Theses Doctoral

Probing Transition Metal Dichalcogenide Monolayers and Heterostructures by Polarization-Resolved Spectroscopy

Kim, Suk Hyun

The goal of this dissertation is to introduce my study on exotic materials in two dimensional world, not only to the well-trained researchers in this field but also to the beginners of condensed matter experiment. I hope this material to be a good guide for those of who paves the way of spintronics and valleytronics
The first chapter will give you the introduction to two dimensional materials - Graphene and Monolayer Transition Metal DiChalcogenide (TMDC). The second chapter introduces some toolkits on optical techniques on condensed matter experiment, from very basics for everyone to the advanced for main projects of this work. They include Reflection Contrast, Raman Spectroscopy, Photoluminescence, and Pump Probe Spectroscopy. Chapter three will be review on several literature which are prerequisites for understanding and getting inspiration for this work. They are on the spin-valley indexes of carriers in TMDC, interlayer charge transfer in TMDC heterostructre, valley Hall effect, etc.
Chapter four will focus on the first half of main project, “Charge and Spin-Valley Transfer in Transition Metal Dichalcogenide Heterostructure”. Starting from the fabrication of heterostructure samples for our playground, we investigate the Interlayer Charge Transfer in our Heterostructure sample by ultrafast pump probe spectroscopy. We bring the polarization resolved version of the technique to study the Spin-Valley indexes conservation in the interlayer transferred charge, and analyze its physical meaning. We study which one is the dominantly preserved quantity among spin and valley by using the broadband pump probe spectroscopy which covers A and B excitonic energy in TMDC material. As all the measurement here are taken under room temperature condition, this work paves the way for possible real device application.
Chapter five will cover the second half of main project, “Electrical control of spin and valley Hall effect in monolayer WSe2 transistors near room temperature”. Valley Hall effect device in praevious studies will be briefly revisited, and our new device is presented, using hole as carrier rather than electron for the robustness of valley index conservation, followed by optical experiment setting and results. Quantitative analyze on valley polarized carrier concentration and its depolarization time constant will follow. Chapter six will be a summary and direction to the future work.


  • thumnail for KIM_columbia_0054D_14344.pdf KIM_columbia_0054D_14344.pdf application/pdf 9.14 MB Download File

More About This Work

Academic Units
Thesis Advisors
Heinz, Tony F.
Ph.D., Columbia University
Published Here
December 1, 2017