Academic Commons

Theses Doctoral

Three-Manifold Mutations Detected by Heegaard Floer Homology

Clarkson, Corrin

Given a self-diffeomorphism h of a closed, orientable surface S with genus greater than one and an embedding f of S into a three-manifold M, we construct a mutant manifold by cutting M along f(S) and regluing by h. We will consider whether there exist nontrivial gluings such that for any embedding, the manifold M and its mutant have isomorphic Heegaard Floer homology. In particular, we will demonstrate that if h is not isotopic to the identity map, then there exists an embedding of S into a three-manifold M such that the rank of the non-torsion summands of HF-hat of M differs from that of its mutant. We will also show that if the gluing map is isotopic to neither the identity nor the genus-two hyperelliptic involution, then there exists an embedding of S into a three-manifold M such that the total rank of HF-hat of M differs from that of its mutant.

Subjects

Files

  • thumnail for Clarkson_columbia_0054D_11918.pdf Clarkson_columbia_0054D_11918.pdf binary/octet-stream 473 KB Download File

More About This Work

Academic Units
Mathematics
Thesis Advisors
Lipshitz, Robert
Degree
Ph.D., Columbia University
Published Here
July 7, 2014
Academic Commons provides global access to research and scholarship produced at Columbia University, Barnard College, Teachers College, Union Theological Seminary and Jewish Theological Seminary. Academic Commons is managed by the Columbia University Libraries.