2007 Reports
A Precomputed Polynomial Representation for Interactive BRDF Editing with Global Illumination
The ability to interactively edit BRDFs in their final placement within a computer graphics scene is vital to making informed choices for material properties. We significantly extend previous work on BRDF editing for static scenes (with fixed lighting and view), by developing a precomputed polynomial representation that enables interactive BRDF editing with global illumination. Unlike previous recomputation based rendering techniques, the image is not linear in the BRDF when considering interreflections. We introduce a framework for precomputing a multi-bounce tensor of polynomial coefficients, that encapsulates the nonlinear nature of the task. Significant reductions in complexity are achieved by leveraging the low-frequency nature of indirect light. We use a high-quality representation for the BRDFs at the first bounce from the eye, and lower-frequency (often diffuse) versions for further bounces. This approximation correctly captures the general global illumination in a scene, including color-bleeding, near-field object reflections, and even caustics. We adapt Monte Carlo path tracing for precomputing the tensor of coefficients for BRDF basis functions. At runtime, the high-dimensional tensors can be reduced to a simple dot product at each pixel for rendering. We present a number of examples of editing BRDFs in complex scenes, with interactive feedback rendered with global illumination.
Subjects
Files
-
cucs-025-07.pdf application/pdf 2.13 MB Download File
More About This Work
- Academic Units
- Computer Science
- Publisher
- Department of Computer Science, Columbia University
- Series
- Columbia University Computer Science Technical Reports, CUCS-025-07
- Published Here
- April 27, 2011