.,, is the group share of the next group in the
group list. The next group Gpey: on the group list is
then assigned to be the current group. Otherwise if the
current group ratio is greater than or equal to one, the
current group is reset to the largest share group at the
beginning of the group list.

The GR? intragroup scheduling algorithm selects
the current client within a group in a round-robin man-
ner that accounts for the amount of service each client
has already received. Initially, the current client within a
group is set to be the first client at the beginning of the
group’s run queue. Like round-robin scheduling, the run
queue does not need to be sorted in any manner. Once
the current client has completed its time quantum, the
current client is set to the next client on the group’s run
queue that has not exceeded its proportional share of ser-
vice. While this can be done in a number of ways, GR?
uses an approach that considers the scheduling of clients
in rounds. A round is one pass through the run queue
from the beginning of the run queue until the end of the
run queue. In each round, GR® determines at the begin-
ning of the round which clients still have at least as much
remaining time to run in the scheduling cycle as their pro-
portional share of service, then runs those clients during
the round. To do this, GR? sets the last group counter

C95t equal to the group counter Ci at the beginning of
a round. Given a client A with share S4 and counter Cy
in a group G with group share Sg, GR? runs a client if
the following inequality holds when C%*¢ > 0:

Sa Ca
S_G = ngt (5)

The result of this intragroup scheduling algorithm will be
that clients within a group will be scheduled to run in a
round-robin order but that some clients will be skipped
some of the time. However, because all clients have share
values within a factor of two of each other within a group,
no client will be skipped more than half the time it is
considered for execution.

At the end of the scheduling cycle, when the to-
tal counter becomes zero, all the client counters, group
counters, and total counter are reset to the correspond-
ing shares. The scheduler restarts from the beginning
of the largest group run queue. Note that throughout
this scheduling process, the ordering of the groups on the
group list and of the clients on the each group run queue
do not change.

To illustrate how GR3 works, consider again the
example in which 3 clients A, B, and C, have shares 3,
2, and 1, respectively. Group number 1 would consist of
client A and client B and have a group share of 5, and
group number O would have client C and a group share of
1. Group 1 has a larger group share so it is the first group
on the group list. The group ratios are 5 for group 1 and
1 for group 0. GR? would execute clients from group 1
for five time quanta then the client in group 0 for one
time quantum. If client B happens to be before client A
on the run queue of group 1, GR? would then execute the
clients in the following repeating order of time units: B,
A A B, A, C. In this example, the service time error for
the clients as scheduled by GR?® would range from —5/6
to +2/3 tu.

Unlike other approaches such as WFQ, GR® pro-
vides much lower service time error for skewed distribu-
tions. Consider again the example from Section 3 of 101
clients with a client A with share 100 and 100 clients
each with share 1. GR® would divide the clients into two
groups. Group number 6 would consist of client A and
have a group share of 100, and group number 0 would have
the other 100 clients and also have a group share of 100.
Since both groups have the same group shares, the group
number is used to order the groups so group 6 would be
the first group on the group list. The group ratios are
1 for both groups. GR? would then alternate between
the groups to execute clients for one time quantum each.
For this skewed share distribution, GR® maintains a low
service time error range of —0.990 to +0.995 tu.

4.3 GR? Dynamic Considerations

In the previous section, we presented the basic GR3

scheduling algorithm, but we did not discuss how GR3 6

deals with dynamic considerations that are a necessary
part of any on-line scheduling algorithm. We now dis-
cuss how GR? allows clients to be dynamically created,
terminated, change run state, and change their share as-
signments.

We distinguish between clients that are runnable
and not runnable. As mentioned earlier, clients that are
runnable can be selected for execution by the scheduler,
while clients that are not runnable cannot. Only runnable
clients are placed in the run queue. With no loss of gen-
erality, we assume that a client is created before it can
become runnable, and a client becomes not runnable be-
fore it is terminated. As a result, client creation and
termination have no effect on the GR? run queues.

When a client A with share S4 becomes runnable,
it is inserted into the group k such that S4 is between
2k and 2%+1 — 1. If the group was previously empty, the
client becomes the current client of the group. If the
group was not previously empty, GR? inserts the client
into the respective group’s run queue in a manner based
on its previous execution history. If the client has not
run in the current scheduling cycle, GR? inserts the client
right before the current client. This requires the newly
runnable client to wait its turn to be serviced until all of
the other clients in the group have first been considered
for scheduling since the other clients were already in the
run queue waiting to execute. If the client has run in
the current scheduling cycle, GR? inserts the client right
after the current client. This allows the newly runnable
client to be serviced the next time the group is selected
and is based on the rationale that the client had recently
run but became not runnable just for a brief time and so
should be allowed to continue running again where it left
off.

When the newly runnable client is inserted into the
group, the client’s counter, group counter, total counter,
group share, and total share need to be updated. The
total share and group share are simply updated by in-
crementing the respective values by the client share S4.
Let S9'3, 4, be the previous total share and SZ? be the
previous group share. Then the total share Storar and
group share Sg after inserting client A are:

SrorarL = S¢S raL + Sa (6)
Sg = 8%+ 84 (7)

Since a client may become runnable in the middle of a
scheduling cycle, the client counter should not simply be
set equal to the client share but should instead be updated
in a manner that accounts for how far the scheduler has
progressed into the scheduling cycle. This provides the
client with a proportionally fair allocation based on the
time that it is runnable. Toward this end, the counters
are updated based on the ratios of the old and new total
share values. Let C{3., 4, be the previous total counter
and C&ld be the previous group counter. Then the total

counter Crorar, client counter Cy4, and group counter
C¢ after inserting client A are:

S
Crorar = C26rar SZ%TAL (8)
TOTAL
Ca = Crorar — C38rar, 9)
Ca=Cg*+ Ca (10)

Since the group share of a group changes when a
client is inserted into the group, the group’s relative po-
sition on the group list may change and its group ratio
as well as its predecessor on the group list will have to
be recomputed. Since the group share can only increase
due to a client insertion, there are three cases to consider:
(1) the position of the group moves closer to the front of
the group list because its group share is now larger than
previous groups on the group list, (2) the position of the
group does not change on the group list because its group
share remains less than the previous group in the group
list, and (3) the group was not previously on the group
list because it was empty before the newly runnable client
was inserted in the group and now needs to be inserted
on the group list.

In these cases, the group ratios will need to be up-
dated by scaling it to reflect the change in shares. We
first describe the general equation for updating the group
ratios and then apply the equation to each of the three
cases. Given a group ¢, we denote its current group share
and group ratio as S; and R;, respectively, and its old
group share and group ratio as S¢'¢ and R¢?, respec-
tively. Let G be a group whose group values have been
updated and whose whose next group Gpes: in the group
list has been updated from a previous group Gpezi—old-
The group ratio Rg of group G is one if it is the last
group in the group list, otherwise it is updated from its
previous value R2? as follows:

Sa
Sa

Great— old
old
SG

When the position of a group moves closer to the
front of the group list due to client insertion in the group,
its group ratio, the group ratio of its predecessor group in
the group list before changing the position of the group,
and the group ratio of its predecessor group in the group
list after changing the position of the group need to be
updated. If the group becomes the first group on the
group list, no predecessor group will exist or need to be
updated. Given a group G whose group values have been
updated from its old values due to client insertion, let
Gprev be its previous group in the group list and Gpeqt
be the next group in the group list after it has moved,
and let Gprey—oiq be its previous group in the group list
and G ezt o1q be the next group in the group list before
it moved. Group ratio Rg is updated as shown in Equa-
tion 11. Assuming G is not the first group on the group

Rg = RY* x

(11)

next

list, we can then substitute into Equation 11 to update

the group ratios Rag,,.,_,, and Rg,,., as follows:
1d Sg*
RGpTcu—old = Rg'pmu_om S (12)
Great—old
S
old DGnest
RGp’l‘{i’U - Gme, SG’ (13)

When the group position stays the same after client
insertion, only its group ratio and the group ratio of its
predecessor group in the group list need to be updated if
the group is not the first group in the group list. In this
case when the group position does not change, Sg and

newxt

SGresi—oa from Equation 11 are the same and Rg,,.,_ ..,
and Rg,,., from Equations 12 and 13 are the same. We
can then reduce Equations 11 to 13 to update the group
ratios Rg and and Rg,,,, as follows:
Sa
Rg = RY" x S (14)
Sold
Rg,., = RE! - (15)
P prev S G

When the group was not previously on the group list
and is now inserted into the group list, the group ratio of
the newly inserted group G and the group ratio of its pre-
decessor group Gprey in the group list need to be updated
if the group is not the first group on the group list. As-
suming G is not the first group on the group list, Rg,,.,
can be updated using Equation 13. However, the newly
inserted group G has no old values from Equation 11.
We instead scale its group ratio by its group counter Cg
which indicates how much of the group ratio should have
already been completed in the current scheduling cycle.
Group ratio R is derived from Equation 3 and computed
as follows:

=5

When a client becomes runnable and is inserted into
a group, in most cases the current group is not affected.
The one exception is if the group in which the client was
inserted is the current group and the position of the group
in the group list now changes as a result of its larger group
share. In this case, we determine which group is to next
be set to be the current group based on the position of the
current group before the client insertion. Once the cur-
rent client has completed its time quantum, the current
group ratio is decremented by one as previously described
in Section 4.2. If the current group ratio becomes less
than one, the next group Gpezi—oiq On the group list, as
determined based on the group list ordering before client
insertion, is assigned to be the current group. Otherwise,
the current group is reset to the largest share group at
the beginning of the group list.

Having described what happens when a client be-

Rg (16)

next

v comes runnable, we now discuss what happens with GR?

when a client becomes not runnable. When a client A
with share S4 becomes not runnable, it is removed from
the group k such that S4 is between 2k and 2kt — 1.
When the client is removed from its group, the group
counter, total counter, group share, and total share need
to be updated. The total share and group share are sim-
ply updated by decrementing the respective values by the
client share Sa. Let S$&, 4, be the previous total share
and SZ? be the previous group share. Then the total
share Storar and group share Sg after removing client
A are:

SrorarL = S8 rar — Sa (17)
Sg = S&* — Sa (18)

Similarly, the total counter and group counter are
simply updated by decrementing the respective values by
the client counter C4. Let C941 4, be the previous total
counter and CZ¢ be the previous group counter. Then
the total counter C'rorar, client counter C4, and group
counter Cg after removing client A are:

Crorar = C§8rar, — Ca (19)
Co=Cg4—Cy (20)

Since the group share of a group changes when a
client is removed from the group, the group’s relative po-
sition on the group list may change and its group ratio
as well as its predecessor on the group list will have to
be recomputed. Since the group share can only decrease
due to a client removal, there are three cases to consider:
(1) the position of the group moves closer to the back
of the group list, (2) the position of the group does not
change on the group list, and (3) the group is now empty
because its one client was removed and the group needs
to be removed from the group list.

We can update the group ratios in these cases in a
manner similar to the case of client insertion using Equa-
tion 11. More specifically, the group ratios for the case
in which the group position moves closer to the back of
the group list can be computed in the same manner as
the corresponding case for client insertion by using Equa-
tions 12 to 13. Similarly, the group ratios for the case in
which the group position does not change due to client
removal can be computed in the same manner as the cor-
responding case for client insertion by using Equations 14
and 15.

When the group is now empty and needs to be re-
moved from the group list, only the group ratio of the
predecessor group in the group list need to be updated
if the group is not the first group on the list. Given a
group G that is to be removed with group share SZ? be-
fore client removal, let G ¢, be its previous group in the
group list and Gpeqt be the next group in the group list
before removal. Assuming G is not the first group on the

group list, we can then substitute into Equation 11 to

update the group ratio Rg,,., as follows:
Sold
R — pold G 21
e = REL 5 21)

When a client becomes not runnable and is removed
from a group, in most cases the current group is not af-
fected. However, there are two exceptions. One excep-
tion is if the group from which the client was removed is
the current group and the position of the group in the
group list now changes as a result of its smaller group
share. In this case, we determine which group is next to
be the current group based on the position of the current
group before the client removal. Once the current client
has completed its time quantum, the current group ra-
tio is decremented by one as previously described in Sec-
tion 4.2. If the current group ratio becomes less than one,
the next group Gpezt—orq On the group list, as determined
based on the group list ordering before client removal, is
assigned to be the current group. Otherwise, the current
group is reset to the largest share group at the beginning
of the group list. The other exception is if the group from
which the client was removed is the current group and is
now empty and removed. In this case, we again determine
which group is next to be the current group based on the
position of the current group before the client removal.
The current group ratio is decremented by one as previ-
ously described in Section 4.2. If the current group ratio
becomes less than one, the next group Gpegpt—oiq On the
group list, as determined based on the group list ordering
before client removal, is assigned to be the current group.
Otherwise, the current group is reset to the largest share
group at the beginning of the group list.

If the share of a client changes, there are two cases
to consider based on the run state of the client. If the
client is not runnable, only the client’s share is updated
and no other changes are needed. If the client is runnable
and its share changes, the client’s group may need to be
changed and the group that the client belongs to will need
to be updated appropriately. This operation can be log-
ically simplified by removing the client from its group as
in the case when a client becomes not runnable, chang-
ing the client share, and then reinserting the client back
into a group based on its new share value. Removal and
insertion can then be performed just as described above.

4.4 Complexity and Fairness

The primary function of a scheduler is to select a
client for service when the resource is available. A key
benefit of GR? is that it can select a client for service
in O(1) time. GR? intergroup scheduling selects a group
from which to choose a client in O(1) time and GR? in-
tragroup scheduling selects a client for service within a
group in O(1) time. In selecting a group, GR® only has
to decide whether to select the next group in the group

3 list or to go back to the beginning of the group list and

select the first group. This decision only requires GR? to
examine the counter of the current group which can be
done in O(1) time. The GR? intergroup scheduler does
need to maintain a sorted list of groups from largest to
smallest group share. However, the ordering of groups
on the group list does not change in the normal process
of selecting a group from which to choose a client. Once
a group has been selected, GR® selects a client within
a group in a round-robin manner that skips clients that
have already received their proportional resource alloca-
tion according to Equation 5. Because all clients in a
group have share values within a factor of two of each
other, no client will be skipped more than half the time
it is considered for execution. As a result, this intragroup
scheduling decision can also be done in O(1) time. Be-
cause groups do not need to be resorted during scheduling
and clients within a group are not sorted, GR? provides
an important advantage over fair queueing algorithms,
which need to reinsert a client into a sorted run queue
after each time it is serviced. This is at least an O(log N)
time operation per scheduling decision. As a result, fair
queueing algorithms require higher time complexity than
GR®.

When the total counter becomes zero, GR? does re-
set the counters of all groups and all clients in each group
to their respective share values. The complete counter
reset takes O(N) time, where N is the number of clients.
However, this reset is done at most once every N times
the scheduler selects a client to execute, and much less
frequently in practice. As a result, the reset of the coun-
ters is amortized over at least N client selections so that
the effective running time of GR? to select a client for
service is still O(1) time.

In addition to selecting a client to execute, a sched-
uler must also allow clients to be dynamically created
and terminated, change run state, and change schedul-
ing parameters such as a client’s weight. These schedul-
ing operations typically occur much less frequently than
client selection. Operations such as client creation, ter-
mination, and changing run state can result in a client
becoming runnable or not runnable. In GR3, making a
client runnable or not runnable results in the need to
insert or remove the client from a group run queue, re-
spectively. As mentioned earlier, changing a client’s share
assignment can be decomposed into three steps: (1) re-
moving the client from the group run queue, changing
the client share, and then inserting the client back into
a group run queue. The time complexity of all of these
operations can be reduced to the time to insert or remove
a client from a group run queue. In GR3, inserting or
removing a client from a group run queue can be done in
O(1) since there is a reference to the current client in the
group and the group run queue is not sorted. However,
these operations can increase or decrease the group share
such that the group needs to be moved on the group list to
maintain its ordering by group share value. Moving the

group to its correct position on the group list can take 9

at most k — 1 swaps if a simple linear insertion is used,
where k is the number of groups on the group list. This
can easily be reduced to O(log k) by performing a binary
search on the group list. This complexity is lower than
recent low-overhead proportional share schedulers such as
VTRR and SRR.

An O(log k) or even an O(k) operation is effectively
constant time in practice given that the number of groups
that need to be used is typically quite small. The num-
ber of groups only depends on the range of client shares
in the system. If there are clients with a wide range of
shares from very large to small, more groups will need
to be used. However, even in this case, the number of
groups is at most bounded by the largests and smallest
client shares in the system. If S,,q4; and Sy, are the
largests and smallest client shares in the system, then
k<1+log g% Note that the number of groups k is
independent of the number of clients in the system and
k is likely to be a small number compared to the number
of clients for systems that must support large numbers of
clients.

GR3 not only provides low scheduling overhead, but
it can also achieve low service time error in practice.
GR? limits service time error by dividing up the schedul-
ing problem into intragroup scheduling and intergroup
scheduling. Because client shares within each group can
not differ by more than a factor of two, GR? can use a
simple intragroup scheduling algorithm and still bound
the service time error within a group between —2 and
+1. GR? intergroup scheduling does not have the same
constant bound as intragroup scheduling but instead can
result in worst-case service time errors of O(k), where k
is the number of groups. However, because the number of
groups in practice is small and bounded, GR? intergroup
scheduling can effectively provide a bound on service time
error among groups as well.

5 Measurements and Results

To demonstrate the effectiveness of GR3, we have
implemented a prototype GR® CPU scheduler in the
Linux operating system and measured its performance.
We present some experimental data quantitatively com-
paring GR? performance against other popular schedul-
ing approaches from both industrial practice and re-
search. We have conducted both extensive simulation
studies and detailed measurements of real kernel sched-
uler performance on real applications.

We conducted simulation studies to compare the
proportional sharing accuracy of GR® against WRR,
WFQ, VTRR, and SRR. We used a simulator for these
studies for two reasons. First, our simulator enabled us
to isolate impact of the scheduling algorithms themselves
and purposefully do not include the effects of other activ-
ity present in an actual kernel implementation. Second,
our simulator enabled us to examine the scheduling be-
havior of these different algorithms across hundreds of

thousands of different combinations of clients with differ-
ent share values. It would have been much more difficult
to obtain this volume of data in a repeatable fashion from
just measurements of a kernel scheduler implementation.
Our simulation results are presented in Section 5.1.

We also conducted detailed measurements of real
kernel scheduler performance by comparing our proto-
type GR? Linux implementation against both the stan-
dard Linux 2.4 scheduler and a WFQ scheduler. In par-
ticular, comparing against the standard Linux scheduler
and measuring its performance is important because of
its growing popularity as a platform for server as well as
desktop systems. The experiments we have done quantify
the scheduling overhead and proportional share allocation
accuracy of these schedulers in a real operating system
environment under a number of different workloads. Our
measurements of kernel scheduler performance are pre-
sented in Sections 5.2 to 5.3.

All of our kernel scheduler measurements were per-
formed on an IBM Netfinity 4500 system with a 933
MHz Intel Pentium IIT CPU, 512 MB RAM, and 9 GB
hard drive. The system was installed with the Debian
GNU/Linux distribution version 3.0 and all schedulers
were implemented using Linux kernel version 2.4.19. The
measurements were done by using a minimally intrusive
tracing facility that logs events at significant points in the
application and the operating system code. This is done
via a light-weight mechanism that writes timestamped
event identifiers into a memory log. The mechanism takes
advantage of the high-resolution clock cycle counter avail-
able with the Intel CPU to provide measurement resolu-
tion at the granularity of a few nanoseconds. Getting
a timestamp simply involved reading the hardware cycle
counter register, which could be read from user-level or
kernel-level code. We measured the cost of the mechanism
on the system to be roughly 35 ns per event.

The kernel scheduler measurements were performed
on a fully functional system to represent a realistic system
environment. All experiments were performed with all
system functions running and the system connected to
the network. At the same time, an effort was made to
eliminate variations in the test environment to make the
experiments repeatable.

5.1 Simulation Studies

We built a scheduling simulator that is a user-space
program which measures the service time error, described
in Section 2, of a scheduler on a set of clients. The sim-
ulator takes four inputs, the scheduling algorithm, the
number of clients N, the total number of shares S, and
the number of client-share combinations. The simulator
randomly assigns shares to clients and scales the share
values to ensure that they add up to S. It then sched-
ules the clients using the specified algorithm as a real
scheduler would, and tracks the resulting service time er-

ror. The simulator runs the scheduler until the result- 10

Error

Sum of shares

2000 200
250 Number of clients

Figure 1: WRR service time error, random share alloca-
tion

Error

NPk OoRN®

Sum of shares 1500

200

2000
250 Number of clients

Figure 2: WFQ service time error, random share alloca-
tion

ing schedule repeats, then computes the maximum (most
positive) and minimum (most negative) service time er-
ror across the nonrepeating portion of the schedule for the
given set of clients and share assignments. The simulator
assumes that all clients are runnable at all times. This
process of random share allocation and scheduler simula-
tion is repeated for the specified number of client-share
combinations. We then compute an average maximum
service time error and average minimum service time er-
ror for the specified number of client-share combinations
to obtain an “average-case” error range.

To measure proportional fairness accuracy, we ran
simulations for each scheduling algorithm considered on
40 different combinations of N and S. For each set of
(N, S), we ran 2500 client-share combinations and deter-
mined the resulting average error ranges. The average
service time error ranges for WRR, WFQ, VTRR, SRR,
and GR? are shown in Figures 1 to 5. Each figure consist
of a graph of the error range for the respective scheduling
algorithm. Each graph shows two surfaces representing
the maximum and minimum service time error as a func-
tion of N and S for the same range of values of N and
S.

Figure 1 shows the service time error ranges for
WRR. Within the range of values of N and S shown,
WRR’s error range is between —406 tu and 407 tu. With
a time unit of 10 ms per tick as in Linux, a client un-
der WRR can on average get ahead or behind its correct

1000 0
1500

Sum of shares
200055, 200

Number of clients

Figure 3: VIRR service time error, random share alloca-
tion

Error

NPk o RN

Sum of shares 1500

2000 200
250 Number of clients

Figure 4: SRR service time error, random share allocation

proportional share CPU time allocation by more than 4
seconds, which is a substantial amount of service time er-
ror. Figure 2 shows the error ranges for WFQ. WFQ’s
error range is between —1 tu and 2 tu, which is much less
than WRR. Note that another fair queueing algorithm
WF2Q was not simulated, but its error is mathematically
bounded [2] between —1 and +1 tu. Figures 3 and 4 show
the service error ranges for VTRR and SRR, respectively.
VTRR’s error range is between —3.8 to 11.9 tu. SRR’s
error range is between —1.7 to 1.7 tu. Although VTRR
and SRR’s error ranges are somewhat worse than WFQ,
VTRR and WRR can schedule in O(1) time.

In comparison, Figure 5 shows the service time er-
ror ranges for GR3. GR®’s service time error only ranges
from —1.3 to 1.2 tu. GR3 has a smaller error range
than all of the other schedulers measured. GR? has
both a smaller negative and smaller positive service time
error than WRR, VITRR, and SRR. While GR® has a
smaller positive service error than WFQ, WFQ does have
a smaller negative service time error since it is mathemat-
ically bounded below at —1. Unlike the other schedulers,
these results show that GR® combines the benefits of low
service time errors with its ability to schedule in O(1)
time.

Since the proportional sharing accuracy of a sched-
uler is often most clearly illustrated with skewed share
distributions, we repeated the simulation studies over the

same range of N and S but with one of the clients given 1

Error

NP OoORNWA

1000 0
1500

Sum of shares
200055, 200

Number of clients

Figure 5: GR? service time error, random share allocation

Error

400
200

-200
-400

Sum of shares 1500

2000 200
250 Number of clients

Figure 6: WRR service time error, skewed share alloca-
tion

a share equal to 75 percent of S. All of the other clients
were then randomly assigned shares to sum to the re-
maining 25 percent of S. We again considered 40 differ-
ent combinations of N and S. For each set of (N, S), we
ran 2500 client-share combinations and determined the
resulting average error ranges. The average service time
error ranges for WRR, WFQ, VTRR, SRR, and GR? with
these skewed share distributions are shown in Figures 6
to 10. Each figure shows two surfaces representing the
maximum and minimum service time error as a function
of N and S for the respective scheduling algorithm.

Figure 6 shows the service time error ranges for
WRR. As expected, WRR’s error range of —384 to 384
tu was the worst among the five scheduling algorithms.
Figures 7, 8, and 9 show the service time error ranges
for WFQ, VTRR, and SRR, respectively. WFQ’s error
range is —1 to 191 tu, VITRR’s error range is —191 to 53
tu, and SRR’s error range is —96 to 96 tu. Unlike the
earler results for random share distributions, the service
error ranges of these three schedulers are much larger for
the skewed share distributions. In contrast, Figure 10
shows that the service time errors for GR® remain rela-
tively low even for the skewed share distributions. GR?’s
error range is only —1.3 to 3.5 tu, which is more than an
order of magnitude less than the error ranges of all of the
other schedulers.

The data produced by our simulations show that

1GR3 has fairness properties that in practice can be much

Error

1000
Sum of shares

1500

2000
250 Number of clients

Figure 7: WFQ service time error, skewed share alloca-

tion

Error

100
50

-50
-100
-150
-200

1000

Sum of shares 1500

2000
250 Number of clients

Figure 8:
tion

VTRR service time error, skewed share alloca-

Error

100
50

-50
-100

150 100

1500
Sum of shares 500
Number of clients

2000550

Figure 9: SRR service time error, skewed share allocation

Error

NP OoORNWA

1000

Sum of shares 1500

2000550

Number of clients

Figure 10: GR? service time error, skewed share alloca-
tion

1

better than WRR, WFQ, VTRR, and SRR. For the
domain of values simulated, the service time error for
GR? falls into an average range two orders of magnitude
smaller than WRR. The service time error for GR? is
consistently better than VTRR or SRR for both random
and skewed share distributions. While GR? does not pro-
vide a service time error lower bound of —1 like WFQ), it
has lower service time errors on average than WFQ espe-
cially for skewed share distributions, in which GR? can
deliver more than an order of magnitude better propor-
tional sharing accuracy. Furthermore, we show in Sec-
tion 5.2 that GR? provides this degree of accuracy with
much lower overhead than WFQ.

5.2 Scheduling Overhead

To evaluate the scheduling overhead of GR3, we im-
plemented GR? in the Linux operating system and com-
pared the overhead of our prototype GR® implementation
against the overhead of the standard Linux 2.4 sched-
uler, a WFQ scheduler, and a VTRR scheduler. We
conducted a series of experiments to quantify how the
scheduling overhead for each scheduler varies as the num-
ber of clients increases. For this experiment, each client
executed a simple micro-benchmark which performed a
few operations in a while loop. A control program was
used to fork a specified number of clients. Once all clients
were runnable, we measured the execution time of each
scheduling operation that occurred during a fixed time
duration of 30 seconds. This was done by inserting a
counter and timestamped event identifiers in the Linux
scheduling framework. The measurements required two
timestamps for each scheduling decision, so measurement
error of 70 ns are possible due to measurement overhead.
We performed these experiments on the standard Linux
scheduler, WFQ, VIRR, and GR? for 1 client up to 400
clients.

Figure 11 shows the average execution time re-
quired by each scheduler to select a client to execute.
For this experiment, the particular implementation de-
tails of the WFQ scheduler affect the overhead, so we
include results from two different implementations of
WFQ. In the first, labeled “WFQ [O(N)]” the run queue
is implemented as a simple linked list which must be
searched on every scheduling decision. The second, la-
beled “WFQ [O(log N)]” uses a heap-based priority queue
with O(log N) insertion time. To maintain the heap-
based priority queue, we used a separate fixed-length ar-
ray. If the number of clients ever exceeds the length of the
array, a costly array reallocation must be performed. We
chose an initial array size large enough to contain more
than 400 clients, so this additional cost is not reflected in
our measurements.

As shown in Figure 11, the increase in scheduling
overhead as the number of clients increases varies a great
deal between different schedulers. GR® has the smallest

2scheduling overhead. It requires roughly 300 ns to select

100

—— GR3 !

g r WEQIO(og N)]s =t T
b1 s WFQ JO4NJ]
8 i b]
(o))
£ .
El
°
Q B IRt
[5] S g KX
%] x
g i~ 1
E :
¢
< A e]

ul

Ol 1 1 1 1 1 1 1
0 50 100 150 200 250 300 350 400

Number of clients

Figure 11: Average scheduling overhead

a client to execute and the scheduling overhead is essen-
tially constant for all numbers of clients. While VTRR
scheduling overhead is also constant, GR® has less over-
head because its computations are simpler to perform
than the virtual time calculations required by VTRR.
In contrast, the overhead for Linux and for O(N) WFQ
scheduling grows linearly with the number of clients. The
Linux scheduler imposes 200 times more overhead than
GR? when scheduling a mix of 400 clients. In fact, the
Linux scheduler still spends more than 50 times as long
scheduling a single micro-benchmark client as GR® does
scheduling 400 clients. GR? outperforms Linux even for
small numbers of clients because the GR? scheduling code
is simpler and the Linux scheduler overhead is propor-
tional to the total number of clients in the system, not just
the runnable clients. As a result, sleeping Linux system
processes increase Linux scheduling overhead. GR® per-
forms even better compared to Linux and WFQ for large
numbers of clients because it has constant time overhead
as opposed to the linear time overhead of the other sched-
ulers. Because of the importance of low scheduling over-
head in server systems, Linux has switched to Ingo Mol-
nar’s O(1) scheduler in the Linux 2.5 development kernel.
As a comparison, we also repeated this microbenchmark
experiment with that scheduler and found that GR3 still
runs over 30 percent faster.

While O(log N) WFQ has much smaller overhead
than Linux or O(N) WFQ, it still imposes significantly
more overhead than GR2, particularly with large num-
bers of clients. With 400 clients, O(log N) WFQ has an
overhead roughly 8 times that of GR3. WFQ’s more com-
plex data structures require more time to maintain, and
the time required to make a scheduling decision is still de-
pendent on the number of clients, so the overhead would
only continue to grow worse as more clients are added.
GR?’s scheduling decisions always take the same amount
of time, regardless of the number of clients.

13

180

share 1
share 1
L - share 1
140 share 1
—+— share 10

160 -

[

120
100 -
80 -
60

MPEG frames encoded

40
20 |
/ o5 A ISR S s s
e : :
1000 1500 2000
Time (ms)

Figure 12: MPEG encoding with Linux scheduler

180

share 1
share 1
share 1
share 1
—+— share 10

160 -

[

140
120
100 -
80 -
60

MPEG frames encoded

40
20

1000
Time (ms)

Figure 13: MPEG encoding with WFQ

5.3 Application Workloads

To demonstrate GR®’s efficient proportional shar-
ing of resources on real applications, we briefly describe
two of our experiments running an MPEG audio encoder.
We contrast the performance of GR? versus the standard
2.4 Linux scheduler, WFQ, and VTRR. We ran multiple
MPEG audio encoders with different shares on each of
the four schedulers. We ran two tests. The first encoder
test ran five copies of the encoder with respective shares
1, 2, 3, 4, and 5. The second encoder test ran six copies
of the encoder with one encoder client assigned a share of
10 and the other encoder clients each assigned a share of
1. For the Linux scheduler, shares were assigned by se-
lecting nice values appropriately. The encoders were in-
strumented with time stamp event recorders in a manner
similar to how we recorded time in our micro-benchmark
programs. Each encoder took its input from the same
file, but wrote output to its own file. MPEG audio is
encoded in chunks called frames, so our instrumented en-
coder records a timestamp after each frame is encoded,
allowing us to easily observe the effect of resource share
on single-frame encoding time.

GR? provided the best overall proportional fairness
for these experiments while Linux provided the worst
overall proportional fairness. Due to space constraints,
we only present measurements for the second encoder

180

160 | ~* share 1
share 1 /
L - sharel — 1
140 =~ share 1
120+ —— share 10 B

N
40 t / B

20

7 S e
0 / R e ‘
0 500 1000 1500 2000

Time (ms)

MPEG frames encoded

Figure 14: MPEG encoding with VITRR

180

160 | ~* share 1
60 share 1
L ---e-- share 1
140 ~-- share 1
120 - share 10

100
80
60 -

MPEG frames encoded

40
20 +

g D S|

ol R

0 500

1000 1500

Time (ms)

2000

Figure 15: MPEG encoding with GR3

test. Figures 12 to 15 show the number of frames en-
coded over time for the Linux scheduler, WFQ, VTRR,
and GR3. All of the schedulers except GR? have a pro-
nounced “staircase” effect for the encoder with share 10,
indicating that CPU resources are provided in irregular
bursts when viewed over a short time interval. For an
audio encoder, this can result in extra jitter, resulting in
delays and dropouts. It can be inferred from the smoother
curves of Figure 15 that GR? provides fair resource allo-
cation at a finer granularity than the other schedulers.

6 Conclusions and Future Work

We have designed, implemented, and evaluated
Group Ratio Round-Robin scheduling in the Linux op-
erating system. Our experiences with GR? show that it
is simple to implement and easy to integrate into existing
commercial operating systems. We have measured the
performance of our Linux implementation and demon-
strated that GR® combines the benefits of accurate pro-
portional share resource management with very low over-
head. Our results show that GR® can provide lower
scheduling overhead and better proportional fairness in
practice than the Linux scheduler and proportional share
schedulers such as WFQ, VTRR, and SRR. GR? schedul-
ing overhead is constant, even for large numbers of clients,
and is effective at handling skewed share distributions

14

where many other proportional share schedulers are less
accurate. GR?’s ability to provide low overhead propor-
tional share resource allocation makes it a particularly
promising solution for managing resources in large-scale
server systems and software routers.

References

[1] D. Bovet and M Cesati, Understanding the Linuz
Kernel. Sebastopol, CA: O’Reilly, 1st ed., 2001.

[2] J. Bennett and H. Zhang, “WF2Q: Worst-case Fair
Weighted Fair Queueing,” in Proceedings of INFO-
COM ’96, San Francisco, CA, Mar. 1996.

[3] G. Chuanxiong, “SRR: An 0(1) Time Complexity
Packet Scheduler for Flows in Multi-Service Packet
Networks,” in Proceedings of ACM SIGCOMM ’01,
Aug. 2001, pp. 211-222.

[4] J. Cobb, M. Gouda, and A. El-Nahas, “Time-Shift
Scheduling - Fair Scheduling of Flows in High-Speed
Networks,” in IEE/ACM Transactions on Network-
ing, June 1998, pp. 274-285.

[6] A. Demers, S. Keshav, and S. Shenker, “Analysis
and Simulation of a Fair Queueing Algorithm,” in
Proceedings of ACM SIGCOMM 89, Austin, TX,
Sept. 1989, pp. 1-12.

[6] R. Essick, “An Event-Based Fair Share Scheduler,”
in Proceedings of the Winter 1990 USENIX Con-
ference, USENIX, Berkeley, CA, USA, Jan. 1990,
pp. 147-162.

[7] E. Gafni and D. Bertsekas, “Dynamic Control of Ses-
sion Input Rates in Communication Networks,” in
IEEE Transactions on Automatic Control, 29(10),
1984, pp. 1009-1016.

[8] P. Goyal, X. Guo, and H. Vin, “A Hierarchical
CPU Scheduler for Multimedia Operating System,”
in Proceedings of the Second Symposium on Operat-
ing Systems Design and Implementation, USENIX,
Berkeley, CA, Oct. 1996, pp. 107-121.

[9] P. Goyal, H. Vin, and H. Cheng, “Start-Time Fair
Queueing: A Scheduling Algorithm for Integrated
Services Packet Switching Networks,” in IEEE/ACM
Transactions on Networking, Oct. 1997, pp. 690-704.

[10] E. Hahne and R. Gallager, “Round Robin Scheduling
for Fair Flow Control in Data Communication Net-
works,” Tech. Rep. LIDS-TH-1631, Laboratory for
Information and Decision Systems, Massachusetts

Institute of Technology, Dec. 1986.

[11] G. Henry, “The Fair Share Scheduler,” AT&T Bell
Laboratories Technical Journal, 63(8), Oct. 1984,

pp. 1845-1857.

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

J. Kay and P. Lauder, “A Fair Share Scheduler,”
Communications of the ACM, 31(1), Jan. 1988,
pp- 44-55.

L. Kleinrock, Queueing Systems, Volume II: Com-
puter Applications. New York: John Wiley & Sons,
1976.

J. Nieh, C. Vaill, H. Zhong, “Virtual-time round-
robin: An O(1) proportional share scheduler,” in
Proceedings of the 2001 USENIX Annual Techni-
cal Conference, USENIX, Berkeley, CA, June 25-30
2001, pp. 245-259

A. Parekh and R. Gallager, “A Generalized Pro-
cessor Sharing Approach to Flow Control in Inte-
grated Services Networks: The Single-Node Case,”
IEEE/ACM Transactions on Networking, 1(3), June
1993, pp. 344-357.

K. Ramakrishnan, D. Chiu, and R. Jain, “Con-
gestion Avoidance in Computer Networks with a
Connectionless Network Layer, Part IV: A Selective
Binary Feedback Scheme for General Topologies,”
Tech. Rep. DEC-TR-510, DEC, Nov. 1987.

M. Shreedhar and G. Varghese, “Efficient Fair
Queueing Using Deficit Round-Robin,” in Proceed-
ings of ACM SIGCOMM 95, 4(3), Sept. 1995,
pp- 231-242.

A. Silberschatz and P. Galvin, Operating System
Concepts. Reading, MA, USA: Addison-Wesley,
5th ed., 1998.

D. Stiliadis, and A. Varma, “Efficient Fair Queue-
ing Algorithms for Packet-Switched Networks,” in
IEEE/ACM Transactions on Networking, Apr. 1998,
pp- 175-185.

I. Stoica, H. Abdel-Wahab, and K. Jeffay, “On the
Duality between Resource Reservation and Propor-
tional Share Resource Allocation,” in Multimedia
Computing and Networking Proceedings, SPIE Pro-
ceedings Series, 3020, Feb. 1997, pp. 207-214.

R. Tijdeman, “The Chairman Assignment Problem,”
Discrete Mathematics, 32, 1980, pp- 323-330.

C. Waldspurger, Lottery and Stride Scheduling:
Flexible Proportional-Share Resource Management.
PhD thesis, Department of Electrical Engineering
and Computer Science, Massachusetts Institute of
Technology, Sept. 1995.

L. Zhang, “Virtual Clock: A New Traffic Control
Algorithm for Packet Switched Networks,” in ACM
Transactions on Computer Systems, 9(2), May 1991,
pp. 101-125.

15

