Academic Commons


A Precomputed Polynomial Representation for Interactive BRDF Editing with Global Illumination

Ben-Artzi, Aner; Egan, Kevin; Durand, Fredo; Ramamoorthi, Ravi

The ability to interactively edit BRDFs in their final placement within a computer graphics scene is vital to making informed choices for material properties. We significantly extend previous work on BRDF editing for static scenes (with fixed lighting and view), by developing a precomputed polynomial representation that enables interactive BRDF editing with global illumination. Unlike previous recomputation based rendering techniques, the image is not linear in the BRDF when considering interreflections. We introduce a framework for precomputing a multi-bounce tensor of polynomial coefficients, that encapsulates the nonlinear nature of the task. Significant reductions in complexity are achieved by leveraging the low-frequency nature of indirect light. We use a high-quality representation for the BRDFs at the first bounce from the eye, and lower-frequency (often diffuse) versions for further bounces. This approximation correctly captures the general global illumination in a scene, including color-bleeding, near-field object reflections, and even caustics. We adapt Monte Carlo path tracing for precomputing the tensor of coefficients for BRDF basis functions. At runtime, the high-dimensional tensors can be reduced to a simple dot product at each pixel for rendering. We present a number of examples of editing BRDFs in complex scenes, with interactive feedback rendered with global illumination.



More About This Work

Academic Units
Computer Science
Department of Computer Science, Columbia University
Columbia University Computer Science Technical Reports, CUCS-025-07
Published Here
April 27, 2011