2000 Articles
Adaptive Model Generation for Intrusion Detection Systems
In this paper, we present adaptive model generation, a method for automatically building detection models for data-mining based intrusion detection systems. Using the same data collected by intrusion detection sensors, adaptive model generation builds detection models on the fly. This significantly reduces the deployment cost of an intrusion detection system because it does not require building a training set. We present a real time system architecture and efficient implementation of automatic model generation. The system uses a model building algorithm that builds anomaly detection models over noisy data. We evaluate the system using the DARPA Intrusion Detection Evaluation data and show an increase in detection performance as more data is collected by the sensors.
Subjects
Files
-
adaptive-ccsids00.pdf application/pdf 71.4 KB Download File
More About This Work
- Academic Units
- Computer Science
- Published Here
- May 3, 2010
Notes
Presented at Workshop on Intrusion Detection Systems ("WIDS"), 7th ACM Conference on Computer and Communications Security, 1 November 2000, Athens, Greece.